Пример #1
0
def test_spike_empty():
    st1 = SpikeTrain([], edges=(0.0, 1.0))
    st2 = SpikeTrain([], edges=(0.0, 1.0))
    d = spk.spike_distance(st1, st2)
    assert_allclose(d, 0.0)
    prof = spk.spike_profile(st1, st2)
    assert_allclose(d, prof.avrg())
    assert_array_equal(prof.x, [0.0, 1.0])
    assert_array_equal(prof.y1, [
        0.0,
    ])
    assert_array_equal(prof.y2, [
        0.0,
    ])

    st1 = SpikeTrain([], edges=(0.0, 1.0))
    st2 = SpikeTrain([
        0.4,
    ], edges=(0.0, 1.0))
    d = spk.spike_distance(st1, st2)
    d_expect = 2 * 0.4 * 0.4 * 1.0 / (0.4 + 1.0)**2 + 2 * 0.6 * 0.4 * 1.0 / (
        0.6 + 1.0)**2
    assert_almost_equal(d, d_expect, decimal=15)
    prof = spk.spike_profile(st1, st2)
    assert_allclose(d, prof.avrg())
    assert_array_equal(prof.x, [0.0, 0.4, 1.0])
    assert_array_almost_equal(
        prof.y1,
        [2 * 0.4 * 1.0 / (0.4 + 1.0)**2, 2 * 0.4 * 1.0 / (0.6 + 1.0)**2],
        decimal=15)
    assert_array_almost_equal(
        prof.y2,
        [2 * 0.4 * 1.0 / (0.4 + 1.0)**2, 2 * 0.4 * 1.0 / (0.6 + 1.0)**2],
        decimal=15)

    st1 = SpikeTrain([
        0.6,
    ], edges=(0.0, 1.0))
    st2 = SpikeTrain([
        0.4,
    ], edges=(0.0, 1.0))
    d = spk.spike_distance(st1, st2)
    s1 = np.array([0.2, 0.2, 0.2, 0.2])
    s2 = np.array([0.2, 0.2, 0.2, 0.2])
    isi1 = np.array([0.6, 0.6, 0.4])
    isi2 = np.array([0.4, 0.6, 0.6])
    expected_y1 = (s1[:-1] * isi2 + s2[:-1] * isi1) / (0.5 * (isi1 + isi2)**2)
    expected_y2 = (s1[1:] * isi2 + s2[1:] * isi1) / (0.5 * (isi1 + isi2)**2)
    expected_times = np.array([0.0, 0.4, 0.6, 1.0])
    expected_spike_val = sum((expected_times[1:] - expected_times[:-1]) *
                             (expected_y1 + expected_y2) / 2)
    expected_spike_val /= (expected_times[-1] - expected_times[0])

    assert_almost_equal(d, expected_spike_val, decimal=15)
    prof = spk.spike_profile(st1, st2)
    assert_allclose(d, prof.avrg())
    assert_array_almost_equal(prof.x, [0.0, 0.4, 0.6, 1.0], decimal=15)
    assert_array_almost_equal(prof.y1, expected_y1, decimal=15)
    assert_array_almost_equal(prof.y2, expected_y2, decimal=15)
Пример #2
0
def test_spike_empty():
    st1 = SpikeTrain([], edges=(0.0, 1.0))
    st2 = SpikeTrain([], edges=(0.0, 1.0))
    d = spk.spike_distance(st1, st2)
    assert_equal(d, 0.0)
    prof = spk.spike_profile(st1, st2)
    assert_equal(d, prof.avrg())
    assert_array_equal(prof.x, [0.0, 1.0])
    assert_array_equal(prof.y1, [0.0, ])
    assert_array_equal(prof.y2, [0.0, ])

    st1 = SpikeTrain([], edges=(0.0, 1.0))
    st2 = SpikeTrain([0.4, ], edges=(0.0, 1.0))
    d = spk.spike_distance(st1, st2)
    assert_almost_equal(d, 0.4*0.4*1.0/(0.4+1.0)**2 + 0.6*0.4*1.0/(0.6+1.0)**2,
                        decimal=15)
    prof = spk.spike_profile(st1, st2)
    assert_equal(d, prof.avrg())
    assert_array_equal(prof.x, [0.0, 0.4, 1.0])
    assert_array_almost_equal(prof.y1, [0.0, 2*0.4*1.0/(0.6+1.0)**2],
                              decimal=15)
    assert_array_almost_equal(prof.y2, [2*0.4*1.0/(0.4+1.0)**2, 0.0],
                              decimal=15)

    st1 = SpikeTrain([0.6, ], edges=(0.0, 1.0))
    st2 = SpikeTrain([0.4, ], edges=(0.0, 1.0))
    d = spk.spike_distance(st1, st2)
    s1 = np.array([0.0, 0.4*0.2/0.6, 0.2, 0.0])
    s2 = np.array([0.0, 0.2, 0.2*0.4/0.6, 0.0])
    isi1 = np.array([0.6, 0.6, 0.4])
    isi2 = np.array([0.4, 0.6, 0.6])
    expected_y1 = (s1[:-1]*isi2+s2[:-1]*isi1) / (0.5*(isi1+isi2)**2)
    expected_y2 = (s1[1:]*isi2+s2[1:]*isi1) / (0.5*(isi1+isi2)**2)
    expected_times = np.array([0.0, 0.4, 0.6, 1.0])
    expected_spike_val = sum((expected_times[1:] - expected_times[:-1]) *
                             (expected_y1+expected_y2)/2)
    expected_spike_val /= (expected_times[-1]-expected_times[0])

