def generate(args): config = handle_arguments_and_configurations(name, args) base_path = config['path'] if not os.path.isdir(base_path): os.makedirs(base_path) print("Generation in: {}".format(base_path)) images_path = os.path.join(base_path, "images") if not os.path.isdir(images_path): os.makedirs(images_path) # Get configuration parameters. vh_image_nbs = config['vh_image_nbs'] eye_diameter = config['eye_diameter'] mean_luminance = config['mean_luminance'] std_luminance = config['std_luminance'] normalized_value_median = config['normalized_value_median'] normalized_value_mad = config['normalized_value_mad'] display_rate = config['display_rate'] adaptation_duration = config['adaptation_duration'] flash_duration = config['flash_duration'] inter_flash_duration = config['inter_flash_duration'] frame_resolution = config['frame']['resolution'] frame_width = config['frame']['width'] frame_height = config['frame']['height'] nb_repetitions = config['nb_repetitions'] stuttering_vh_image_nbs = config['stuttering_vh_image_nbs'] nb_stuttering_vh_images = config['nb_stuttering_vh_images'] nb_stutters = config['nb_stutters'] seed = config['seed'] verbose = config['verbose'] # Fetch van Hateren images. vh.fetch(image_nbs=vh_image_nbs, download_if_missing=False, verbose=verbose) # Select unsaturated van Hateren image numbers. if vh_image_nbs is None: vh_image_nbs = vh.get_image_nbs() else: vh_image_nbs = np.array(vh_image_nbs) are_saturated = vh.get_are_saturated(image_nbs=vh_image_nbs, verbose=verbose) are_unsaturated = np.logical_not(are_saturated) assert vh_image_nbs.size == are_unsaturated.size, "{} != {}".format( vh_image_nbs.size, are_unsaturated.size) unsaturated_vh_image_nbs = vh_image_nbs[are_unsaturated] # Select ... # mean_luminances = vh.get_mean_luminances(image_nbs=unsaturated_vh_image_nbs, verbose=verbose) # std_luminances = vh.get_std_luminances(image_nbs=unsaturated_vh_image_nbs, verbose=verbose) max_luminances = vh.get_max_luminances(image_nbs=unsaturated_vh_image_nbs, verbose=verbose) # TODO remove the following lines? # max_centered_luminances = max_luminances / mean_luminances # # print(np.min(max_centered_luminances)) # # print(np.median(max_centered_luminances)) # # print(np.max(max_centered_luminances)) # are_good = max_centered_luminances <= 8.3581 # TODO correct? # TODO remove the following lines? # max_normalized_luminances = (max_luminances / mean_luminances - 1.0) / std_luminances + 1.0 # are_good = max_normalized_luminances <= 1.02 # TODO remove the following lines? log_mean_luminances = vh.get_log_mean_luminances( image_nbs=unsaturated_vh_image_nbs, verbose=verbose) log_std_luminances = vh.get_log_mean_luminances( image_nbs=unsaturated_vh_image_nbs, verbose=verbose) log_max_luminances = np.log(1.0 + max_luminances) log_max_normalized_luminances = (log_max_luminances - log_mean_luminances) / log_std_luminances are_good = log_max_normalized_luminances <= 5.0 # ... good_vh_image_nbs = unsaturated_vh_image_nbs[are_good] # ... # selected_vh_image_nbs = unsaturated_vh_image_nbs selected_vh_image_nbs = good_vh_image_nbs # Check stuttering van Hateren image numbers. np.random.seed(seed) if stuttering_vh_image_nbs is None: stuttering_vh_image_nbs = np.array([]) else: assert len(stuttering_vh_image_nbs) <= nb_stuttering_vh_images for stuttering_vh_image_nb in stuttering_vh_image_nbs: assert stuttering_vh_image_nb in selected_vh_image_nbs, stuttering_vh_image_nb potential_stuttering_vh_image_nbs = np.setdiff1d(selected_vh_image_nbs, stuttering_vh_image_nbs, assume_unique=True) nb_missing_stuttering_vh_image_nbs = nb_stuttering_vh_images - len( stuttering_vh_image_nbs) stuttering_vh_image_nbs = np.concatenate( (stuttering_vh_image_nbs, np.random.choice(potential_stuttering_vh_image_nbs, nb_missing_stuttering_vh_image_nbs, replace=False))) stuttering_vh_image_nbs.sort() # Generate grey image. image_filename = "image_{i:04d}.png".format(i=0) image_path = os.path.join(images_path, image_filename) # if not os.path.isfile(image_path): # TODO uncomment this line. frame = get_grey_frame(frame_width, frame_height, luminance=mean_luminance) frame = float_frame_to_uint8_frame(frame) image = create_png_image(frame) image.save(image_path) # Extract images from the van Hateren images. for vh_image_nb in tqdm.tqdm(selected_vh_image_nbs): # Check if image already exists. image_filename = "image_{i:04d}.png".format(i=vh_image_nb) image_path = os.path.join(images_path, image_filename) if os.path.isfile(image_path): continue # Cut out central