Пример #1
0
    def create_equations(self):
        # Formulation for REF1
        # (using only first set of equations for simplicity)
        equations = [


            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density
            Group(equations=[
                VolumeFromMassDensity(dest='fluid', sources=None)
                ], ),
            
            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                TaitEOSHGCorrectionVariableRho(dest='fluid', sources=None,  c0=c0, gamma=gamma),
                ], ),
            
            # The boundary conditions are imposed by extrapolating the fluid
            # pressure, taking into consideration the boundary acceleration
            Group(equations=[
                SolidWallPressureBC(dest='solid', sources=['fluid'], b=1.0, gy=gravity_y,
                                    rho0=rho0, p0=p0)
            ], ),

            # Main acceleration block
            Group(equations=[

                # Continuity equation
                ContinuityEquation(dest='fluid', sources=['fluid', 'solid']),

                # Pressure gradient with acceleration damping
                MomentumEquationPressureGradient(
                    dest='fluid', sources=['fluid', 'solid'], pb=0.0, gy=gravity_y,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='fluid', sources=['fluid', 'solid'], alpha=0.24, c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.0)
                ]),
        ]

        return equations
Пример #2
0
    def get_equations(self):
        from pysph.sph.wc.transport_velocity import (
            StateEquation, SetWallVelocity, SolidWallPressureBC,
            VolumeSummation, SolidWallNoSlipBC,
            MomentumEquationArtificialViscosity, ContinuitySolid)
        all = self.fluids + self.solids

        stage1 = []
        if self.solids:
            eq0 = []
            for solid in self.solids:
                eq0.append(SetWallVelocity(dest=solid, sources=self.fluids))
            stage1.append(Group(equations=eq0, real=False))

        eq1 = []
        for fluid in self.fluids:
            eq1.append(ContinuityEquationGTVF(dest=fluid, sources=self.fluids))
            if self.solids:
                eq1.append(ContinuitySolid(dest=fluid, sources=self.solids))
        stage1.append(Group(equations=eq1, real=False))

        eq2, stage2 = [], []
        for fluid in self.fluids:
            eq2.append(CorrectDensity(dest=fluid, sources=all))
        stage2.append(Group(equations=eq2, real=False))

        eq3 = []
        for fluid in self.fluids:
            eq3.append(
                StateEquation(dest=fluid,
                              sources=None,
                              p0=self.pref,
                              rho0=self.rho0,
                              b=1.0))
        stage2.append(Group(equations=eq3, real=False))

        g2_s = []
        for solid in self.solids:
            g2_s.append(VolumeSummation(dest=solid, sources=all))
            g2_s.append(
                SolidWallPressureBC(dest=solid,
                                    sources=self.fluids,
                                    b=1.0,
                                    rho0=self.rho0,
                                    p0=self.pref,
                                    gx=self.gx,
                                    gy=self.gy,
                                    gz=self.gz))
        if g2_s:
            stage2.append(Group(equations=g2_s, real=False))

        eq4 = []
        for fluid in self.fluids:
            eq4.append(
                MomentumEquationPressureGradient(dest=fluid,
                                                 sources=all,
                                                 pref=self.pref,
                                                 gx=self.gx,
                                                 gy=self.gy,
                                                 gz=self.gz))
            if self.alpha > 0.0:
                eq4.append(
                    MomentumEquationArtificialViscosity(dest=fluid,
                                                        sources=all,
                                                        c0=self.c0,
                                                        alpha=self.alpha))
            if self.nu > 0.0:
                eq4.append(
                    MomentumEquationViscosity(dest=fluid,
                                              sources=all,
                                              nu=self.nu))
                if self.solids:
                    eq4.append(
                        SolidWallNoSlipBC(dest=fluid,
                                          sources=self.solids,
                                          nu=self.nu))
            eq4.append(
                MomentumEquationArtificialStress(dest=fluid,
                                                 sources=self.fluids,
                                                 dim=self.dim))
        stage2.append(Group(equations=eq4, real=True))

        return MultiStageEquations([stage1, stage2])
Пример #3
0
    def _plot_cd_vs_t(self):
        from pysph.solver.utils import iter_output, load
        from pysph.tools.sph_evaluator import SPHEvaluator
        from pysph.sph.equation import Group
        from pysph.sph.wc.transport_velocity import (SetWallVelocity,
            MomentumEquationPressureGradient, SolidWallNoSlipBC,
            SolidWallPressureBC, VolumeSummation)