    assert_almost_equal(d, expected_spike_val, decimal=15)
    prof = spk.spike_profile(st1, st2)
    assert_equal(d, prof.avrg())
    assert_array_almost_equal(prof.x, [0.0, 0.4, 0.6, 1.0], decimal=15)
    assert_array_almost_equal(prof.y1, expected_y1, decimal=15)
    assert_array_almost_equal(prof.y2, expected_y2, decimal=15)
Пример #3
0
def test_regression_spiky():
    # standard example
    st1 = SpikeTrain(np.arange(100, 1201, 100), 1300)
    st2 = SpikeTrain(np.arange(100, 1201, 110), 1300)

    isi_dist = spk.isi_distance(st1, st2)
    assert_almost_equal(isi_dist, 9.0909090909090939e-02, decimal=15)
    isi_profile = spk.isi_profile(st1, st2)
    assert_equal(isi_profile.y, 0.1 / 1.1 * np.ones_like(isi_profile.y))

    spike_dist = spk.spike_distance(st1, st2)
    assert_equal(spike_dist, 0.211058782487353908)

    spike_sync = spk.spike_sync(st1, st2)
    assert_equal(spike_sync, 8.6956521739130432e-01)

    # multivariate check

    spike_trains = spk.load_spike_trains_from_txt(
        os.path.join(TEST_PATH, "PySpike_testdata.txt"), (0.0, 4000.0))
    isi_dist = spk.isi_distance_multi(spike_trains)
    # get the full precision from SPIKY
    assert_almost_equal(isi_dist, 0.17051816816999129656, decimal=15)

    spike_profile = spk.spike_profile_multi(spike_trains)
    assert_equal(len(spike_profile.y1) + len(spike_profile.y2), 1252)

    spike_dist = spk.spike_distance_multi(spike_trains)
    # get the full precision from SPIKY
    assert_almost_equal(spike_dist, 0.25188056475463755, decimal=15)

    spike_sync = spk.spike_sync_multi(spike_trains)
    # get the full precision from SPIKY
    assert_equal(spike_sync, 0.7183531505298066)

    # Eero's edge correction example
    st1 = SpikeTrain([0.5, 1.5, 2.5], 6.0)
    st2 = SpikeTrain([3.5, 4.5, 5.5], 6.0)

    f = spk.spike_profile(st1, st2)

    expected_times = np.array([0.0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.0])
    y_all = np.array([
        0.271604938271605, 0.271604938271605, 0.271604938271605,
        0.617283950617284, 0.617283950617284, 0.444444444444444,
        0.285714285714286, 0.285714285714286, 0.444444444444444,
        0.617283950617284, 0.617283950617284, 0.271604938271605,
        0.271604938271605, 0.271604938271605
    ])
    expected_y1 = y_all[::2]
    expected_y2 = y_all[1::2]

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y1, expected_y1, decimal=14)
    assert_array_almost_equal(f.y2, expected_y2, decimal=14)
Пример #4
0
def get_data():

    print 'Starting analysis of spike times per cell: ' + str(label_network)

    sync_data = [[[[] for i in range(2)] for x in range(len(gids))]
                 for p in range(len(stats))]

    spktsRange = [
        spkt for spkt in spkts if timeRange[0] <= spkt <= timeRange[1]
    ]

    for i, stat in enumerate(stats):
        for ii, subset in enumerate(gids):
            spkmat = [
                pyspike.SpikeTrain([
                    spkt for spkind, spkt in zip(spkinds, spkts)
                    if (spkind == gid and spkt in spktsRange)
                ], timeRange) for gid in set(subset)
            ]

            if stat == 'spike_sync_profile':
                print str(stat) + ", subset: " + str(
                    ii) + ", number of trains: " + str(len(spkmat))
                syncMat1 = pyspike.spike_sync_profile(spkmat)
                x, y = syncMat1.get_plottable_data()
                sync_data[i][ii][0] = x
                sync_data[i][ii][1] = y

            elif stat == 'spike_profile':
                print str(stat) + ", subset: " + str(
                    ii) + ", number of trains: " + str(len(spkmat))
                syncMat2 = pyspike.spike_profile(spkmat)
                x, y = syncMat2.get_plottable_data()
                sync_data[i][ii][0] = x
                sync_data[i][ii][1] = y

            elif stat == 'isi_profile':
                print str(stat) + ", subset: " + str(
                    ii) + ", number of trains: " + str(len(spkmat))
                syncMat3 = pyspike.isi_profile(spkmat)
                x, y = syncMat3.get_plottable_data()
                sync_data[i][ii][0] = x
                sync_data[i][ii][1] = y
Пример #5
0
f = spk.isi_profile(spike_trains[0], spike_trains[1])

print("ISI-distance: %.8f" % f.avrg())

isi1 = f.avrg(interval=(0, 1000))
isi2 = f.avrg(interval=(1000, 2000))
isi3 = f.avrg(interval=[(0, 1000), (2000, 3000)])
isi4 = f.avrg(interval=[(1000, 2000), (3000, 4000)])

print("ISI-distance (0-1000):                    %.8f" % isi1)
print("ISI-distance (1000-2000):                 %.8f" % isi2)
print("ISI-distance (0-1000) and (2000-3000):    %.8f" % isi3)
print("ISI-distance (1000-2000) and (3000-4000): %.8f" % isi4)
print()

f = spk.spike_profile(spike_trains[0], spike_trains[1])

print("SPIKE-distance: %.8f" % f.avrg())

spike1 = f.avrg(interval=(0, 1000))
spike2 = f.avrg(interval=(1000, 2000))
spike3 = f.avrg(interval=[(0, 1000), (2000, 3000)])
spike4 = f.avrg(interval=[(1000, 2000), (3000, 4000)])

print("SPIKE-distance (0-1000):                    %.8f" % spike1)
print("SPIKE-distance (1000-2000):                 %.8f" % spike2)
print("SPIKE-distance (0-1000) and (2000-3000):    %.8f" % spike3)
print("SPIKE-distance (1000-2000) and (3000-4000): %.8f" % spike4)
print()

f = spk.spike_sync_profile(spike_trains[0], spike_trains[1])
Пример #6
0

t_start = time.clock()