sub-region. a_x = vh.get_horizontal_angles() a_y = vh.get_vertical_angles() luminance_data = vh.load_luminance_data(vh_image_nb) rbs = sp.interpolate.RectBivariateSpline(a_x, a_y, luminance_data, kx=1, ky=1) angular_resolution = math.atan( frame_resolution / eye_diameter) * (180.0 / math.pi) a_x = compute_horizontal_angles(width=frame_width, angular_resolution=angular_resolution) a_y = compute_vertical_angles(height=frame_height, angular_resolution=angular_resolution) a_x, a_y = np.meshgrid(a_x, a_y) luminance_data = rbs.ev(a_x, a_y) luminance_data = luminance_data.transpose() # TODO uncomment the following lines? # # Prepare data. # luminance_median = np.median(luminance_data) # luminance_mad = np.median(np.abs(luminance_data - luminance_median)) # centered_luminance_data = luminance_data - luminance_median # if luminance_mad > 0.0: # centered_n_reduced_luminance_data = centered_luminance_data / luminance_mad # else: # centered_n_reduced_luminance_data = centered_luminance_data # normalized_luminance_data = centered_n_reduced_luminance_data # scaled_data = normalized_value_mad * normalized_luminance_data # shifted_n_scaled_data = scaled_data + normalized_value_median # data = shifted_n_scaled_data # TODO remove the 2 following lines? # scaled_luminance_data = luminance_data / np.mean(luminance_data) # data = scaled_luminance_data / 8.3581 # TODO remove the 2 following lines? # normalized_luminance_data = (luminance_data / np.mean(luminance_data) - 1.0) / np.std(luminance_data) + 1.0 # data = (normalized_luminance_data - 1.0) / 0.02 * 0.8 + 0.2 # TODO remove the following lines? log_luminance_data = np.log(1.0 + luminance_data) log_mean_luminance = np.mean(log_luminance_data) log_std_luminance = np.std(log_luminance_data) normalized_log_luminance_data = log_luminance_data - log_mean_luminance if log_std_luminance > 1e-13: normalized_log_luminance_data = normalized_log_luminance_data / log_std_luminance normalized_log_luminance_data = 0.2 * normalized_log_luminance_data normalized_luminance_data = np.exp(normalized_log_luminance_data) - 1.0 normalized_luminance_data = normalized_luminance_data - np.mean( normalized_luminance_data) if np.std(normalized_luminance_data) > 1e-13: normalized_luminance_data = normalized_luminance_data / np.std( normalized_luminance_data) data = std_luminance * normalized_luminance_data + mean_luminance # Prepare image data if np.count_nonzero(data < 0.0) > 0: s = "some pixels are negative in image {} (consider changing the configuration, 'normalized_value_mad': {})" message = s.format( vh_image_nb, normalized_value_mad / ((normalized_value_median - np.min(data)) / (normalized_value_median - 0.0))) warnings.warn(message) data[data < 0.0] = 0.0 if np.count_nonzero(data > 1.0) > 0: s = "some pixels saturate in image {} (consider changing the configuration, 'normalized_value_mad': {})" message = s.format( vh_image_nb, normalized_value_mad / ((np.max(data) - normalized_value_median) / (1.0 - normalized_value_median))) warnings.warn(message) data[data > 1.0] = 1.0 data = np.array( 254.0 * data, dtype=np.uint8) # 0.0 -> 0 and 1.0 -> 254 such that 0.5 -> 127 data = np.transpose(data) data = np.flipud(data) image = create_png_image(data) # Save image. image.save(image_path) # Set condition numbers and image paths. condition_nbs = [] stuttering_condition_nbs = [] image_paths = {} for k, vh_image_nb in enumerate(selected_vh_image_nbs): # condition_nb = k + 1 condition_nb = k image_filename = 'image_{i:04d}.png'.format(i=vh_image_nb) image_path = os.path.join(images_path, image_filename) assert condition_nb not in condition_nbs assert os.path.isfile(image_path) condition_nbs.append(condition_nb) if vh_image_nb in stuttering_vh_image_nbs: stuttering_condition_nbs.append(condition_nb) image_paths[condition_nb] = image_path condition_nbs = np.array(condition_nbs) stuttering_condition_nbs = np.array(stuttering_condition_nbs) nb_conditions = len(condition_nbs) nb_stuttering_conditions = len(stuttering_condition_nbs) # Create conditions .csv file. conditions_csv_filename = '{}_conditions.csv'.format(name) conditions_csv_path = os.path.join(base_path, conditions_csv_filename) print("Start creating conditions .csv file...") # Open conditions .csv file. conditions_csv_file = open_csv_file(conditions_csv_path, columns=['path']) # Add conditions for van Hateren images. for condition_nb in condition_nbs: image_path = image_paths[condition_nb] path = image_path.replace(base_path, '') path = path[1:] # remove separator