Пример #1
0
 def test_time_double(self):
     """Test time_double function."""
     t0 = time_float()
     t1 = time_float_one()
     t2 = time_float(1450181243)
     print("Time_double functions test:", t0, t1, t2)
     self.assertTrue(time_double('2015-12-15 12:07:23.767000')
                     == 1450181243.767)
     self.assertTrue(time_double(['2015-12-15 12:07:23.767000',
                                  '2015-12-15 12:07:43.767000'])
                     == [1450181243.767, 1450181263.767])
Пример #2
0
def time_datetime(time=None, tz=None):
    """Find python datetime.

    Transform a list of float daytime values to a list of pythonic
        'datetime.datetime' values.

    Parameters
    ----------
    time: float/list of floats or str/list of str, optional
        Input time.
        The default is None, which returns the time now.

    Returns
    -------
    list of datetime.datetime
        Datetimes as `datetime.datetime`.

    """
    if tz == None:
        tz = timezone.utc

    if time is None:
        return datetime.now()

    if isinstance(time, str):
        return time_datetime(time_float(time))

    if isinstance(time, (int, float)):
        return datetime.fromtimestamp(time, tz=tz)

    return [time_datetime(_time) for _time in time]
Пример #3
0
def ex_create(plot=True):
    """Show how to create and plot pytplot variables."""
    # Delete any existing pytplot variables
    pytplot.del_data()

    # Create a sin wave plot
    a = list(range(0, 101))
    b = [2.0 / 100.0 * numpy.pi * s for s in a]
    c = time_float('2017-01-01')
    x = list()
    y = list()
    for i in range(len(b)):
        x.append(c + 60.0 / (2 * numpy.pi) * 60.0 * b[i])
        y.append(1000.0 * numpy.sin(b[i]))

    # Store data
    pytplot.store_data('sinx', data={'x': x, 'y': y})

    # Apply yclip
    pyspedas.yclip('sinx', -800.0, 800.0)

    # Remove NaN values
    pyspedas.tdeflag('sinx-clip')

    # Interpolate
    pyspedas.tinterpol(['sinx-clip-deflag'], 'sinx', 'quadratic')

    # Plot
    pytplot.ylim('sinx', -1100.0, 1100.0)
    pytplot.ylim('sinx-clip', -1100.0, 1100.0)
    pytplot.ylim('sinx-clip-deflag', -1100.0, 1100.0)
    pytplot.ylim('sinx-clip-deflag-itrp', -1100.0, 1100.0)
    pytplot.tplot_options('title', 'Interpolation example')

    if plot:
        pytplot.tplot(
            ['sinx', 'sinx-clip', 'sinx-clip-deflag', 'sinx-clip-deflag-itrp'])

    # Return 1 as indication that the example finished without problems.
    return 1
Пример #4
0
def pwe_wfc(trange=['2017-04-01/12:00:00', '2017-04-01/13:00:00'],
            datatype='waveform',
            mode='65khz',
            level='l2',
            suffix='',
            coord='sgi',
            component='all',
            get_support_data=False,
            varformat=None,
            varnames=[],
            downloadonly=False,
            notplot=False,
            no_update=False,
            uname=None,
            passwd=None,
            time_clip=False,
            ror=True):
    """
    This function loads data from the PWE experiment from the Arase mission

    Parameters:
        trange : list of str
            time range of interest [starttime, endtime] with the format
            'YYYY-MM-DD','YYYY-MM-DD'] or to specify more or less than a day
            ['YYYY-MM-DD/hh:mm:ss','YYYY-MM-DD/hh:mm:ss']

        datatype: str
            Data type; Valid options:

        level: str
            Data level; Valid options:

        suffix: str
            The tplot variable names will be given this suffix.  By default,
            no suffix is added.

        get_support_data: bool
            Data with an attribute "VAR_TYPE" with a value of "support_data"
            will be loaded into tplot.  By default, only loads in data with a
            "VAR_TYPE" attribute of "data".

        varformat: str
            The file variable formats to load into tplot.  Wildcard character
            "*" is accepted.  By default, all variables are loaded in.

        varnames: list of str
            List of variable names to load (if not specified,
            all data variables are loaded)

        downloadonly: bool
            Set this flag to download the CDF files, but not load them into
            tplot variables

        notplot: bool
            Return the data in hash tables instead of creating tplot variables

        no_update: bool
            If set, only load data from your local cache

        time_clip: bool
            Time clip the variables to exactly the range specified in the trange keyword

        ror: bool
            If set, print PI info and rules of the road

    Returns:
        List of tplot variables created.