# load the data
time_loading = time.clock()
spike_trains = spk.load_spike_trains_from_txt("PySpike_testdata.txt",
                                              edges=(0, 4000))
t_loading = time.clock()

print("Number of spike trains: %d" % len(spike_trains))
num_of_spikes = sum([len(spike_trains[i]) for i in range(len(spike_trains))])
print("Number of spikes: %d" % num_of_spikes)

# calculate the multivariate spike distance
f = spk.spike_profile(spike_trains)

t_spike = time.clock()

# print the average
avrg = f.avrg()
print("Spike distance from average: %.8f" % avrg)

t_avrg = time.clock()

# compute average distance directly, should give the same result as above
spike_dist = spk.spike_distance(spike_trains)
print("Spike distance directly:     %.8f" % spike_dist)

t_dist = time.clock()
Пример #7
0
spike_trains = spk.load_spike_trains_from_txt("../test/SPIKE_Sync_Test.txt",
                                              edges=(0, 4000))

plt.figure()

f = spk.spike_sync_profile(spike_trains[0], spike_trains[1])
x, y = f.get_plottable_data()
plt.plot(x, y, '--ok', label="SPIKE-SYNC profile")
print(f.x)
print(f.y)
print(f.mp)

print("Average:", f.avrg())


f = spk.spike_profile(spike_trains[0], spike_trains[1])
x, y = f.get_plottable_data()

plt.plot(x, y, '-b', label="SPIKE-profile")

plt.axis([0, 4000, -0.1, 1.1])
plt.legend(loc="center right")

plt.figure()

plt.subplot(211)

f = spk.spike_sync_profile_multi(spike_trains)
x, y = f.get_plottable_data()
plt.plot(x, y, '-b', alpha=0.7, label="SPIKE-Sync profile")
Пример #8
0
import pyspike as spk

spike_trains = spk.load_spike_trains_from_txt("PySpike_testdata.txt",
                                              edges=(0, 4000))

# plot the spike times
for (i, spike_train) in enumerate(spike_trains):
    # print np.asarray(spike_train)
    plt.scatter(spike_train, i * np.ones_like(spike_train), marker='|')
plt.savefig('fig/plot0.png')

# profile of the first two spike trains
f = spk.isi_profile(spike_trains, indices=[0, 1])
x, y = f.get_plottable_data()

plt.figure()
plt.plot(x, np.abs(y), '--k', label="ISI-profile")

print("ISI-distance: %.8f" % f.avrg())

f = spk.spike_profile(spike_trains, indices=[0, 1])
x, y = f.get_plottable_data()

plt.plot(x, y, '-b', label="SPIKE-profile")

print("SPIKE-distance: %.8f" % f.avrg())

plt.legend(loc="upper left")
plt.savefig('fig/plot1.png')
# plt.show()
Пример #9
0
def test_spike():
    # generate two spike trains:
    t1 = SpikeTrain([0.0, 2.0, 5.0, 8.0], 10.0)
    t2 = SpikeTrain([0.0, 1.0, 5.0, 9.0], 10.0)

    expected_times = np.array([0.0, 1.0, 2.0, 5.0, 8.0, 9.0, 10.0])

    f = spk.spike_profile(t1, t2)

    assert_equal(f.x, expected_times)

    # from SPIKY:
    y_all = np.array([
        0.000000000000000000, 0.555555555555555580, 0.222222222222222210,
        0.305555555555555580, 0.255102040816326536, 0.000000000000000000,
        0.000000000000000000, 0.255102040816326536, 0.255102040816326536,
        0.285714285714285698, 0.285714285714285698, 0.285714285714285698
    ])

    #assert_array_almost_equal(f.y1, y_all[::2])
    assert_array_almost_equal(f.y2, y_all[1::2])

    assert_almost_equal(f.avrg(), 0.186309523809523814, decimal=15)
    assert_equal(spk.spike_distance(t1, t2), f.avrg())

    t1 = SpikeTrain([0.2, 0.4, 0.6, 0.7], 1.0)
    t2 = SpikeTrain([0.3, 0.45, 0.8, 0.9, 0.95], 1.0)

    # pen&paper calculation of the spike distance
    expected_times = [0.0, 0.2, 0.3, 0.4, 0.45, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0]
    s1 = np.array([
        0.1, 0.1, (0.1 * 0.1 + 0.05 * 0.1) / 0.2, 0.05,
        (0.05 * 0.15 * 2) / 0.2, 0.15, 0.1, (0.1 * 0.1 + 0.1 * 0.2) / 0.3,
        (0.1 * 0.2 + 0.1 * 0.1) / 0.3, (0.1 * 0.05 + 0.1 * 0.25) / 0.3, 0.1
    ])
    s2 = np.array([
        0.1, (0.1 * 0.2 + 0.1 * 0.1) / 0.3, 0.1, (0.1 * 0.05 * 2) / .15, 0.05,
        (0.05 * 0.2 + 0.1 * 0.15) / 0.35, (0.05 * 0.1 + 0.1 * 0.25) / 0.35,
        0.1, 0.1, 0.05, 0.05
    ])
    isi1 = np.array([0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.3, 0.3, 0.3, 0.3])
    isi2 = np.array([0.3, 0.3, 0.15, 0.15, 0.35, 0.35, 0.35, 0.1, 0.05, 0.05])
    expected_y1 = (s1[:-1] * isi2 + s2[:-1] * isi1) / (0.5 * (isi1 + isi2)**2)
    expected_y2 = (s1[1:] * isi2 + s2[1:] * isi1) / (0.5 * (isi1 + isi2)**2)

    expected_times = np.array(expected_times)
    expected_y1 = np.array(expected_y1)
    expected_y2 = np.array(expected_y2)
    expected_spike_val = sum((expected_times[1:] - expected_times[:-1]) *
                             (expected_y1 + expected_y2) / 2)
    expected_spike_val /= (expected_times[-1] - expected_times[0])

    print("SPIKE value:", expected_spike_val)

    f = spk.spike_profile(t1, t2)