        data = load(self.output_files[0])
        solid = data['arrays']['solid']
        fluid = data['arrays']['fluid']
        x, y = solid.x.copy(), solid.y.copy()
        cx = 0.5 * L; cy = 0.5 * H
        inside = np.sqrt((x-cx)**2 + (y-cy)**2) <= a
        dest = solid.extract_particles(inside.nonzero()[0])
        # We use the same equations for this as the simulation, except that we
        # do not include the acceleration terms as these are externally
        # imposed.  The goal of these is to find the force of the fluid on the
        # cylinder, thus, gx=0.0 is used in the following.
        equations = [
            Group(
                equations=[
                    VolumeSummation(
                        dest='fluid', sources=['fluid', 'solid']
                    ),
                    VolumeSummation(
                        dest='solid', sources=['fluid', 'solid']
                    ),
                    ], real=False),

            Group(
                equations=[
                    SetWallVelocity(dest='solid', sources=['fluid']),
                    ], real=False),

            Group(
                equations=[
                    SolidWallPressureBC(dest='solid', sources=['fluid'],
                                        gx=0.0, b=1.0, rho0=rho0, p0=p0),
                    ], real=False),

            Group(
                equations=[
                    # Pressure gradient terms
                    MomentumEquationPressureGradient(
                        dest='fluid', sources=['solid'], gx=0.0, pb=pb),
                    SolidWallNoSlipBC(
                        dest='fluid', sources=['solid'], nu=nu),
                    ], real=True),
        ]

        sph_eval = SPHEvaluator(
            arrays=[dest, fluid], equations=equations, dim=2,
            kernel=QuinticSpline(dim=2)
        )

        t, cd = [], []
        for sd, fluid in iter_output(self.output_files, 'fluid'):
            fluid.remove_property('vmag2')
            t.append(sd['t'])
            sph_eval.update_particle_arrays([dest, fluid])
            sph_eval.evaluate()
            Fx = np.sum(-fluid.au*fluid.m)
            cd.append(Fx/(nu*rho0*Umax))

        t, cd = list(map(np.asarray, (t, cd)))

        # Now plot the results.
        import matplotlib
        matplotlib.use('Agg')

        from matplotlib import pyplot as plt
        f = plt.figure()
        plt.plot(t, cd)
        plt.xlabel('$t$'); plt.ylabel(r'$C_D$')
        fig = os.path.join(self.output_dir, "cd_vs_t.png")
        plt.savefig(fig, dpi=300)
        plt.close()

        return t, cd
    def get_equations(self):
        from pysph.sph.equation import Group
        from pysph.sph.wc.basic import TaitEOS
        from pysph.sph.basic_equations import XSPHCorrection
        from pysph.sph.wc.transport_velocity import (
            ContinuityEquation, MomentumEquationPressureGradient,
            MomentumEquationViscosity, MomentumEquationArtificialViscosity,
            SolidWallPressureBC, SolidWallNoSlipBC, SetWallVelocity,
            VolumeSummation)

        equations = []
        all = self.fluids + self.solids

        g2 = []
        for fluid in self.fluids:
            g2.append(VolumeSummation(dest=fluid, sources=all))
            g2.append(
                TaitEOS(dest=fluid,
                        sources=None,
                        rho0=self.rho0,
                        c0=self.c0,
                        gamma=self.gamma,
                        p0=self.p0))
        for solid in self.solids:
            g2.append(VolumeSummation(dest=solid, sources=all))
            g2.append(SetWallVelocity(dest=solid, sources=self.fluids))

        equations.append(Group(equations=g2, real=False))

        g3 = []
        for solid in self.solids:
            g3.append(
                SolidWallPressureBC(dest=solid,
                                    sources=self.fluids,
                                    b=1.0,
                                    rho0=self.rho0,
                                    p0=self.B,
                                    gx=self.gx,
                                    gy=self.gy,
                                    gz=self.gz))

        equations.append(Group(equations=g3, real=False))