    """
    initial_notplot_flag = False
    if notplot:
        initial_notplot_flag = True

    file_res = 3600.

    if level == 'l2':
        prefix = 'erg_pwe_wfc_' + level + '_' + mode + '_'

    loaded_data = []
    if level == 'l2':
        if datatype == 'waveform':
            tplot_name_list = []
            if component == 'all':
                component_list = ['e', 'b']
            elif (component == 'e') or (component == 'b'):
                component_list = [component]
            for com in component_list:
                prefix = 'erg_pwe_wfc_' + level + '_' + com + '_' + mode + '_'
                pathformat = 'satellite/erg/pwe/wfc/'+level+'/'+datatype+'/%Y/%m/erg_pwe_wfc_' + \
                    level+'_'+com+'_'+datatype+'_'+mode+'_'+coord+'_%Y%m%d%H_v??_??.cdf'
                loaded_data.append(
                    load(pathformat=pathformat,
                         trange=trange,
                         level=level,
                         datatype=datatype,
                         file_res=file_res,
                         prefix=prefix,
                         suffix=suffix,
                         get_support_data=get_support_data,
                         varformat=varformat,
                         varnames=varnames,
                         downloadonly=downloadonly,
                         notplot=notplot,
                         time_clip=time_clip,
                         no_update=no_update,
                         uname=uname,
                         passwd=passwd))
                if com == 'e':
                    tplot_name_list += [
                        prefix + 'Ex_waveform', prefix + 'Ey_waveform'
                    ]
                elif com == 'b':
                    tplot_name_list += [
                        prefix + 'Bx_waveform', prefix + 'By_waveform',
                        prefix + 'Bz_waveform'
                    ]
        elif datatype == 'spec':
            prefix_list = []
            component_suffix_list = []
            if component == 'all':
                component_list = ['e', 'b']
            elif (component == 'e') or (component == 'b'):
                component_list = [component]
            for com in component_list:
                prefix = 'erg_pwe_wfc_' + level + '_' + com + '_' + mode + '_'
                pathformat = 'satellite/erg/pwe/wfc/'+level+'/'+datatype+'/%Y/%m/erg_pwe_wfc_' + \
                    level+'_'+com+'_'+datatype+'_'+mode+'_%Y%m%d%H_v??_??.cdf'
                loaded_data.append(
                    load(pathformat=pathformat,
                         trange=trange,
                         level=level,
                         datatype=datatype,
                         file_res=file_res,
                         prefix=prefix,
                         suffix=suffix,
                         get_support_data=get_support_data,
                         varformat=varformat,
                         varnames=varnames,
                         downloadonly=downloadonly,
                         notplot=notplot,
                         time_clip=time_clip,
                         no_update=no_update,
                         uname=uname,
                         passwd=passwd))
                prefix_list.append(prefix)
                component_suffix_list.append(com.upper() + '_spectra')

    if (len(loaded_data) > 0) and ror:

        try:
            if isinstance(loaded_data, list):
                if downloadonly:
                    cdf_file = cdflib.CDF(loaded_data[-1][-1])
                    gatt = cdf_file.globalattsget()
                elif notplot:
                    gatt = loaded_data[-1][list(
                        loaded_data[-1].keys())[-1]]['CDF']['GATT']
                else:
                    gatt = get_data(loaded_data[-1][-1],
                                    metadata=True)['CDF']['GATT']

            # --- print PI info and rules of the road
            print(' ')
            print(' ')
            print(
                '**************************************************************************'
            )
            print(gatt["LOGICAL_SOURCE_DESCRIPTION"])
            print('')
            print('Information about ERG PWE WFC')
            print('')
            print('PI: ', gatt['PI_NAME'])
            print("Affiliation: " + gatt["PI_AFFILIATION"])
            print('')
            print(
                'RoR of ERG project common: https://ergsc.isee.nagoya-u.ac.jp/data_info/rules_of_the_road.shtml.en'
            )
            print(
                'RoR of PWE/WFC: https://ergsc.isee.nagoya-u.ac.jp/mw/index.php/ErgSat/Pwe/Wfc'
            )
            print('')
            print('Contact: erg_pwe_info at isee.nagoya-u.ac.jp')
            print(
                '**************************************************************************'
            )
        except:
            print('printing PI info and rules of the road was failed')