conditions_csv_file.append(path=path) # Close conditions .csv file. conditions_csv_file.close() # ... print("End of conditions .csv file creation.") # Set sequence of conditions for each repetition. repetition_sequences = {} np.random.seed(seed) normal_condition_nbs = np.setdiff1d(condition_nbs, stuttering_condition_nbs, assume_unique=True) nb_normal_indices = len(normal_condition_nbs) nb_stuttering_indices = nb_stuttering_conditions * nb_stutters nb_indices = nb_normal_indices + nb_stuttering_indices sequence = np.empty(nb_indices, dtype=np.int) stuttering_indices = np.linspace(0, nb_indices, num=nb_stuttering_indices, endpoint=False) stuttering_indices = stuttering_indices.astype(np.int) normal_indices = np.setdiff1d(np.arange(0, nb_indices), stuttering_indices) sequence[stuttering_indices] = np.concatenate( tuple([stuttering_condition_nbs for _ in range(0, nb_stutters)])) for repetition_nb in range(0, nb_repetitions): repetition_sequence = np.copy(sequence) # Normal. repetition_normal_sequence = np.copy(normal_condition_nbs) np.random.shuffle(repetition_normal_sequence) repetition_sequence[normal_indices] = repetition_normal_sequence # Stuttering. repetition_stuttering_sequence = [] for _ in range(0, nb_stutters): repetition_stuttering_condition_nbs = np.copy( stuttering_condition_nbs) np.random.shuffle(repetition_stuttering_condition_nbs) repetition_stuttering_sequence.append( repetition_stuttering_condition_nbs) repetition_stuttering_sequence = np.concatenate( tuple(repetition_stuttering_sequence)) repetition_sequence[ stuttering_indices] = repetition_stuttering_sequence # ... repetition_sequences[repetition_nb] = repetition_sequence # Create .bin file. print("Start creating .bin file...") bin_filename = '{}.bin'.format(name) bin_path = os.path.join(base_path, bin_filename) nb_bin_images = 1 + nb_conditions # i.e. grey image and other conditions bin_frame_nbs = {} # Open .bin file. bin_file = open_bin_file(bin_path, nb_bin_images, frame_width=frame_width, frame_height=frame_height, reverse=False, mode='w') # Add grey frame. grey_frame = get_grey_frame(frame_width, frame_height, luminance=mean_luminance) grey_frame = float_frame_to_uint8_frame(grey_frame) bin_file.append(grey_frame) bin_frame_nbs[None] = bin_file.get_frame_nb() # Add van Hateren frames. for condition_nb in tqdm.tqdm(condition_nbs): image_path = image_paths[condition_nb] image = load_png_image(image_path) frame = image.data bin_file.append(frame) bin_frame_nbs[condition_nb] = bin_file.get_frame_nb() # Close .bin file. bin_file.close() # ... print("End of .bin file creation.") # Create .vec file and stimulation .csv file. print("Start creating .vec file...") vec_filename = "{}.vec".format(name) vec_path = os.path.join(base_path, vec_filename) csv_filename = "{}_trials.csv".format(name) csv_path = os.path.join(base_path, csv_filename) # ... nb_displays_during_adaptation = int( np.ceil(adaptation_duration * display_rate)) nb_displays_per_flash = int(np.ceil(flash_duration * display_rate)) nb_displays_per_inter_flash = int( np.ceil(inter_flash_duration * display_rate)) nb_flashes_per_repetition = nb_conditions + nb_stuttering_vh_images * ( nb_stutters - 1) nb_displays_per_repetition = nb_flashes_per_repetition * ( nb_displays_per_flash + nb_displays_per_inter_flash) nb_displays = nb_displays_during_adaptation + nb_repetitions * nb_displays_per_repetition # Open .vec file. vec_file = open_vec_file(vec_path, nb_displays=nb_displays) # Open .csv file. csv_file = open_csv_file( csv_path, columns=['condition_nb', 'start_display_nb', 'end_display_nb']) # Add adaptation. bin_frame_nb = bin_frame_nbs[None] # i.e. default frame (grey) for _ in range(0, nb_displays_during_adaptation): vec_file.append(bin_frame_nb) # Add repetitions. for repetition_nb in tqdm.tqdm(range(0, nb_repetitions)): repetition_sequence = repetition_sequences[repetition_nb] for condition_nb in repetition_sequence: # Add flash. start_display_nb = vec_file.get_display_nb() + 1 bin_frame_nb = bin_frame_nbs[condition_nb] for _ in range(0, nb_displays_per_flash): vec_file.append(bin_frame_nb) end_display_nb = vec_file.get_display_nb() csv_file.append(condition_nb=condition_nb, start_display_nb=start_display_nb, end_display_nb=end_display_nb) # Add inter flash. bin_frame_nb = bin_frame_nbs[None] # i.e. default frame (grey) for _ in range(0, nb_displays_per_inter_flash): vec_file.append(bin_frame_nb) # Close .csv file. csv_file.close() # Close .vec file. vec_file.close() # ... print("End of .vec file creation.") return
