def test_avg_list(self): data = [i for i in range(20)] normdata = norms.avg_reduction(data)
def test_avg_col_matrix(self): data = np.arange(5).reshape(5, 1) normdata = norms.avg_reduction(data) has_reduced = np.all(abs(normdata + 2 - np.array(data)) <= 0.0001) self.assertTrue(has_reduced)
def test_avg_empty_col(self): data = np.empty(5).reshape(5, 1) normdata = norms.avg_reduction(data) self.assertTrue(np.all(data == []))
def test_avg_2d(self): data = np.ones((3, 4)) + np.arange(4) normdata = norms.avg_reduction(data) has_reduced_at_cols = np.all(abs(normdata) <= 0.0001) self.assertTrue(has_reduced_at_cols)
def test_avg_negative_data(self): data = np.arange(20) * -1 normdata = norms.avg_reduction(data) negative_avg = all(abs(normdata - 9.5 - np.array(data)) <= 0.0001) self.assertTrue(negative_avg)
def test_avg_zeros(self): data = np.zeros(20) normdata = norms.avg_reduction(data) self.assertTrue(all(normdata == 0))
def test_avg_constant_data(self): data = [1] * 20 normdata = norms.avg_reduction(data) allnormed = all(0 <= nd <= 0.001 for nd in normdata) self.assertTrue(allnormed)
def test_avg_is_reducing(self): data = [i for i in range(20)] normdata = norms.avg_reduction(data) allnormed = all(abs(normdata + 9.5 - np.array(data)) <= 0.0001) self.assertTrue(allnormed)