    if initial_notplot_flag or downloadonly:
        return loaded_data

    if datatype == 'spec':
        trange_in_float = time_float(trange)
        for i in range(len(prefix_list)):
            t_plot_name = prefix_list[i] + component_suffix_list[i]
            options(t_plot_name, 'spec', 1)
            options(t_plot_name, 'colormap', 'jet')
            options(t_plot_name, 'ylog', 1)
            options(t_plot_name, 'zlog', 1)
            options(t_plot_name, 'ysubtitle', '[Hz]')
            ylim(t_plot_name, 32., 2e4)
            if 'E_spectra' in component_suffix_list[i]:
                zlim(t_plot_name, 1e-9, 1e-2)
                options(t_plot_name, 'ztitle', '[mV^2/m^2/Hz]')
                options(t_plot_name, 'ytitle', 'E\nspectra')
            elif 'B_spectra' in component_suffix_list[i]:
                zlim(t_plot_name, 1e-4, 1e2)
                options(t_plot_name, 'ztitle', '[pT^2/Hz]')
                options(t_plot_name, 'ytitle', 'B\nspectra')

            get_data_vars = get_data(t_plot_name)
            time_array = get_data_vars[0]
            if time_array[0] <= trange_in_float[0]:
                t_ge_indices = np.where(time_array <= trange_in_float[0])
                t_min_index = t_ge_indices[0][-1]
            else:
                t_min_index = 0
            if trange_in_float[1] <= time_array[-1]:
                t_le_indices = np.where(trange_in_float[1] <= time_array)
                t_max_index = t_le_indices[0][0]
            else:
                t_max_index = -1
            if t_min_index == t_max_index:
                t_max_index = +1
            if (t_min_index != 0) or (t_max_index != -1):
                meta_data = get_data(t_plot_name, metadata=True)
                store_data(t_plot_name,
                           newname=t_plot_name + '_all_loaded_time_range')
                store_data(t_plot_name,
                           data={
                               'x': time_array[t_min_index:t_max_index],
                               'y': get_data_vars[1][t_min_index:t_max_index],
                               'v': get_data_vars[2]
                           },
                           attr_dict=meta_data)
                options(t_plot_name, 'zlog', 1)
                if 'E_spectra' in t_plot_name:
                    zlim(t_plot_name, 1e-9, 1e-2)
                elif 'B_spectra' in t_plot_name:
                    zlim(t_plot_name, 1e-4, 1e2)

    if datatype == 'waveform':
        trange_in_float = time_float(trange)
        yn = ''
        all_time_range_flag = False
        if trange_in_float[1] - trange_in_float[0] <= 0.:
            yn = input('Invalid time range. Use full time range ?:[y/n] ')
            if yn == 'y':
                all_time_range_flag = True
                t_min_index = 0
                t_max_index = -1
            else:
                return
        for t_plot_name in tplot_name_list:
            get_data_vars = get_data(t_plot_name)
            dl_in = get_data(t_plot_name, metadata=True)
            time_array = get_data_vars[0]
            if not all_time_range_flag:
                if time_array[0] <= trange_in_float[0]:
                    t_ge_indices = np.where(time_array <= trange_in_float[0])
                    t_min_index = t_ge_indices[0][-1]
                else:
                    t_min_index = 0
                if trange_in_float[1] <= time_array[-1]:
                    t_le_indices = np.where(trange_in_float[1] <= time_array)
                    t_max_index = t_le_indices[0][0]
                else:
                    t_max_index = -1
                if t_min_index == t_max_index:
                    t_max_index = +1
            data = np.where(get_data_vars[1] <= -1e+30, np.nan,
                            get_data_vars[1])
            dt = get_data_vars[2]
            ndt = dt.size
            ndata = (t_max_index - t_min_index) * ndt
            time_new = (np.tile(time_array[t_min_index:t_max_index],
                                (ndt, 1)).T + dt * 1e-3).reshape(ndata)
            data_new = data[t_min_index:t_max_index].reshape(ndata)
            store_data(t_plot_name,
                       data={
                           'x': time_new,
                           'y': data_new
                       },
                       attr_dict=dl_in)
            options(t_plot_name, 'ytitle', '\n'.join(t_plot_name.split('_')))
            # ylim settings because pytplot.timespan() doesn't affect in ylim.
            # May be it will be no need in future.
            if not all_time_range_flag:
                if time_new[0] <= trange_in_float[0]:
                    t_min_index = np.where(
                        (time_new <= trange_in_float[0]))[0][-1]
                else:
                    t_min_index = 0
                if trange_in_float[1] <= time_new[-1]:
                    t_max_index = np.where(
                        trange_in_float[1] <= time_new)[0][0]
                else:
                    t_max_index = -1
            ylim_min = np.nanmin(data_new[t_min_index:t_max_index])
            ylim_max = np.nanmax(data_new[t_min_index:t_max_index])
            ylim(t_plot_name, ylim_min, ylim_max)

    return loaded_data
Пример #5
0
def att(trange=['2017-04-01', '2017-04-02'],
        level='l2',
        downloadonly=False,
        notplot=False,
        no_update=False,
        uname=None,
        passwd=None):
    """
    This function loads attitude data from the Arase mission