def generate(args): config = handle_arguments_and_configurations(name, args) base_path = config['path'] if not os.path.isdir(base_path): os.makedirs(base_path) print("Generation in {}".format(base_path)) # Create directories (if necessary). images_dirname = 'images' images_path = os.path.join(base_path, images_dirname) if not os.path.isdir(images_path): os.makedirs(images_path) patterns_dirname = 'patterns' patterns_path = os.path.join(base_path, patterns_dirname) if not os.path.isdir(patterns_path): os.makedirs(patterns_path) frames_dirname = 'frames' frames_path = os.path.join(base_path, frames_dirname) if not os.path.isdir(frames_path): os.makedirs(frames_path) # Get configuration parameters. image_keys = config['images'] pattern_nbs = config['perturbations']['pattern_nbs'] amplitude_value = config['perturbations']['amplitude'] eye_diameter = config['eye_diameter'] mean_luminance = config['mean_luminance'] std_luminance = config['std_luminance'] display_rate = config['display_rate'] adaptation_duration = config['adaptation_duration'] flash_duration = config['flash_duration'] inter_flash_duration = config['inter_flash_duration'] frame_width = config['frame']['width'] frame_height = config['frame']['height'] frame_resolution = config['frame']['resolution'] nb_repetitions = config['nb_repetitions'] seed = config['seed'] # Fetch images. image_nbs = np.array(list(image_keys.keys()), dtype=int) for image_nb in image_nbs: image_key = image_keys[str(image_nb)] fetch_image(*image_key) nb_images = len(image_nbs) _ = nb_images # Fetch patterns. pattern_nbs = np.array(pattern_nbs) fetch_patterns(image_nbs=pattern_nbs) nb_patterns = len(pattern_nbs) # Prepare image parameters. images_params = collections.OrderedDict() for image_nb in image_nbs: filename = 'image_{nb:01d}_data.npy'.format(nb=image_nb) path = os.path.join(images_dirname, filename) images_params[image_nb] = collections.OrderedDict([('path', path)]) # Prepare pattern parameters. patterns_params = collections.OrderedDict() for pattern_nb in pattern_nbs: filename = 'pattern_{nb:01d}_data.npy'.format(nb=pattern_nb) path = os.path.join(patterns_dirname, filename) patterns_params[pattern_nb] = collections.OrderedDict([('path', path)]) def get_image_data(image_nb): # Load image data. image_key = image_keys[str(image_nb)] dataset_name = image_key[0] dataset = get_dataset(dataset_name) data = dataset.load_data(*image_key[1:]) # Cut out central sub-regions. a_x = dataset.get_horizontal_angles() a_y = dataset.get_vertical_angles() rbs = sp.interpolate.RectBivariateSpline(a_x, a_y, data) angular_resolution = math.atan( frame_resolution / eye_diameter) * (180.0 / math.pi) a_x = compute_horizontal_angles(width=frame_width, angular_resolution=angular_resolution) a_y = compute_vertical_angles(height=frame_height, angular_resolution=angular_resolution) a_x, a_y = np.meshgrid(a_x, a_y) data = rbs.ev(a_x, a_y) data = data.transpose() # # Prepare image data. # median = np.median(data) # mad = np.median(np.abs(data - median)) # # mad = np.std(data) # centered_data = data - median # if mad > 1.e-13: # centered_n_reduced_data = centered_data / mad # else: # centered_n_reduced_data = centered_data # normalized_data = centered_n_reduced_data # scaled_data = 0.1 * normalized_data # shifted_n_scaled_data = scaled_data + 0.5 # TODO keep the following normalization? # # Prepare image data. # mean = np.mean(data) # scaled_data = data / mean if mean > 0.0 else data # shifted_n_scaled_data = 0.2 * scaled_data # TODO correct? # TODO keep the following normalization? luminance_data = data log_luminance_data = np.log(1.0 + luminance_data) log_mean_luminance = np.mean(log_luminance_data) log_std_luminance = np.std(log_luminance_data) normalized_log_luminance_data = log_luminance_data - log_mean_luminance if log_std_luminance > 1e-13: normalized_log_luminance_data = normalized_log_luminance_data / log_std_luminance normalized_log_luminance_data = 0.2 * normalized_log_luminance_data normalized_luminance_data = np.exp(normalized_log_luminance_data) - 1.0 normalized_luminance_data = normalized_luminance_data - np.mean( normalized_luminance_data) if np.std(normalized_luminance_data) > 1e-13: normalized_luminance_data = normalized_luminance_data / np.std( normalized_luminance_data) luminance_data = std_luminance * normalized_luminance_data + mean_luminance # Save image data. image_data_path = os.path.join(base_path, images_params[image_nb]['path']) np.save(image_data_path, luminance_data) # Prepare image. data = np.copy(luminance_data) data[data < 0.0] = 0.0 data[data > 1.0] = 1.0 data = np.array( 254.0 * data, dtype=np.uint8) # 0.0 -> 0 and 1.0 -> 254 such that 0.5 -> 127 data = np.transpose(data) data = np.flipud(data) image = create_png_image(data) # Save image. image_image_filename = "image_{nb:01d}_image.png".format(nb=image_nb) image_image_path = os.path.join(images_path, image_image_filename) image.save(image_image_path) return luminance_data def get_pattern_data(pattern_nb): # Load pattern data. data = load_checkerboard_data(pattern_nb, with_borders=0.5) data = 2.0 * (data - 0.5) / 254.0 # Save pattern data. pattern_data_path = os.path.join(base_path, patterns_params[pattern_nb]['path']) np.save(pattern_data_path, data[1:-1, 1:-1]) # without borders # Project. # a_x = cb.get_horizontal_angles() # a_y = cb.get_vertical_angles() # rbs = sp.interpolate.RectBivariateSpline(a_x, a_y, data, kx=1, ky=1) a_x = cb.get_horizontal_angles(with_borders=True) a_y = cb.get_vertical_angles(with_borders=True) a_x, a_y = np.meshgrid(a_x, a_y) a = np.stack((np.ravel(a_x), np.ravel(a_y)), axis=1) # i.e. stack along 2nd axis ni = sp.interpolate.NearestNDInterpolator(a, np.ravel(data)) angular_resolution = math.atan( frame_resolution / eye_diameter) * (180.0 / math.pi) a_x = compute_horizontal_angles(width=frame_width, angular_resolution=angular_resolution) a_y = compute_vertical_angles(height=frame_height, angular_resolution=angular_resolution) a_x, a_y = np.meshgrid(a_x, a_y) # data = rbs.ev(a_x, a_y) # data = data.transpose() a = np.stack((np.ravel(a_x), np.ravel(a_y)), axis=1) # i.e. stack along 2nd axis data = ni(a) shape = (frame_width, frame_height) data = np.reshape(data, shape) data = data.transpose() # Create pattern image. image_data = data image_data = 254.0 * image_data image_data = np.array( image_data, dtype=np.uint8) # 0.0 -> 0 and 1.0 -> 254 such that 0.5 -> 127 image_data = np.transpose(image_data) image_data = np.flipud(image_data) pattern = create_png_image(image_data) # Save pattern. pattern_image_filename = "pattern_{nb:01d}_image.png".format( nb=pattern_nb) pattern_image_path = os.path.join(patterns_path, pattern_image_filename) pattern.save(pattern_image_path) return data def get_frame_path(image_nb, pattern_nb): image_index = np.where(image_nbs == image_nb)[0][0] pattern_index = np.where(pattern_nbs == pattern_nb)[0][0] frame_nb = (image_index * nb_patterns) + pattern_index filename = "frame_{nb:04d}.png".format(nb=frame_nb) path = os.path.join(frames_path, filename) return path # Set condition parameters. condition_nb = 0 conditions_params = collections.OrderedDict() frame_paths = collections.OrderedDict() for image_nb in image_nbs: for pattern_nb in pattern_nbs: assert condition_nb not in conditions_params conditions_params[condition_nb] = collections.OrderedDict([ ('image_nb', image_nb), ('pattern_nb', pattern_nb), ]) frame_paths[condition_nb] = get_frame_path(image_nb, pattern_nb) condition_nb += 1 condition_nbs = np.array(list(conditions_params.keys())) nb_conditions = len(condition_nbs) # Create frames. # # Preload images data. images_data = {} for image_nb in image_nbs: # Get image data. image_data = get_image_data(image_nb) # Store image data. images_data[image_nb] = image_data # # Create frames. pattern_data = None for pattern_nb in tqdm.tqdm(pattern_nbs): for image_nb in image_nbs: frame_path = get_frame_path(image_nb, pattern_nb) if os.path.isfile(frame_path): continue # Get image data. image_data = images_data[image_nb] # Get pattern data. pattern_data = get_pattern_data( pattern_nb) if pattern_data is None else pattern_data # Create frame data. data = image_data + amplitude_value * pattern_data # Create frame image. data[data < 0.0] = 0.0 data[data > 1.0] = 1.0 data = np.array( 254.0 * data, dtype=np.uint8) # 0.0 -> 0 and 1.0 -> 254 such that 0.5 -> 127 data = np.transpose(data) data = np.flipud(data) image = create_png_image(data) # Save frame image. image.save(frame_path) pattern_data = None # Set image ordering for each repetitions. repetition_orderings = collections.OrderedDict() np.random.seed(seed) for repetition_nb in range(0, nb_repetitions): ordering = np.copy(condition_nbs) np.random.shuffle(ordering) repetition_orderings[repetition_nb] = ordering # Create conditions .csv file. conditions_csv_filename = '{}_conditions.csv'.format(name) conditions_csv_path = os.path.join(base_path, conditions_csv_filename) print("Start creating conditions .csv file...") conditions_csv_file = open_csv_file(conditions_csv_path, columns=['image_nb', 