        g4 = []
        for fluid in self.fluids:
            g4.append(ContinuityEquation(dest=fluid, sources=all))
            g4.append(
                MomentumEquationPressureGradient(dest=fluid,
                                                 sources=all,
                                                 pb=0.0,
                                                 gx=self.gx,
                                                 gy=self.gy,
                                                 gz=self.gz,
                                                 tdamp=self.tdamp))
            if self.alpha > 0.0:
                g4.append(
                    MomentumEquationArtificialViscosity(dest=fluid,
                                                        sources=all,
                                                        c0=self.c0,
                                                        alpha=self.alpha))
            if self.nu > 0.0:
                g4.append(
                    MomentumEquationViscosity(dest=fluid,
                                              sources=self.fluids,
                                              nu=self.nu))
                if len(self.solids) > 0:
                    g4.append(
                        SolidWallNoSlipBC(dest=fluid,
                                          sources=self.solids,
                                          nu=self.nu))
            g4.append(XSPHCorrection(dest=fluid, sources=[fluid]))

        equations.append(Group(equations=g4))
        return equations
    def get_equations(self):
        from pysph.sph.equation import Group
        from pysph.sph.wc.transport_velocity import (
            SummationDensity, StateEquation, MomentumEquationPressureGradient,
            MomentumEquationArtificialViscosity, MomentumEquationViscosity,
            MomentumEquationArtificialStress, SolidWallPressureBC,
            SolidWallNoSlipBC, SetWallVelocity)
        equations = []
        all = self.fluids + self.solids
        g1 = []
        for fluid in self.fluids:
            g1.append(SummationDensity(dest=fluid, sources=all))

        equations.append(Group(equations=g1, real=False))

        g2 = []
        for fluid in self.fluids:
            g2.append(
                StateEquation(dest=fluid,
                              sources=None,
                              p0=self.p0,
                              rho0=self.rho0,
                              b=1.0))
        for solid in self.solids:
            g2.append(SetWallVelocity(dest=solid, sources=self.fluids))

        equations.append(Group(equations=g2, real=False))

        g3 = []
        for solid in self.solids:
            g3.append(
                SolidWallPressureBC(dest=solid,
                                    sources=self.fluids,
                                    b=1.0,
                                    rho0=self.rho0,
                                    p0=self.p0,
                                    gx=self.gx,
                                    gy=self.gy,
                                    gz=self.gz))

        equations.append(Group(equations=g3, real=False))

        g4 = []
        for fluid in self.fluids:
            g4.append(
                MomentumEquationPressureGradient(dest=fluid,
                                                 sources=all,
                                                 pb=self.pb,
                                                 gx=self.gx,
                                                 gy=self.gy,
                                                 gz=self.gz,
                                                 tdamp=self.tdamp))
            if self.alpha > 0.0:
                g4.append(
                    MomentumEquationArtificialViscosity(dest=fluid,
                                                        sources=all,
                                                        c0=self.c0,
                                                        alpha=self.alpha))
            if self.nu > 0.0:
                g4.append(
                    MomentumEquationViscosity(dest=fluid,
                                              sources=self.fluids,
                                              nu=self.nu))
                if len(self.solids) > 0:
                    g4.append(
                        SolidWallNoSlipBC(dest=fluid,
                                          sources=self.solids,
                                          nu=self.nu))

            g4.append(
                MomentumEquationArtificialStress(dest=fluid,
                                                 sources=self.fluids))

        equations.append(Group(equations=g4))
        return equations
Пример #6
0
    def create_equations(self):
        tvf_equations = [

            # We first compute the mass and number density of the fluid
            # phase. This is used in all force computations henceforth. The
            # number density (1/volume) is explicitly set for the solid phase
            # and this isn't modified for the simulation.
            Group(equations=[
                SummationDensity(dest='fluid', sources=['fluid', 'wall'])
            ]),

            # Given the updated number density for the fluid, we can update
            # the fluid pressure. Additionally, we can extrapolate the fluid
            # velocity to the wall for the no-slip boundary
            # condition. Also compute the smoothed color based on the color
            # index for a particle.
            Group(equations=[
                StateEquation(
                    dest='fluid', sources=None, rho0=rho0, p0=p0, b=1.0),
                SetWallVelocity(dest='wall', sources=['fluid']),
                SmoothedColor(dest='fluid', sources=['fluid']),
            ]),