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y1, expected_y1, decimal=15)
    assert_array_almost_equal(f.y2, expected_y2, decimal=15)
    assert_almost_equal(f.avrg(), expected_spike_val, decimal=15)
    assert_almost_equal(spk.spike_distance(t1, t2),
                        expected_spike_val,
                        decimal=15)

    # check with some equal spike times
    t1 = SpikeTrain([0.2, 0.4, 0.6], [0.0, 1.0])
    t2 = SpikeTrain([0.1, 0.4, 0.5, 0.6], [0.0, 1.0])

    expected_times = [0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0]
    # due to the edge correction in the beginning, s1 and s2 are different
    # for left and right values
    s1_r = np.array(
        [0.1, (0.1 * 0.1 + 0.1 * 0.1) / 0.2, 0.1, 0.0, 0.0, 0.0, 0.0])
    s1_l = np.array(
        [0.1, (0.1 * 0.1 + 0.1 * 0.1) / 0.2, 0.1, 0.0, 0.0, 0.0, 0.0])
    # s2_r = np.array([0.1*0.1/0.3, 0.1*0.3/0.3, 0.1*0.2/0.3,
    #                  0.0, 0.1, 0.0, 0.0])
    # s2_l = np.array([0.1*0.1/0.3, 0.1*0.1/0.3, 0.1*0.2/0.3, 0.0,
    #                  0.1, 0.0, 0.0])
    # eero's edge correction:
    s2_r = np.array(
        [0.1, 0.1 * 0.3 / 0.3, 0.1 * 0.2 / 0.3, 0.0, 0.1, 0.0, 0.0])
    s2_l = np.array(
        [0.1, 0.1 * 0.3 / 0.3, 0.1 * 0.2 / 0.3, 0.0, 0.1, 0.0, 0.0])
    isi1 = np.array([0.2, 0.2, 0.2, 0.2, 0.2, 0.4])
    isi2 = np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.4])
    expected_y1 = (s1_r[:-1] * isi2 + s2_r[:-1] * isi1) / (0.5 *
                                                           (isi1 + isi2)**2)
    expected_y2 = (s1_l[1:] * isi2 + s2_l[1:] * isi1) / (0.5 *
                                                         (isi1 + isi2)**2)

    expected_times = np.array(expected_times)
    expected_y1 = np.array(expected_y1)
    expected_y2 = np.array(expected_y2)
    expected_spike_val = sum((expected_times[1:] - expected_times[:-1]) *
                             (expected_y1 + expected_y2) / 2)
    expected_spike_val /= (expected_times[-1] - expected_times[0])

    f = spk.spike_profile(t1, t2)

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y1, expected_y1, decimal=14)
    assert_array_almost_equal(f.y2, expected_y2, decimal=14)
    assert_almost_equal(f.avrg(), expected_spike_val, decimal=16)
    assert_almost_equal(spk.spike_distance(t1, t2),
                        expected_spike_val,
                        decimal=16)
Пример #10
0
def iter_plot0(md):
    import seaborn as sns
    import pickle
    with open('cell_indexs.p', 'rb') as f:
        returned_list = pickle.load(f)
    index_exc = returned_list[0]
    index_inh = returned_list[1]
    index, mdf1 = md
    #wgf = {0.025:None,0.05:None,0.125:None,0.25:None,0.3:None,0.4:None,0.5:None,1.0:None,1.5:None,2.0:None,2.5:None,3.0:None}
    wgf = {
        0.0025: None,
        0.0125: None,
        0.025: None,
        0.05: None,
        0.125: None,
        0.25: None,
        0.3: None,
        0.4: None,
        0.5: None,
        1.0: None,
        1.5: None,
        2.0: None,
        2.5: None,
        3.0: None
    }

    weight_gain_factors = {k: v for k, v in enumerate(wgf.keys())}
    print(len(weight_gain_factors))
    print(weight_gain_factors.keys())
    #weight_gain_factors = {0:0.5,1:1.0,2:1.5,3:2.0,4:2.5,5:3}
    #weight_gain_factors = {:None,1.0:None,1.5:None,2.0:None,2.5:None}

    k = weight_gain_factors[index]
    #print(len(mdf1.segments),'length of block')

    ass = mdf1.analogsignals[0]

    time_points = ass.times
    avg = np.mean(ass, axis=0)  # Average over signals of Segment
    #maxx = np.max(ass, axis=0)  # Average over signals of Segment
    std = np.std(ass, axis=0)  # Average over signals of Segment
    #avg_minus =
    plt.figure()
    plt.plot([i for i in range(0, len(avg))], avg)
    plt.plot([i for i in range(0, len(std))], std)

    plt.title("Mean and Standard Dev of $V_{m}$ amplitude per neuron ")
    plt.xlabel('time $(ms)$')
    plt.xlabel('Voltage $(mV)$')

    plt.savefig(str(index) + 'prs.png')
    vm_spiking = []
    vm_not_spiking = []
    spike_trains = []
    binary_trains = []
    max_spikes = 0

    vms = np.array(mdf1.analogsignals[0].as_array().T)
    #print(data)
    #for i,vm in enumerate(data):

