Пример #1
0
 def test_shiftleft(self):
     self.spark.range(10).select(
         assert_true(
             shiftLeft(col("id"), 2) == shiftleft(col("id"), 2))).collect()
Пример #2
0
def tocolumns(df, expr):
    import pyspark.sql.functions as fcns

    if isinstance(expr, histbook.expr.Const):
        return fcns.lit(expr.value)

    elif isinstance(expr, (histbook.expr.Name, histbook.expr.Predicate)):
        return df[expr.value]

    elif isinstance(expr, histbook.expr.Call):
        if expr.fcn == "abs" or expr.fcn == "fabs":
            return fcns.abs(tocolumns(df, expr.args[0]))
        elif expr.fcn == "max" or expr.fcn == "fmax":
            return fcns.greatest(*[tocolumns(df, x) for x in expr.args])
        elif expr.fcn == "min" or expr.fcn == "fmin":
            return fcns.least(*[tocolumns(df, x) for x in expr.args])
        elif expr.fcn == "arccos":
            return fcns.acos(tocolumns(df, expr.args[0]))
        elif expr.fcn == "arccosh":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "arcsin":
            return fcns.asin(tocolumns(df, expr.args[0]))
        elif expr.fcn == "arcsinh":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "arctan2":
            return fcns.atan2(tocolumns(df, expr.args[0]),
                              tocolumns(df, expr.args[1]))
        elif expr.fcn == "arctan":
            return fcns.atan(tocolumns(df, expr.args[0]))
        elif expr.fcn == "arctanh":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "ceil":
            return fcns.ceil(tocolumns(df, expr.args[0]))
        elif expr.fcn == "copysign":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "cos":
            return fcns.cos(tocolumns(df, expr.args[0]))
        elif expr.fcn == "cosh":
            return fcns.cosh(tocolumns(df, expr.args[0]))
        elif expr.fcn == "rad2deg":
            return tocolumns(df, expr.args[0]) * (180.0 / math.pi)
        elif expr.fcn == "erfc":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "erf":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "exp":
            return fcns.exp(tocolumns(df, expr.args[0]))
        elif expr.fcn == "expm1":
            return fcns.expm1(tocolumns(df, expr.args[0]))
        elif expr.fcn == "factorial":
            return fcns.factorial(tocolumns(df, expr.args[0]))
        elif expr.fcn == "floor":
            return fcns.floor(tocolumns(df, expr.args[0]))
        elif expr.fcn == "fmod":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "gamma":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "hypot":
            return fcns.hypot(tocolumns(df, expr.args[0]),
                              tocolumns(df, expr.args[1]))
        elif expr.fcn == "isinf":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "isnan":
            return fcns.isnan(tocolumns(df, expr.args[0]))
        elif expr.fcn == "lgamma":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "log10":
            return fcns.log10(tocolumns(df, expr.args[0]))
        elif expr.fcn == "log1p":
            return fcns.log1p(tocolumns(df, expr.args[0]))
        elif expr.fcn == "log":
            return fcns.log(tocolumns(df, expr.args[0]))
        elif expr.fcn == "pow":
            return fcns.pow(tocolumns(df, expr.args[0]),
                            tocolumns(df, expr.args[1]))
        elif expr.fcn == "deg2rad":
            return tocolumns(df, expr.args[0]) * (math.pi / 180.0)
        elif expr.fcn == "sinh":
            return fcns.sinh(tocolumns(df, expr.args[0]))
        elif expr.fcn == "sin":
            return fcns.sin(tocolumns(df, expr.args[0]))
        elif expr.fcn == "sqrt":
            return fcns.sqrt(tocolumns(df, expr.args[0]))
        elif expr.fcn == "tanh":
            return fcns.tanh(tocolumns(df, expr.args[0]))
        elif expr.fcn == "tan":
            return fcns.tan(tocolumns(df, expr.args[0]))
        elif expr.fcn == "trunc":
            raise NotImplementedError(
                expr.fcn)  # FIXME (fcns.trunc is for dates)
        elif expr.fcn == "xor":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "conjugate":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "exp2":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "heaviside":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "isfinite":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "left_shift" and isinstance(expr.args[1],
                                                     histbook.expr.Const):
            return fcns.shiftLeft(tocolumns(df, expr.args[0]),
                                  expr.args[1].value)
        elif expr.fcn == "log2":
            return fcns.log2(tocolumns(df, expr.args[0]))
        elif expr.fcn == "logaddexp2":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "logaddexp":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "mod" or expr.fcn == "fmod":
            return tocolumns(df, expr.args[0]) % tocolumns(df, expr.args[1])
        elif expr.fcn == "right_shift" and isinstance(expr.args[1],
                                                      histbook.expr.Const):
            return fcns.shiftRight(tocolumns(df, expr.args[0]),
                                   expr.args[1].value)
        elif expr.fcn == "rint":
            return fcns.rint(tocolumns(df, expr.args[0]))
        elif expr.fcn == "sign":
            raise NotImplementedError(expr.fcn)  # FIXME
        elif expr.fcn == "where":
            return fcns.when(tocolumns(df, expr.args[0]),
                             tocolumns(df, expr.args[1])).otherwise(
                                 tocolumns(df, expr.args[2]))
        elif expr.fcn == "numpy.equal":
            return tocolumns(df, expr.args[0]) == tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.not_equal":
            return tocolumns(df, expr.args[0]) != tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.less":
            return tocolumns(df, expr.args[0]) < tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.less_equal":
            return tocolumns(df, expr.args[0]) <= tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.isin":
            return tocolumns(df, expr.args[0]) in tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.logical_not":
            return ~tocolumns(df, expr.args[0])
        elif expr.fcn == "numpy.add":
            return tocolumns(df, expr.args[0]) + tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.subtract":
            return tocolumns(df, expr.args[0]) - tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.multiply":
            return tocolumns(df, expr.args[0]) * tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.true_divide":
            return tocolumns(df, expr.args[0]) / tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.logical_or":
            return tocolumns(df, expr.args[0]) | tocolumns(df, expr.args[1])
        elif expr.fcn == "numpy.logical_and":
            return tocolumns(df, expr.args[0]) & tocolumns(df, expr.args[1])
        else:
            raise NotImplementedError(expr.fcn)

    else:
        raise AssertionError(expr)