            #################################################################
            # Begin Surface tension formulation
            #################################################################
            # Scale the smoothing lengths to determine the interface
            # quantities. The NNPS need not be updated since the smoothing
            # length is decreased.
            Group(equations=[
                ScaleSmoothingLength(dest='fluid', sources=None, factor=0.8)
            ],
                  update_nnps=False),

            # Compute the gradient of the color function with respect to the
            # new smoothing length. At the end of this Group, we will have the
            # interface normals and the discretized dirac delta function for
            # the fluid-fluid interface.
            Group(equations=[
                ColorGradientUsingNumberDensity(dest='fluid',
                                                sources=['fluid', 'wall'],
                                                epsilon=0.01 / h0),
            ], ),

            # Compute the interface curvature using the modified smoothing
            # length and interface normals computed in the previous Group.
            Group(equations=[
                InterfaceCurvatureFromNumberDensity(
                    dest='fluid',
                    sources=['fluid'],
                    with_morris_correction=True),
            ], ),

            # Now rescale the smoothing length to the original value for the
            # rest of the computations.
            Group(
                equations=[
                    ScaleSmoothingLength(dest='fluid',
                                         sources=None,
                                         factor=1.25)
                ],
                update_nnps=False,
            ),
            #################################################################
            # End Surface tension formulation
            #################################################################

            # Once the pressure for the fluid phase has been updated via the
            # state-equation, we can extrapolate the pressure to the wall
            # ghost particles. After this group, the density and pressure of
            # the boundary particles has been updated and can be used in the
            # integration equations.
            Group(equations=[
                SolidWallPressureBC(dest='wall',
                                    sources=['fluid'],
                                    p0=p0,
                                    rho0=rho0,
                                    gy=gy),
            ], ),

            # The main acceleration block
            Group(
                equations=[

                    # Gradient of pressure for the fluid phase using the
                    # number density formulation. No penetration boundary
                    # condition using Adami et al's generalized wall boundary
                    # condition. The extrapolated pressure and density on the
                    # wall particles is used in the gradient of pressure to
                    # simulate a repulsive force.
                    MomentumEquationPressureGradient(dest='fluid',
                                                     sources=['fluid', 'wall'],
                                                     pb=p0,
                                                     gy=gy),

                    # Artificial viscosity for the fluid phase.
                    MomentumEquationViscosity(dest='fluid',
                                              sources=['fluid'],
                                              nu=nu),

                    # No-slip boundary condition using Adami et al's
                    # generalized wall boundary condition. This equation
                    # basically computes the viscous contribution on the fluid
                    # from the wall particles.
                    SolidWallNoSlipBC(dest='fluid', sources=['wall'], nu=nu),

                    # Surface tension force for the SY11 formulation
                    ShadlooYildizSurfaceTensionForce(dest='fluid',
                                                     sources=None,
                                                     sigma=sigma),

                    # Artificial stress for the fluid phase
                    MomentumEquationArtificialStress(dest='fluid',
                                                     sources=['fluid']),
                ], )
        ]
        return tvf_equations
Пример #7
0
    def create_equations(self):
        equations = [

            # set the acceleration for the obstacle using the special function
            # mimicking the accelerations provided in the test.
            Group(equations=[
                SPHERICBenchmarkAcceleration(dest='obstacle', sources=None),
            ],
                  real=False),

            # Summation density along with volume summation for the fluid
            # phase. This is done for all local and remote particles. At the
            # end of this group, the fluid phase has the correct density
            # taking into consideration the fluid and solid
            # particles.
            Group(equations=[
                SummationDensity(dest='fluid',
                                 sources=['fluid', 'solid', 'obstacle']),
            ],
                  real=False),

            # Once the fluid density is computed, we can use the EOS to set
            # the fluid pressure. Additionally, the dummy velocity for the
            # channel is set, which is later used in the no-slip wall BC.
            Group(equations=[
                StateEquation(dest='fluid',
                              sources=None,
                              p0=p0,
                              rho0=rho0,
                              b=1.0),
                SetWallVelocity(dest='solid', sources=['fluid']),
                SetWallVelocity(dest='obstacle', sources=['fluid']),
            ],
                  real=False),