'pattern_nb']) for condition_nb in condition_nbs: condition_params = conditions_params[condition_nb] conditions_csv_file.append(**condition_params) conditions_csv_file.close() print("End of conditions .csv file creation.") # Create images .csv file. images_csv_filename = '{}_images.csv'.format(name) images_csv_path = os.path.join(base_path, images_csv_filename) print("Start creating images .csv file...") images_csv_file = open_csv_file(images_csv_path, columns=['path']) for image_nb in image_nbs: image_params = images_params[image_nb] images_csv_file.append(**image_params) images_csv_file.close() print("End of images .csv file creation.") # Create patterns .csv file. patterns_csv_filename = '{}_patterns.csv'.format(name) patterns_csv_path = os.path.join(base_path, patterns_csv_filename) print("Start creating patterns .csv file...") patterns_csv_file = open_csv_file(patterns_csv_path, columns=['path']) for pattern_nb in pattern_nbs: pattern_params = patterns_params[pattern_nb] patterns_csv_file.append(**pattern_params) patterns_csv_file.close() print("End of patterns .csv file creation.") # Create .bin file. print("Start creating .bin file...") bin_filename = '{}.bin'.format(name) bin_path = os.path.join(base_path, bin_filename) nb_bin_images = 1 + nb_conditions # i.e. grey image and other conditions bin_frame_nbs = {} # Open .bin file. bin_file = open_bin_file(bin_path, nb_bin_images, frame_width=frame_width, frame_height=frame_height, reverse=False, mode='w') # Add grey frame. grey_frame = get_grey_frame(frame_width, frame_height, luminance=mean_luminance) grey_frame = float_frame_to_uint8_frame(grey_frame) bin_file.append(grey_frame) bin_frame_nbs[None] = bin_file.get_frame_nb() # Add frames. for condition_nb in tqdm.tqdm(condition_nbs): frame_path = frame_paths[condition_nb] frame = load_png_image(frame_path) bin_file.append(frame.data) bin_frame_nbs[condition_nb] = bin_file.get_frame_nb() # Close .bin file. bin_file.close() # ... print("End of .bin file creation.") # Create .vec file. print("Start creating .vec file...") vec_filename = "{}.vec".format(name) vec_path = os.path.join(base_path, vec_filename) csv_filename = "{}_trials.csv".format(name) csv_path = os.path.join(base_path, csv_filename) # ... nb_displays_during_adaptation = int( np.ceil(adaptation_duration * display_rate)) nb_displays_per_flash = int(np.ceil(flash_duration * display_rate)) nb_displays_per_inter_flash = int( np.ceil(inter_flash_duration * display_rate)) nb_displays_per_repetition = nb_conditions * (nb_displays_per_flash + nb_displays_per_inter_flash) nb_displays = nb_displays_during_adaptation + nb_repetitions * nb_displays_per_repetition # Open .vec file. vec_file = open_vec_file(vec_path, nb_displays=nb_displays) # Open .csv file. csv_file = open_csv_file( csv_path, columns=['condition_nb', 'start_display_nb', 'end_display_nb']) # Add adaptation. bin_frame_nb = bin_frame_nbs[None] # i.e. default frame (grey) for _ in range(0, nb_displays_during_adaptation): vec_file.append(bin_frame_nb) # Add repetitions. for repetition_nb in tqdm.tqdm(range(0, nb_repetitions)): condition_nbs = repetition_orderings[repetition_nb] for condition_nb in condition_nbs: # Add flash. start_display_nb = vec_file.get_display_nb() + 1 bin_frame_nb = bin_frame_nbs[condition_nb] for _ in range(0, nb_displays_per_flash): vec_file.append(bin_frame_nb) end_display_nb = vec_file.get_display_nb() csv_file.append(condition_nb=condition_nb, start_display_nb=start_display_nb, end_display_nb=end_display_nb) # Add inter flash. bin_frame_nb = bin_frame_nbs[None] # i.e. default frame (grey) for _ in range(0, nb_displays_per_inter_flash): vec_file.append(bin_frame_nb) # Close .csv file. csv_file.close() # Close .vec file. vec_file.close() # ... print("End of .vec file creation.") # TODO add unperturbed flashed images? return