    Parameters:
        trange : list of str
            time range of interest [starttime, endtime] with the format
            'YYYY-MM-DD','YYYY-MM-DD'] or to specify more or less than a day
            ['YYYY-MM-DD/hh:mm:ss','YYYY-MM-DD/hh:mm:ss']

        level: str
            Data level; Valid options:

        downloadonly: bool
            Set this flag to download the files, but not load them into
            tplot variables

        notplot: bool
            Return the data in hash tables instead of creating tplot variables

        no_update: bool
            If set, only load data from your local cache

    Returns:
        None

    """
    file_res = 24*3600.
    pathformat = 'satellite/erg/att/txt/erg_att_'+level+'_%Y%m%d_v??.txt'

    out_files = load(pathformat=pathformat, trange=trange, file_res=file_res,
                     downloadonly=True, no_update=no_update, uname=uname, passwd=passwd)

    if downloadonly:
        return out_files

    data_flame_list = []
    for file in out_files:
        raw_read_table = pd.read_table(file)
        data_flame_list.append(
            raw_read_table[10:][raw_read_table.keys()[0]].str.split(expand=True))

    concat_frame_for_tplot = pd.concat(data_flame_list)
    time_float_array = time_float(concat_frame_for_tplot.iloc[:, 0])

    Omega_float_array = concat_frame_for_tplot.iloc[:, 1].astype(float)
    Phase_float_array = concat_frame_for_tplot.iloc[:, 9].astype(float)
    I_Alpha_float_array = concat_frame_for_tplot.iloc[:, 2].astype(float)
    I_Delta_float_array = concat_frame_for_tplot.iloc[:, 3].astype(float)
    GX_Alpha_float_array = concat_frame_for_tplot.iloc[:, 10].astype(float)
    GX_Delta_float_array = concat_frame_for_tplot.iloc[:, 11].astype(float)
    GZ_Alpha_float_array = concat_frame_for_tplot.iloc[:, 12].astype(float)
    GZ_Delta_float_array = concat_frame_for_tplot.iloc[:, 13].astype(float)

    if notplot:
        output_dictionary = {}
        output_dictionary['erg_att_sprate'] = {
            'x': time_float_array, 'y': Omega_float_array}
        output_dictionary['erg_att_spphase'] = {
            'x': time_float_array, 'y': Phase_float_array}
        output_dictionary['erg_att_izras'] = {
            'x': time_float_array, 'y': I_Alpha_float_array}
        output_dictionary['erg_att_izdec'] = {
            'x': time_float_array, 'y': I_Delta_float_array}
        output_dictionary['erg_att_gxras'] = {
            'x': time_float_array, 'y': GX_Alpha_float_array}
        output_dictionary['erg_att_gxdec'] = {
            'x': time_float_array, 'y': GX_Delta_float_array}
        output_dictionary['erg_att_gzras'] = {
            'x': time_float_array, 'y': GZ_Alpha_float_array}
        output_dictionary['erg_att_gzdec'] = {
            'x': time_float_array, 'y': GZ_Delta_float_array}
        return output_dictionary
    else:
        store_data('erg_att_sprate', data={
            'x': time_float_array, 'y': Omega_float_array})
        store_data('erg_att_spphase', data={
            'x': time_float_array, 'y': Phase_float_array})
        store_data('erg_att_izras', data={
            'x': time_float_array, 'y': I_Alpha_float_array})
        store_data('erg_att_izdec', data={
            'x': time_float_array, 'y': I_Delta_float_array})
        store_data('erg_att_gxras', data={
            'x': time_float_array, 'y': GX_Alpha_float_array})
        store_data('erg_att_gxdec', data={
            'x': time_float_array, 'y': GX_Delta_float_array})
        store_data('erg_att_gzras', data={
            'x': time_float_array, 'y': GZ_Alpha_float_array})
        store_data('erg_att_gzdec', data={
            'x': time_float_array, 'y': GZ_Delta_float_array})

    return None
Пример #6
0
def pwe_efd(trange=['2017-04-01', '2017-04-02'],
            datatype='E_spin',
            level='l2',
            suffix='',
            coord='dsi',
            get_support_data=False,
            varformat=None,
            varnames=[],
            downloadonly=False,
            notplot=False,
            no_update=False,
            uname=None,
            passwd=None,
            time_clip=False,
            ror=True):
    """
    This function loads data from the PWE experiment from the Arase mission