            # Once the pressure for the fluid phase has been updated, we can
            # extrapolate the pressure to the ghost particles. After this
            # group, the fluid density, pressure and the boundary pressure has
            # been updated and can be used in the integration equations.
            Group(equations=[
                SolidWallPressureBC(dest='obstacle',
                                    sources=['fluid'],
                                    b=1.0,
                                    rho0=rho0,
                                    p0=p0),
                SolidWallPressureBC(dest='solid',
                                    sources=['fluid'],
                                    b=1.0,
                                    rho0=rho0,
                                    p0=p0),
            ],
                  real=False),

            # The main accelerations block. The acceleration arrays for the
            # fluid phase are upadted in this stage for all local particles.
            Group(
                equations=[
                    # Pressure gradient terms
                    MomentumEquationPressureGradient(
                        dest='fluid',
                        sources=['fluid', 'solid', 'obstacle'],
                        pb=p0),

                    # fluid viscosity
                    MomentumEquationViscosity(dest='fluid',
                                              sources=['fluid'],
                                              nu=nu),

                    # No-slip boundary condition. This is effectively a
                    # viscous interaction of the fluid with the ghost
                    # particles.
                    SolidWallNoSlipBC(dest='fluid',
                                      sources=['solid', 'obstacle'],
                                      nu=nu),

                    # Artificial stress for the fluid phase
                    MomentumEquationArtificialStress(dest='fluid',
                                                     sources=['fluid']),
                ],
                real=True),
        ]
        return equations
Пример #8
0
    def create_equations(self):
        equations = [

            # We first compute the mass and number density of the fluid
            # phase. This is used in all force computations henceforth. The
            # number density (1/volume) is explicitly set for the solid phase
            # and this isn't modified for the simulation.
            Group(equations=[
                SummationDensity(dest='fluid', sources=['fluid', 'wall'])
            ]),

            # Given the updated number density for the fluid, we can update
            # the fluid pressure. Additionally, we compute the gradient of the
            # color function with respect to the original smoothing
            # length. This will compute the interface normals. Also compute
            # the smoothed color based on the color index for a particle.
            Group(equations=[
                IsothermalEOS(
                    dest='fluid', sources=None, rho0=rho0, c0=c0, p0=p0),
                SmoothedColor(dest='fluid', sources=['fluid']),
            ]),

            #################################################################
            # Begin Surface tension formulation
            #################################################################
            # Scale the smoothing lengths to determine the interface
            # quantities. The NNPS need not be updated since the smoothing
            # length is decreased.
            Group(equations=[
                ScaleSmoothingLength(dest='fluid', sources=None, factor=0.8)
            ],
                  update_nnps=False),

            # Compute the gradient of the color function with respect to the
            # new smoothing length. At the end of this Group, we will have the
            # interface normals and the discretized dirac delta function for
            # the fluid-fluid interface.
            Group(equations=[
                ColorGradientUsingNumberDensity(dest='fluid',
                                                sources=['fluid', 'wall']),
            ], ),

            # Compute the interface curvature using the modified smoothing
            # length and interface normals computed in the previous Group.
            Group(equations=[
                InterfaceCurvatureFromNumberDensity(dest='fluid',
                                                    sources=['fluid']),
            ], ),

            # Now rescale the smoothing length to the original value for the
            # rest of the computations.
            Group(
                equations=[
                    ScaleSmoothingLength(dest='fluid',
                                         sources=None,
                                         factor=1.25)
                ],
                update_nnps=False,
            ),
            #################################################################
            # End Surface tension formulation
            #################################################################

            # Once the pressure for the fluid phase has been updated via the
            # state-equation, we can extrapolate the pressure to the wall
            # ghost particles. After this group, the density and pressure of
            # the boundary particles has been updated and can be used in the
            # integration equations.
            Group(equations=[
                SolidWallPressureBC(dest='wall',
                                    sources=['fluid'],
                                    p0=p0,
                                    rho0=rho0,
                                    gy=gy,
                                    b=1.0),
            ], ),