    cnt = 0
    for spiketrain in mdf1.spiketrains:
        #spiketrain = mdf1.spiketrains[index]
        y = np.ones_like(spiketrain) * spiketrain.annotations['source_id']
        #import sklearn
        #sklearn.decomposition.NMF(y)
        # argument edges is the time interval you want to be considered.
        pspikes = pyspike.SpikeTrain(spiketrain, edges=(0, len(ass)))
        spike_trains.append(pspikes)
        if len(spiketrain) > max_spikes:
            max_spikes = len(spiketrain)

        if np.max(ass[spiketrain.annotations['source_id']]) > 0.0:
            vm_spiking.append(vms[spiketrain.annotations['source_id']])
        else:
            vm_not_spiking.append(vms[spiketrain.annotations['source_id']])
        cnt += 1

    for spiketrain in mdf1.spiketrains:
        x = conv.BinnedSpikeTrain(spiketrain,
                                  binsize=1 * pq.ms,
                                  t_start=0 * pq.s)
        binary_trains.append(x)
    end_floor = np.floor(float(mdf1.t_stop))
    dt = float(mdf1.t_stop) % end_floor
    mdf1.t_start
    #v = mdf1.take_slice_of_analogsignalarray_by_unit()
    t_axis = np.arange(float(mdf1.t_start), float(mdf1.t_stop), dt)
    plt.figure()
    plt.clf()

    plt.figure()
    plt.clf()
    cleaned = []
    data = np.array(mdf1.analogsignals[0].as_array().T)
    #print(data)
    for i, vm in enumerate(data):
        if np.max(vm) > 900.0 or np.min(vm) < -900.0:
            pass
        else:
            plt.plot(ass.times, vm)  #,label='neuron identifier '+str(i)))
            cleaned.append(vm)
            #vm = s#.as_array()[:,i]

    assert len(cleaned) < len(ass)

    print(len(cleaned))
    plt.title('neuron $V_{m}$')
    #plt.legend(loc="upper left")
    plt.savefig(str('weight_') + str(k) + 'analogsignals' + '.png')
    plt.xlabel('Time $(ms)$')
    plt.ylabel('Voltage $(mV)$')

    plt.close()

    #pass

    plt.figure()
    plt.clf()
    plt.title('Single Neuron $V_{m}$ trace')
    plt.plot(ass.times[0:int(len(ass.times) / 10)],
             vm_not_spiking[index_exc[0]][0:int(len(ass.times) / 10)])
    plt.xlabel('$ms$')
    plt.ylabel('$mV$')
    plt.xlabel('Time $(ms)$')
    plt.ylabel('Voltage $(mV)$')
    plt.savefig(str('weight_') + str(k) + 'eespecific_analogsignals' + '.png')
    plt.close()

    plt.figure()
    plt.clf()
    plt.title('Single Neuron $V_{m}$ trace')
    plt.plot(ass.times[0:int(len(ass.times) / 10)],
             vm_not_spiking[index_inh[0]][0:int(len(ass.times) / 10)])
    plt.xlabel('$ms$')
    plt.ylabel('$mV$')

    plt.savefig(str('weight_') + str(k) + 'inhibitory_analogsignals' + '.png')
    plt.close()

    cvs = [0 for i in range(0, len(spike_trains))]
    cvsd = {}
    cvs = []
    cvsi = []
    rates = []  # firing rates per cell. in spikes a second.
    for i, j in enumerate(spike_trains):
        rates.append(float(len(j) / 2.0))
        cva = cv(j)
        if np.isnan(cva) or cva == 0:
            pass
            #cvs[i] = 0
            #cvsd[i] = 0
        else:
            pass
            #cvs[i] = cva
            #cvsd[i] = cva
        cvs.append(cva)
    #import pickle
    #with open(str('weight_')+str(k)+'coefficients_of_variation.p','wb') as f:
    #   pickle.dump([cvs,cvsd],f)
    import numpy
    a = numpy.asarray(cvs)
    numpy.savetxt('pickles/' + str('weight_') + str(k) +
                  'coefficients_of_variation.csv',
                  a,
                  delimiter=",")

    import numpy
    a = numpy.asarray(rates)
    numpy.savetxt('pickles/' + str('weight_') + str(k) + 'firing_of_rate.csv',
                  a,
                  delimiter=",")

    cvs = [i for i in cvs if i != 0]
    cells = [i for i in range(0, len(cvs))]

    plt.clf()
    fig, axes = plt.subplots()
    axes.set_title('Coefficient of Variation Versus Neuron')
    axes.set_xlabel('Neuron number')
    axes.set_ylabel('CV estimate')
    mcv = np.mean(cvs)
    #plt.scatter(cells,cvs)
    cvs = np.array(cvs)
    plt.scatter(index_inh, cvs[index_inh], label="inhibitory cells")
    plt.scatter(index_exc, cvs[index_exc], label="excitatory cells")
    plt.legend(loc="upper left")

    fig.tight_layout()
    plt.savefig(str('weight_') + str(k) + 'cvs_mean_' + str(mcv) + '.png')
    plt.close()

    plt.clf()
    #frequencies, power = elephant.spectral.welch_psd(ass)
    #mfreq = frequencies[np.where(power==np.max(power))[0][0]]
    #fig, axes = plt.subplots()
    axes.set_title('Firing Rate Versus Neuron Number at mean f=' +
                   str(np.mean(rates)) + str('(Spike Per Second)'))
    axes.set_xlabel('Neuron number')
    axes.set_ylabel('Spikes per second')
    rates = np.array(rates)
    plt.scatter(index_inh, rates[index_inh], label="inhibitory cells")
    plt.scatter(index_exc, rates[index_exc], label="excitatory cells")
    plt.legend(loc="upper left")
    fig.tight_layout()
    plt.savefig(str('firing_rates_per_cell_') + str(k) + str(mcv) + '.png')
    plt.close()
    '''
    import pandas as pd
    d = {'coefficent_of_variation': cvs, 'cells': cells}
    df = pd.DataFrame(data=d)