    Parameters:
        trange : list of str
            time range of interest [starttime, endtime] with the format
            'YYYY-MM-DD','YYYY-MM-DD'] or to specify more or less than a day
            ['YYYY-MM-DD/hh:mm:ss','YYYY-MM-DD/hh:mm:ss']

        datatype: str
            Data type; Valid options:

        level: str
            Data level; Valid options:

        suffix: str
            The tplot variable names will be given this suffix.  By default,
            no suffix is added.

        get_support_data: bool
            Data with an attribute "VAR_TYPE" with a value of "support_data"
            will be loaded into tplot.  By default, only loads in data with a
            "VAR_TYPE" attribute of "data".

        varformat: str
            The file variable formats to load into tplot.  Wildcard character
            "*" is accepted.  By default, all variables are loaded in.

        varnames: list of str
            List of variable names to load (if not specified,
            all data variables are loaded)

        downloadonly: bool
            Set this flag to download the CDF files, but not load them into
            tplot variables

        notplot: bool
            Return the data in hash tables instead of creating tplot variables

        no_update: bool
            If set, only load data from your local cache

        time_clip: bool
            Time clip the variables to exactly the range specified in the trange keyword

        ror: bool
            If set, print PI info and rules of the road

    Returns:
        List of tplot variables created.

    """
    initial_notplot_flag = False
    if notplot:
        initial_notplot_flag = True
    file_res = 3600. * 24
    prefix = 'erg_pwe_efd_' + level + '_'

    if ('64' in datatype) or ('256' in datatype):
        if '64' in datatype:
            mode = '64Hz'
        elif '256' in datatype:
            mode = '256Hz'
        md = 'E' + mode
        pathformat = 'satellite/erg/pwe/efd/'+level+'/'+md + \
            '/%Y/%m/erg_pwe_efd_'+level+'_'+md+'_'+coord+'_%Y%m%d_v??_??.cdf'
        prefix += md + '_' + coord + '_'
        if coord == 'wpt':
            component = ['Eu_waveform', 'Ev_waveform']
        elif coord == 'dsi':
            component = [
                'Ex_waveform', 'Ey_waveform', 'Eu_offset' + '_' + mode,
                'Ev_offset' + '_' + mode
            ]

    else:
        pathformat = 'satellite/erg/pwe/efd/'+level+'/'+datatype + \
            '/%Y/%m/erg_pwe_efd_'+level+'_'+datatype+'_%Y%m%d_v??_??.cdf'
        prefix += datatype + '_'
        if 'spin' in datatype:
            component = ['Eu', 'Ev', 'Eu1', 'Ev1', 'Eu2', 'Ev2']
            labels = ['Ex', 'Ey']
        if datatype == 'pot':
            component = ['Vu1', 'Vu2', 'Vv1', 'Vv2']
        if datatype == 'pot8Hz':
            component = [
                'Vu1_waveform_8Hz', 'Vu2_waveform_8Hz', 'Vv1_waveform_8Hz',
                'Vv2_waveform_8Hz'
            ]

    loaded_data = load(pathformat=pathformat,
                       trange=trange,
                       level=level,
                       datatype=datatype,
                       file_res=file_res,
                       prefix=prefix,
                       suffix=suffix,
                       get_support_data=get_support_data,
                       varformat=varformat,
                       varnames=varnames,
                       downloadonly=downloadonly,
                       notplot=notplot,
                       time_clip=time_clip,
                       no_update=no_update,
                       uname=uname,
                       passwd=passwd)

    if (len(loaded_data) > 0) and ror:

        try:
            if isinstance(loaded_data, list):
                if downloadonly:
                    cdf_file = cdflib.CDF(loaded_data[-1])
                    gatt = cdf_file.globalattsget()
                else:
                    gatt = get_data(loaded_data[-1],
                                    metadata=True)['CDF']['GATT']
            elif isinstance(loaded_data, dict):
                gatt = loaded_data[list(loaded_data.keys())[-1]]['CDF']['GATT']