            # The main acceleration block
            Group(
                equations=[

                    # Body force due to gravity
                    BodyForce(dest='fluid', sources=None, fy=gy),

                    # Gradient of pressure for the fluid phase using the
                    # number density formulation. The no-penetration boundary
                    # condition is taken care of by using the boundary
                    # pressure and density.
                    PressureGradientUsingNumberDensity(
                        dest='fluid', sources=['fluid', 'wall']),

                    # Artificial viscosity for the fluid phase.
                    ClearyArtificialViscosity(dest='fluid',
                                              sources=['fluid', 'wall'],
                                              dim=dim,
                                              alpha=alpha),

                    # Surface tension force for the SY11 formulation
                    ShadlooYildizSurfaceTensionForce(dest='fluid',
                                                     sources=None,
                                                     sigma=sigma),

                    # XSPH Correction
                    XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.1),
                ], )
        ]
        return equations
Пример #9
0
    def create_equations(self):
        # Formulation for REF1
        equations1 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                VolumeFromMassDensity(dest='fluid', sources=None)
            ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                TaitEOS(
                    dest='fluid',
                    sources=None,
                    rho0=rho0,
                    c0=c0,
                    gamma=gamma),
            ], ),

            # The boundary conditions are imposed by extrapolating the fluid
            # pressure, taking into considering the bounday acceleration
            Group(equations=[
                SolidWallPressureBC(dest='solid', sources=['fluid'], b=1.0, gy=gy,
                                    rho0=rho0, p0=p0),
            ], ),

            # Main acceleration block
            Group(equations=[

                # Continuity equation
                ContinuityEquation(
                    dest='fluid', sources=[
                        'fluid', 'solid']),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='fluid', sources=['fluid', 'solid'], pb=0.0, gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='fluid', sources=['fluid', 'solid'], alpha=0.24, c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.0)

            ]),
        ]

        # Formulation for REF2. Note that for this formulation to work, the
        # boundary particles need to have a spacing different from the fluid
        # particles (usually determined by a factor beta). In the current
        # implementation, the value is taken as 1.0 which will mostly be
        # ineffective.
        equations2 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                VolumeFromMassDensity(dest='fluid', sources=None)
            ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                TaitEOS(
                    dest='fluid',
                    sources=None,
                    rho0=rho0,
                    c0=c0,
                    gamma=gamma),
            ], ),

            # Main acceleration block
            Group(equations=[

                # The boundary conditions are imposed as a force or
                # accelerations on the fluid particles. Note that the
                # no-penetration condition is to be satisfied with this
                # equation. The subsequent equations therefore do not have
                # solid as the source. Note the difference between the
                # ghost-fluid formulations. K should be 0.01*co**2
                # according to REF2. We take it much smaller here on
                # account of the multiple layers of boundary particles
                MonaghanKajtarBoundaryForce(dest='fluid', sources=['solid'],
                                            K=0.02, beta=1.0, h=hdx * dx),

                # Continuity equation
                ContinuityEquation(dest='fluid', sources=['fluid', ]),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='fluid', sources=['fluid'], pb=0.0, gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='fluid', sources=['fluid'], alpha=0.25, c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.0)

            ]),
        ]

        # Formulation for REF3
        equations3 = [
            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(equations=[
                VolumeFromMassDensity(dest='fluid', sources=None)
            ], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma. The solid phase is treated just as a fluid and
            # the pressure and density operations is updated for this as well.
            Group(equations=[
                TaitEOS(
                    dest='fluid',
                    sources=None,
                    rho0=rho0,
                    c0=c0,
                    gamma=gamma),
                TaitEOS(
                    dest='solid',
                    sources=None,
                    rho0=rho0,
                    c0=c0,
                    gamma=gamma),
            ], ),

            # Main acceleration block. The boundary conditions are imposed by
            # peforming the continuity equation and gradient of pressure
            # calculation on the solid phase, taking contributions from the
            # fluid phase
            Group(equations=[

                # Continuity equation
                ContinuityEquation(
                    dest='fluid', sources=[
                        'fluid', 'solid']),
                ContinuityEquation(dest='solid', sources=['fluid']),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='fluid', sources=['fluid', 'solid'], pb=0.0, gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='fluid', sources=['fluid', 'solid'], alpha=0.25, c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='fluid', sources=['fluid'], eps=0.5)