    ax = sns.regplot(x='cells', y='coefficent_of_variation', data=df)#, fit_reg=False)
    plt.savefig(str('weight_')+str(k)+'cvs_regexp_'+str(mcv)+'.png');
    plt.close()
    '''

    spike_trains = []
    ass = mdf1.analogsignals[0]
    tstop = mdf1.t_stop
    np.max(ass.times) == mdf1.t_stop
    #assert tstop == 2000
    tstop = 2000
    vm_spiking = []

    for spiketrain in mdf1.spiketrains:
        vm_spiking.append(
            mdf1.analogsignals[0][spiketrain.annotations['source_id']])
        y = np.ones_like(spiketrain) * spiketrain.annotations['source_id']

        # argument edges is the time interval you want to be considered.
        pspikes = pyspike.SpikeTrain(spiketrain, edges=(0, tstop))
        spike_trains.append(pspikes)

    # plot the spike times

    plt.clf()
    for (i, spike_train) in enumerate(spike_trains):
        plt.scatter(spike_train, i * np.ones_like(spike_train), marker='.')
    plt.xlabel('Time (ms)')
    plt.ylabel('Cell identifier')
    plt.title('Raster Plot for weight strength:' + str(k))

    plt.savefig(str('weight_') + str(k) + 'raster_plot' + '.png')
    plt.close()

    f = spk.isi_profile(spike_trains, indices=[0, 1])
    x, y = f.get_plottable_data()

    #text_file.close()
    text_file = open(str('weight_') + str(index) + 'net_out.txt', 'w')

    plt.figure()
    plt.plot(x, np.abs(y), '--k', label="ISI-profile")
    print("ISI-distance: %.8f" % f.avrg())
    f = spk.spike_profile(spike_trains, indices=[0, 1])
    x, y = f.get_plottable_data()
    plt.plot(x, y, '-b', label="SPIKE-profile")
    #print("SPIKE-distance: %.8f" % f.avrg())
    string_to_write = str("ISI-distance:") + str(f.avrg()) + str("\n\n")
    plt.title(string_to_write)
    plt.xlabel('Time $(ms)$')
    plt.ylabel('ISI distance')
    plt.legend(loc="upper left")
    plt.savefig(str('weight_') + str(k) + 'ISI_distance_bivariate' + '.png')
    plt.close()
    text_file.write(string_to_write)

    #text_file.write("SPIKE-distance: %.8f" % f.avrg())
    #text_file.write("\n\n")

    plt.figure()
    f = spk.spike_sync_profile(spike_trains[0], spike_trains[1])
    x, y = f.get_plottable_data()
    plt.plot(x, y, '--ok', label="SPIKE-SYNC profile")
    print(f, f.avrg())
    print("Average:" + str(f.avrg()))
    #print(len(f.avrg()),f.avrg())
    string_to_write = str("instantaneous synchrony:") + str(
        f.avrg()) + 'weight: ' + str(index)

    plt.title(string_to_write)
    plt.xlabel('Time $(ms)$')
    plt.ylabel('instantaneous synchrony')

    text_file.write(string_to_write)

    #text_file.write(list())

    f = spk.spike_profile(spike_trains[0], spike_trains[1])
    x, y = f.get_plottable_data()

    plt.plot(x, y, '-b', label="SPIKE-profile")
    plt.axis([0, 4000, -0.1, 1.1])
    plt.legend(loc="center right")
    plt.clf()
    plt.figure()
    plt.subplot(211)

    f = spk.spike_sync_profile(spike_trains)
    x, y = f.get_plottable_data()
    plt.plot(x, y, '-b', alpha=0.7, label="SPIKE-Sync profile")
    x1, y1 = f.get_plottable_data(averaging_window_size=50)
    plt.plot(x1, y1, '-k', lw=2.5, label="averaged SPIKE-Sync profile")
    plt.subplot(212)

    f_psth = spk.psth(spike_trains, bin_size=50.0)
    x, y = f_psth.get_plottable_data()
    plt.plot(x, y, '-k', alpha=1.0, label="PSTH")

    plt.savefig(str('weight_') + str(k) + 'multivariate_PSTH' + '.png')
    plt.close()
    plt.xlabel('Time $(ms)$')
    plt.ylabel('Spikes per bin')

    plt.clf()
    plt.figure()

    f_psth = spk.psth(spike_trains, bin_size=50.0)
    x, y = f_psth.get_plottable_data()
    plt.plot(x, y, '-k', alpha=1.0, label="PSTH")

    plt.savefig(str('weight_') + str(k) + 'exclusively_PSTH' + '.png')
    plt.close()

    plt.figure()
    isi_distance = spk.isi_distance_matrix(spike_trains)
    plt.imshow(isi_distance, interpolation='none')
    plt.title('Pairwise ISI distance, T=0-2000')
    plt.xlabel('post-synaptic neuron number')
    plt.ylabel('pre-synaptic neuron number')

    plt.title("ISI-distance")
    plt.savefig(str('weight_') + str(k) + 'ISI_distance' + '.png')
    plt.close()