            # --- print PI info and rules of the road

            print(' ')
            print(' ')
            print(
                '**************************************************************************'
            )
            print(gatt["LOGICAL_SOURCE_DESCRIPTION"])
            print('')
            print('Information about ERG PWE EFD')
            print('')
            print('PI: ', gatt['PI_NAME'])
            print("Affiliation: " + gatt["PI_AFFILIATION"])
            print('')
            print(
                'RoR of ERG project common: https://ergsc.isee.nagoya-u.ac.jp/data_info/rules_of_the_road.shtml.en'
            )
            print(
                'RoR of PWE/EFD: https://ergsc.isee.nagoya-u.ac.jp/mw/index.php/ErgSat/Pwe/Efd'
            )
            print('')
            print('Contact: erg_pwe_info at isee.nagoya-u.ac.jp')
            print(
                '**************************************************************************'
            )
        except:
            print('printing PI info and rules of the road was failed')

    if initial_notplot_flag or downloadonly:
        return loaded_data

    time_min_max = time_float(trange)
    if 'spin' in datatype:
        for elem in component:
            t_plot_name = prefix + elem + '_dsi'
            options(t_plot_name, 'ytitle', elem + ' vector in DSI')
            options(t_plot_name, 'legend_names', labels)
            # ylim settings because pytplot.timespan() doesn't affect in ylim.
            # May be it will be no need in future.
            get_data_vars = get_data(t_plot_name)
            if get_data_vars[0][0] < time_min_max[0]:
                min_time_index = np.where(
                    (get_data_vars[0] <= time_min_max[0]))[0][-1]
            else:
                min_time_index = 0
            if time_min_max[1] < get_data_vars[0][-1]:
                max_time_index = np.where(
                    time_min_max[1] <= get_data_vars[0])[0][0]
            else:
                max_time_index = -1
            ylim_min = np.nanmin(
                get_data_vars[1][min_time_index:max_time_index])
            ylim_max = np.nanmax(
                get_data_vars[1][min_time_index:max_time_index])
            ylim(t_plot_name, ylim_min, ylim_max)

    if ('64' in datatype) or ('256' in datatype) or (datatype == 'pot8Hz'):
        for elem in component:
            t_plot_name = prefix + elem
            get_data_vars = get_data(t_plot_name)
            dl_in = get_data(t_plot_name, metadata=True)
            time1 = get_data_vars[0]
            data = np.where(get_data_vars[1] <= -1e+30, np.nan,
                            get_data_vars[1])
            dt = get_data_vars[2]
            ndt = dt.size
            ndata = data.size
            time_new = (np.tile(time1, (ndt, 1)).T + dt * 1e-3).reshape(ndata)
            data_new = data.reshape(ndata)
            store_data(t_plot_name,
                       data={
                           'x': time_new,
                           'y': data_new
                       },
                       attr_dict=dl_in)
            options(t_plot_name, 'ytitle', '\n'.join(t_plot_name.split('_')))
            # ylim settings because pytplot.timespan() doesn't affect in ylim.
            # May be it will be no need in future.
            if time_new[0] < time_min_max[0]:
                min_time_index = np.where((time_new <= time_min_max[0]))[0][-1]
            else:
                min_time_index = 0
            if time_min_max[1] < time_new[-1]:
                max_time_index = np.where(time_min_max[1] <= time_new)[0][0]
            else:
                max_time_index = -1
            ylim_min = np.nanmin(data_new[min_time_index:max_time_index])
            ylim_max = np.nanmax(data_new[min_time_index:max_time_index])
            ylim(t_plot_name, ylim_min, ylim_max)

    if datatype == 'pot':
        for elem in component:
            t_plot_name = prefix + elem
            options(t_plot_name, 'ytitle', elem + ' potential')

    if datatype == 'spec':
        options(tnames(prefix + '*spectra*'), 'spec', 1)
        options(tnames(prefix + '*spectra*'), 'colormap', 'jet')
        options(tnames(prefix + '*spectra*'), 'zlog', 1)
        ylim(prefix + 'spectra', 0, 100)
        zlim(prefix + 'spectra', 1e-6, 1e-2)
        options(tnames(prefix + '*spectra*'), 'ysubtitle', '[Hz]')
        options(tnames(prefix + '*spectra*'), 'ztitle', '[mV^2/m^2/Hz]')
        for t_plot_name in (tnames(prefix + '*spectra*')):
            options(t_plot_name, 'ytitle', '\n'.join(t_plot_name.split('_')))

    return loaded_data