            ]),
        ]

        if self.options.bc_type == 1:
            return equations1
        elif self.options.bc_type == 2:
            return equations2
        elif self.options.bc_type == 3:
            return equations3
Пример #10
0
    def create_equations(self):
        # Formulation for REF1
        equations1 = [
            # Spoon Equations
            Group(
                equations=[
                    HarmonicOscilllator(dest='spoon',
                                        sources=None,
                                        A=0.5,
                                        omega=0.2),

                    # Translate acceleration to positions
                    XSPHCorrection(dest='spoon', sources=['spoon'], eps=0.0)
                ],
                real=False),

            # Water Faucet Equations
            Group(equations=[
                H2OFaucet(dest='tahini',
                          sources=None,
                          x=1.25,
                          y=tahiniH,
                          r=0.15,
                          fill_rate=7),
                DiffuseH2O(
                    dest='tahini', sources=['tahini'], diffusion_speed=0.1),
            ]),

            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(
                equations=[VolumeFromMassDensity(dest='tahini',
                                                 sources=None)], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma
            Group(equations=[
                TaitEOSHGCorrection(dest='tahini',
                                    sources=None,
                                    rho0=rho0,
                                    c0=c0,
                                    gamma=gamma),
            ], ),

            # The boundary conditions are imposed by extrapolating the tahini
            # pressure, taking into considering the bounday acceleration
            Group(equations=[
                SolidWallPressureBC(dest='bowl',
                                    sources=['tahini'],
                                    b=1.0,
                                    gy=gy,
                                    rho0=rho0,
                                    p0=p0),
                SolidWallPressureBC(dest='spoon',
                                    sources=['tahini'],
                                    b=1.0,
                                    gy=gy,
                                    rho0=rho0,
                                    p0=p0),
            ], ),

            # Main acceleration block
            Group(equations=[
                TahiniEquation(
                    dest='tahini', sources=['tahini'], sigma=dx / 1.122),

                # Continuity equation
                ContinuityEquation(dest='tahini',
                                   sources=['tahini', 'bowl', 'spoon']),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='tahini',
                    sources=['tahini', 'bowl', 'spoon'],
                    pb=0.0,
                    gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='tahini',
                    sources=['tahini', 'bowl', 'spoon'],
                    alpha=1,
                    c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='tahini', sources=['tahini'], eps=0.0)
            ]),
        ]

        # Formulation for REF3
        equations3 = [
            # Spoon Equations
            Group(
                equations=[
                    HarmonicOscilllator(dest='spoon',
                                        sources=None,
                                        A=0.5,
                                        omega=0.2),

                    # Translate acceleration to positions
                    XSPHCorrection(dest='spoon', sources=['spoon'], eps=0.0)
                ],
                real=False),

            # Water Faucet Equations
            Group(equations=[
                H2OFaucet(dest='tahini',
                          sources=None,
                          x=Cx,
                          y=tahiniH,
                          r=0.15,
                          fill_rate=5),
                DiffuseH2O(
                    dest='tahini', sources=['tahini'], diffusion_speed=0.1),
            ]),

            # For the multi-phase formulation, we require an estimate of the
            # particle volume. This can be either defined from the particle
            # number density or simply as the ratio of mass to density.
            Group(
                equations=[VolumeFromMassDensity(dest='tahini',
                                                 sources=None)], ),

            # Equation of state is typically the Tait EOS with a suitable
            # exponent gamma. The solid phase is treated just as a fluid and
            # the pressure and density operations is updated for this as well.
            Group(equations=[
                TaitEOS(dest='tahini',
                        sources=None,
                        rho0=rho0,
                        c0=c0,
                        gamma=gamma),
                TaitEOS(dest='bowl',
                        sources=None,
                        rho0=rho0,
                        c0=c0,
                        gamma=gamma),
                TaitEOS(dest='spoon',
                        sources=None,
                        rho0=rho0,
                        c0=c0,
                        gamma=gamma),
            ], ),

            # Main acceleration block. The boundary conditions are imposed by
            # peforming the continuity equation and gradient of pressure
            # calculation on the bowl phase, taking contributions from the
            # tahini phase
            Group(equations=[
                TahiniEquation(
                    dest='tahini', sources=['tahini'], sigma=dx / 1.122),