    #plt.show()

    plt.figure()
    plt.clf()
    import seaborn as sns

    sns.set()
    sns.clustermap(isi_distance)  #,vmin=-,vmax=1);

    plt.savefig(str('weight_') + str(k) + 'cluster_isi_distance' + '.png')
    plt.close()

    plt.figure()
    spike_distance = spk.spike_distance_matrix(spike_trains,
                                               interval=(0, float(tstop)))

    import pickle
    with open('spike_distance_matrix.p', 'wb') as f:
        pickle.dump(spike_distance, f)

    plt.imshow(spike_distance, interpolation='none')
    plt.title("Pairwise SPIKE-distance, T=0-2000")
    plt.xlabel('post-synaptic neuron number')
    plt.ylabel('pre-synaptic neuron number')

    plt.savefig(str('weight_') + str(k) + 'spike_distance_matrix' + '.png')
    plt.close()
    plt.figure()
    plt.clf()
    sns.set()
    sns.clustermap(spike_distance)

    plt.savefig(str('weight_') + str(k) + 'cluster_spike_distance' + '.png')
    plt.close()

    plt.figure()
    spike_sync = spk.spike_sync_matrix(spike_trains,
                                       interval=(0, float(tstop)))
    plt.imshow(spike_sync, interpolation='none')
    plt.title('Pairwise Spike Synchony, T=0-2000')
    plt.xlabel('post-synaptic neuron number')
    plt.ylabel('pre-synaptic neuron number')

    import numpy
    a = numpy.asarray(spike_sync)
    numpy.savetxt("spike_sync_matrix.csv", a, delimiter=",")

    plt.figure()
    plt.clf()
    sns.clustermap(spike_sync)
    plt.savefig(
        str('weight_') + str(k) + 'cluster_spike_sync_distance' + '.png')
    plt.close()
Пример #11
0
#Grab all the spike times and neurons indices from the "SpikeMonitor" objects
poiSpikeTimes = numpy.asarray(PoiMonitor.t)
poiSpikeNeuro = numpy.asarray(PoiMonitor.i)
neuSpikeTimes = numpy.asarray(NeuMonitor1.t)

#Make a list where we will put the set of "SpikeTrain" objects
spikiTimesObjList = []

#Fill the list with spike trains for each neuron in the simulation
for i in numpy.unique(poiSpikeNeuro):
    inds = numpy.argwhere(poiSpikeNeuro==i) #FInd tthe spike-times that correspond to neuron i
    inds = inds[:,0]                        #the variable "inds" is a 2D array, I just want a 1D array to give to the "SpikeTrain" class.
    spikiTimesObjList.append(spk.SpikeTrain(poiSpikeTimes[inds], edges=(0., 1.), is_sorted=True)) #Append the spikiTimesObjList with a "SpikeTrain" object

#Make a "spike_profile", which essentially is a simultaneous comparison of all the spike trains together simutaneously
spike_profile = spk.spike_profile(spikiTimesObjList)

#Make a "isi_profile", which essentially is a simultaneous comparison of all the spike trains together simutaneously
isi_profile = spk.isi_profile(spikiTimesObjList)

#Make a "spike_sync_profile", which essentially is a simultaneous comparison of all the spike trains together simutaneously
sync_profile = spk.spike_sync_profile(spikiTimesObjList)

#Now I want to pring out want these profiles that have just been created look like.
plt.figure(1)
x, y = spike_profile.get_plottable_data()
plt.plot(x, y, '--k')
plt.figure(2)
x, y = isi_profile.get_plottable_data()
plt.plot(x,y, '--k')
plt.figure(3)
Пример #12
0
import pyspike as spk


spike_trains = spk.load_spike_trains_from_txt("PySpike_testdata.txt",
                                              edges=(0, 4000))

# plot the spike times
for (i, spike_train) in enumerate(spike_trains):
    plt.scatter(spike_train, i*np.ones_like(spike_train), marker='|')

# profile of the first two spike trains
f = spk.isi_profile(spike_trains, indices=[0, 1])
x, y = f.get_plottable_data()

plt.figure()
plt.plot(x, np.abs(y), '--k', label="ISI-profile")

print("ISI-distance: %.8f" % f.avrg())

f = spk.spike_profile(spike_trains, indices=[0, 1])
x, y = f.get_plottable_data()

plt.plot(x, y, '-b', label="SPIKE-profile")

print("SPIKE-distance: %.8f" % f.avrg())

plt.legend(loc="upper left")

plt.show()
Пример #13
0
def get_spike_distance(spike_train_1, spike_train_2):
    return spk.spike_profile(spike_train_1, spike_train_2).avrg()
Пример #14
0
def test_spike():
    # generate two spike trains:
    t1 = SpikeTrain([0.0, 2.0, 5.0, 8.0], 10.0)
    t2 = SpikeTrain([0.0, 1.0, 5.0, 9.0], 10.0)

    expected_times = np.array([0.0, 1.0, 2.0, 5.0, 8.0, 9.0, 10.0])

    f = spk.spike_profile(t1, t2)

    assert_equal(f.x, expected_times)

    assert_almost_equal(f.avrg(), 1.6624149659863946e-01, decimal=15)
    assert_almost_equal(f.y2[-1], 0.1394558, decimal=6)

    t1 = SpikeTrain([0.2, 0.4, 0.6, 0.7], 1.0)
    t2 = SpikeTrain([0.3, 0.45, 0.8, 0.9, 0.95], 1.0)

    # pen&paper calculation of the spike distance
    expected_times = [0.0, 0.2, 0.3, 0.4, 0.45, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0]
    s1 = np.array([0.1, 0.1, (0.1*0.1+0.05*0.1)/0.2, 0.05, (0.05*0.15 * 2)/0.2,
                   0.15, 0.1, (0.1*0.1+0.1*0.2)/0.3, (0.1*0.2+0.1*0.1)/0.3,
                   (0.1*0.05+0.1*0.25)/0.3, 0.1])
    s2 = np.array([0.1, (0.1*0.2+0.1*0.1)/0.3, 0.1, (0.1*0.05 * 2)/.15, 0.05,
                   (0.05*0.2+0.1*0.15)/0.35, (0.05*0.1+0.1*0.25)/0.35,
                   0.1, 0.1, 0.05, 0.05])
    isi1 = np.array([0.2, 0.2, 0.2, 0.2, 0.2, 0.1, 0.3, 0.3, 0.3, 0.3])
    isi2 = np.array([0.3, 0.3, 0.15, 0.15, 0.35, 0.35, 0.35, 0.1, 0.05, 0.05])
    expected_y1 = (s1[:-1]*isi2+s2[:-1]*isi1) / (0.5*(isi1+isi2)**2)
    expected_y2 = (s1[1:]*isi2+s2[1:]*isi1) / (0.5*(isi1+isi2)**2)

    expected_times = np.array(expected_times)
    expected_y1 = np.array(expected_y1)
    expected_y2 = np.array(expected_y2)
    expected_spike_val = sum((expected_times[1:] - expected_times[:-1]) *
                             (expected_y1+expected_y2)/2)
    expected_spike_val /= (expected_times[-1]-expected_times[0])

    f = spk.spike_profile(t1, t2)

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y1, expected_y1, decimal=15)
    assert_array_almost_equal(f.y2, expected_y2, decimal=15)
    assert_almost_equal(f.avrg(), expected_spike_val, decimal=15)
    assert_almost_equal(spk.spike_distance(t1, t2), expected_spike_val,
                        decimal=15)

    # check with some equal spike times
    t1 = SpikeTrain([0.2, 0.4, 0.6], [0.0, 1.0])
    t2 = SpikeTrain([0.1, 0.4, 0.5, 0.6], [0.0, 1.0])

    expected_times = [0.0, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0]
    # due to the edge correction in the beginning, s1 and s2 are different
    # for left and right values
    s1_r = np.array([0.1, (0.1*0.1+0.1*0.1)/0.2, 0.1, 0.0, 0.0, 0.0, 0.0])
    s1_l = np.array([0.1, (0.1*0.1+0.1*0.1)/0.2, 0.1, 0.0, 0.0, 0.0, 0.0])
    s2_r = np.array([0.1*0.1/0.3, 0.1*0.3/0.3, 0.1*0.2/0.3,
                     0.0, 0.1, 0.0, 0.0])
    s2_l = np.array([0.1*0.1/0.3, 0.1*0.1/0.3, 0.1*0.2/0.3, 0.0,
                     0.1, 0.0, 0.0])
    isi1 = np.array([0.2, 0.2, 0.2, 0.2, 0.2, 0.4])
    isi2 = np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.4])
    expected_y1 = (s1_r[:-1]*isi2+s2_r[:-1]*isi1) / (0.5*(isi1+isi2)**2)
    expected_y2 = (s1_l[1:]*isi2+s2_l[1:]*isi1) / (0.5*(isi1+isi2)**2)

    expected_times = np.array(expected_times)
    expected_y1 = np.array(expected_y1)
    expected_y2 = np.array(expected_y2)
    expected_spike_val = sum((expected_times[1:] - expected_times[:-1]) *
                             (expected_y1+expected_y2)/2)
    expected_spike_val /= (expected_times[-1]-expected_times[0])

    f = spk.spike_profile(t1, t2)

    assert_equal(f.x, expected_times)
    assert_array_almost_equal(f.y1, expected_y1, decimal=14)
    assert_array_almost_equal(f.y2, expected_y2, decimal=14)
    assert_almost_equal(f.avrg(), expected_spike_val, decimal=16)
    assert_almost_equal(spk.spike_distance(t1, t2), expected_spike_val,
                        decimal=16)
Пример #15
0
t_start = time.clock()

# load the data
time_loading = time.clock()
spike_trains = spk.load_spike_trains_from_txt("PySpike_testdata.txt",
                                              edges=(0, 4000))
t_loading = time.clock()

print("Number of spike trains: %d" % len(spike_trains))
num_of_spikes = sum([len(spike_trains[i])
                     for i in range(len(spike_trains))])
print("Number of spikes: %d" % num_of_spikes)

# calculate the multivariate spike distance
f = spk.spike_profile(spike_trains)

t_spike = time.clock()

# print the average
avrg = f.avrg()
print("Spike distance from average: %.8f" % avrg)

t_avrg = time.clock()

# compute average distance directly, should give the same result as above
spike_dist = spk.spike_distance(spike_trains)
print("Spike distance directly:     %.8f" % spike_dist)

t_dist = time.clock()
Пример #16
0
b = spk.SpikeTrain(a, [0, 10], is_sorted=False)
print b.spikes

spike_trains = spk.load_spike_trains_from_txt("PySpike_testdata.txt",
                                              edges=(0, 4000))

# compute the two spike trains and multivariate ISI profile
f = spk.isi_profile(spike_trains[0], spike_trains[1])
f = spk.isi_profile(spike_trains)

# t = [900, 1100, 2000, 3100]
# print("ISI value at t =", t, ":", f(t))
# print("Average ISI distance:", f.avrg())

# compute the two spike trains and multivariate SPIKE profile
f = spk.spike_profile(spike_trains[0], spike_trains[1])
f = spk.spike_profile(spike_trains)

# t = [900, 1100, 2000, 3100]
# print("Multivariate SPIKE value at t =", t, ":", f(t))
# print("Average multivariate SPIKE distance:", f.avrg())

# plot the spike times
for (i, spike_train) in enumerate(spike_trains):
    plt.scatter(spike_train, i * np.ones_like(spike_train), marker='|')
    # print np.asarray(spike_train)

# profile of the first two spike trains
f = spk.isi_profile(spike_trains, indices=[0, 1])
x, y = f.get_plottable_data()
# x = f.x