                # Continuity equation
                ContinuityEquation(dest='tahini',
                                   sources=['tahini', 'bowl', 'spoon']),
                ContinuityEquation(dest='bowl', sources=['tahini']),
                ContinuityEquation(dest='spoon', sources=['tahini']),

                # Pressure gradient with acceleration damping.
                MomentumEquationPressureGradient(
                    dest='tahini',
                    sources=['tahini', 'bowl', 'spoon'],
                    pb=0.0,
                    gy=gy,
                    tdamp=tdamp),

                # artificial viscosity for stability
                MomentumEquationArtificialViscosity(
                    dest='tahini',
                    sources=['tahini', 'bowl', 'spoon'],
                    alpha=1,
                    c0=c0),

                # Position step with XSPH
                XSPHCorrection(dest='tahini', sources=['tahini'], eps=0.5)
            ]),
        ]

        if self.options.bc_type == 1:
            return equations1
        elif self.options.bc_type == 3:
            return equations3
Пример #11
0
    def create_equations(self):
        sy11_equations = [
            # We first compute the mass and number density of the fluid
            # phase. This is used in all force computations henceforth. The
            # number density (1/volume) is explicitly set for the solid phase
            # and this isn't modified for the simulation.
            Group(
                equations=[
                    SummationDensity(dest='fluid', sources=['fluid', 'wall']),
                    # SummationDensity(dest='wall', sources=['fluid', 'wall'])
                ],
                real=False),

            # Given the updated number density for the fluid, we can update
            # the fluid pressure. Additionally, we can compute the Shepard
            # Filtered velocity required for the no-penetration boundary
            # condition. Also compute the gradient of the color function to
            # compute the normal at the interface.
            Group(
                equations=[
                    StateEquation(dest='fluid',
                                  sources=None,
                                  rho0=rho0,
                                  b=0.0,
                                  p0=p0),
                    SetWallVelocity(dest='wall', sources=['fluid']),
                    # SmoothedColor(dest='fluid', sources=['fluid']),
                ],
                real=False),
            Group(equations=[
                SolidWallPressureBC(dest='wall',
                                    sources=['fluid'],
                                    p0=p0,
                                    rho0=rho0,
                                    gy=gy,
                                    b=1.0),
            ],
                  real=False),

            #################################################################
            # Begin Surface tension formulation
            #################################################################
            # Scale the smoothing lengths to determine the interface
            # quantities.
            Group(equations=[
                ScaleSmoothingLength(dest='fluid',
                                     sources=None,
                                     factor=factor1)
            ],
                  update_nnps=True),

            # Compute the discretized dirac delta with respect to the new
            # smoothing length.
            Group(equations=[
                SY11DiracDelta(dest='fluid', sources=['fluid', 'wall'])
            ],
                  real=False),

            # Compute the interface curvature using the modified smoothing
            # length and interface normals computed in the previous Group.
            Group(equations=[
                InterfaceCurvatureFromNumberDensity(dest='fluid',
                                                    sources=['fluid']),
            ],
                  real=False),

            # Now rescale the smoothing length to the original value for the
            # rest of the computations.
            Group(equations=[
                ScaleSmoothingLength(dest='fluid',
                                     sources=None,
                                     factor=factor2)
            ],
                  update_nnps=True),
            #################################################################
            # End Surface tension formulation
            #################################################################

            # The main acceleration block
            Group(
                equations=[

                    # Gradient of pressure for the fluid phase using the
                    # number density formulation. No penetration boundary
                    # condition using Adami et al's generalized wall boundary
                    # condition. The extrapolated pressure and density on the
                    # wall particles is used in the gradient of pressure to
                    # simulate a repulsive force.
                    BodyForce(dest='fluid', sources=None, fy=gy),
                    MomentumEquationPressureGradient(dest='fluid',
                                                     sources=['fluid',
                                                              'wall']),

                    # Artificial viscosity for the fluid phase.
                    ShadlooArtificialViscosity(dest='fluid',
                                               sources=['fluid', 'wall']),

                    # Surface tension force for the SY11 formulation
                    ShadlooYildizSurfaceTensionForce(dest='fluid',
                                                     sources=None,
                                                     sigma=sigma),
                ], )
        ]

        return sy11_equations