def generate(args): config = handle_arguments_and_configurations(name, args) path = config['path'] if not os.path.isdir(path): os.makedirs(path) print(path) reference_images_path = os.path.join(path, "reference_images") if not os.path.isdir(reference_images_path): os.makedirs(reference_images_path) perturbation_patterns_path = os.path.join(path, "perturbation_patterns") if not os.path.isdir(perturbation_patterns_path): os.makedirs(perturbation_patterns_path) frames_path = os.path.join(path, "frames") if not os.path.isdir(frames_path): os.makedirs(frames_path) # Get configuration parameters. reference_images = config['reference_images'] nb_horizontal_checks = config['perturbations']['nb_horizontal_checks'] nb_vertical_checks = config['perturbations']['nb_vertical_checks'] assert nb_horizontal_checks % 2 == 0, "number of checks should be even (horizontally): {}".format( nb_horizontal_checks) assert nb_vertical_checks % 2 == 0, "number of checks should be even (vertically): {}".format( nb_vertical_checks) with_random_patterns = config['perturbations']['with_random_patterns'] perturbation_patterns_indices = config['perturbations']['pattern_indices'] perturbation_amplitudes = config['perturbations']['amplitudes'] perturbation_amplitudes_indices = [ k for k, _ in enumerate(perturbation_amplitudes) ] display_rate = config['display_rate'] frame_width_in_px = config['frame']['width'] frame_height_in_px = config['frame']['height'] frame_duration = config['frame']['duration'] nb_repetitions = config['nb_repetitions'] # Collect reference images. reference_indices = [int(key) for key in reference_images.keys()] for reference_index in reference_indices: dataset, index = reference_images[str(reference_index)] collect_reference_image(reference_index, dataset=dataset, index=index, path=reference_images_path, config=config) # Create .csv file for reference_image. csv_filename = "{}_reference_images.csv".format(name) csv_path = os.path.join(path, csv_filename) columns = ['reference_image_path'] csv_file = open_csv_file(csv_path, columns=columns) for index in reference_indices: reference_image_path = os.path.join( "reference_images", "reference_{:05d}.png".format(index)) csv_file.append(reference_image_path=reference_image_path) csv_file.close() # Prepare perturbation pattern indices. if with_random_patterns: # TODO check the following lines! # Compute the number of random patterns. nb_perturbation_patterns = len(perturbation_patterns_indices) nb_perturbation_amplitudes = len(perturbation_amplitudes_indices) nb_perturbations = nb_perturbation_patterns * nb_perturbation_amplitudes nb_random_patterns = nb_perturbations * nb_repetitions print("number of random patterns: {}".format( nb_random_patterns)) # TODO remove this line. # Choose the indices of the random patterns. random_patterns_indices = nb_perturbation_patterns + np.arange( 0, nb_random_patterns) # Define pattern indices. all_patterns_indices = np.concatenate( (perturbation_patterns_indices, random_patterns_indices)) else: nb_random_patterns = 0 random_patterns_indices = None all_patterns_indices = perturbation_patterns_indices print("Start collecting perturbation patterns...") # TODO remove the following commented lines? # for index in perturbation_patterns_indices: # collect_perturbation_pattern(index, nb_horizontal_checks=nb_horizontal_checks, # nb_vertical_checks=nb_vertical_checks, path=perturbation_patterns_path) for index in tqdm.tqdm(all_patterns_indices): collect_perturbation_pattern(index, nb_horizontal_checks=nb_horizontal_checks, nb_vertical_checks=nb_vertical_checks, path=perturbation_patterns_path) print("End collecting perturbation patterns.") # Create .csv file for perturbation pattern. csv_filename = "{}_perturbation_patterns.csv".format(name) csv_path = os.path.join(path, csv_filename) columns = ['perturbation_pattern_path'] csv_file = open_csv_file(csv_path, columns=columns) # TODO remove the following commented line? # for index in perturbation_patterns_indices: for index in all_patterns_indices: perturbation_pattern_path = os.path.join( "perturbation_patterns", "checkerboard{:05d}.png".format(index)) csv_file.append(perturbation_pattern_path=perturbation_pattern_path) csv_file.close() # Create .csv file for perturbation amplitudes. csv_filename = "{}_perturbation_amplitudes.csv".format(name) csv_path = os.path.join(path, csv_filename) columns = ['perturbation_amplitude'] csv_file = open_csv_file(csv_path, columns=columns) for perturbation_amplitude in perturbation_amplitudes: csv_file.append(perturbation_amplitude=perturbation_amplitude) csv_file.close() # Compute the number of images. nb_reference_images = len(reference_indices) nb_perturbation_patterns = len(perturbation_patterns_indices) nb_perturbation_amplitudes = len(perturbation_amplitudes_indices) nb_images = 1 + nb_reference_images * ( 1 + nb_perturbation_patterns * nb_perturbation_amplitudes) if with_random_patterns: nb_images = nb_images + nb_reference_images * nb_random_patterns # TODO check this line! combinations = get_combinations(reference_indices, perturbation_patterns_indices, perturbation_amplitudes_indices) if with_random_patterns: nb_deterministic_combinations = len( combinations) + 1 # +1 to take inter-stimulus frame into account random_combinations = get_random_combinations( reference_indices, random_patterns_indices, nb_deterministic_combinations) else: random_combinations = None # Create .csv file. csv_filename = "{}_combinations.csv".format(name) csv_path = os.path.join(path, csv_filename) columns = [ 'reference_id', 'perturbation_pattern_id', 'perturbation_amplitude_id' ] csv_file = open_csv_file(csv_path, columns=columns, dtype='Int64') for combination_index in combinations: combination = combinations[combination_index] # TODO remove the following commented lines? # kwargs = { # 'reference_id': reference_indices[combination[0]], # 'perturbation_pattern_id': perturbation_patterns_indices[combination[1]], # 'perturbation_amplitude_id': perturbation_amplitudes_indices[combination[2]], # } reference_id, perturbation_pattern_id, perturbation_amplitude_id = combination kwargs = { 'reference_id': reference_id, 'perturbation_pattern_id': perturbation_pattern_id, 'perturbation_amplitude_id': perturbation_amplitude_id, } csv_file.append(**kwargs) # TODO check the following lines! # Add random pattern (if necessary). if with_random_patterns: for combination_index in random_combinations: combination = random_combinations[combination_index] reference_id, pattern_id, amplitude_id = combination kwargs = { 'reference_id': reference_id, 'perturbation_pattern_id': pattern_id, 'perturbation_amplitude_id': amplitude_id, } csv_file.append(**kwargs) csv_file.close() # TODO fix the permutations? nb_combinations = len(combinations) nb_frame_displays = int(display_rate * frame_duration) assert display_rate * frame_duration == float(nb_frame_displays) nb_displays = nb_frame_displays + nb_repetitions * nb_combinations * ( 2 * nb_frame_displays) if with_random_patterns: nb_random_combinations = len(random_combinations) nb_displays = nb_displays + nb_random_combinations * ( 2 * nb_frame_displays) display_time = float(nb_displays) / display_rate print("display time: {} s ({} min)".format(display_time, display_time / 60.0)) # TODO improve feedback. combination_indices = list(combinations) permutations = get_permutations(combination_indices, nb_repetitions=nb_repetitions) if with_random_patterns: random_combination_indices = list(random_combinations) random_combination_groups = get_random_combination_groups( random_combination_indices, nb_repetitions=nb_repetitions) else: random_combination_groups = None print("Start creating .bin file...") # Create .bin file. bin_filename = "fipwc.bin" bin_path = os.path.join(path, bin_filename) bin_file = open_bin_file(bin_path, nb_images, frame_width=frame_width_in_px, frame_height=frame_height_in_px) # Save grey frame. grey_frame = get_grey_frame(frame_width_in_px, frame_height_in_px, luminance=0.5) grey_frame = float_frame_to_uint8_frame(grey_frame) # # Save frame in .bin file. bin_file.append(grey_frame) # # Save frame as .png file. grey_frame_filename = "grey.png" grey_frame_path = os.path.join(frames_path, grey_frame_filename) save_frame(grey_frame_path, grey_frame) # Save reference frames. for reference_index in reference_indices: # Get reference frame. reference_image = load_reference_image(reference_index, reference_images_path) reference_frame = float_frame_to_uint8_frame(reference_image) # Save frame in .bin file. bin_file.append(reference_frame) # Save frame as .png file. reference_frame_filename = "reference_{:05d}.png".format( reference_index) reference_frame_path = os.path.join(frames_path, reference_frame_filename) save_frame(reference_frame_path, reference_frame) # Save perturbed frames. for reference_index in tqdm.tqdm(reference_indices): reference_image = load_reference_image(reference_index, reference_images_path) for perturbation_pattern_index in perturbation_patterns_indices: perturbation_pattern = load_perturbation_pattern( perturbation_pattern_index, perturbation_patterns_path) for perturbation_amplitude_index in perturbation_amplitudes_indices: # Get perturbed frame. perturbation_amplitude = perturbation_amplitudes[ perturbation_amplitude_index] perturbed_frame = get_perturbed_frame(reference_image, perturbation_pattern, perturbation_amplitude, config) perturbed_frame = float_frame_to_uint8_frame(perturbed_frame) # Save frame in .bin file. bin_file.append(perturbed_frame) # Save frame as .png file. perturbed_frame_filename = "perturbed_r{:05d}_p{:05d}_a{:05d}.png".format( reference_index, perturbation_pattern_index, perturbation_amplitude_index) perturbed_frame_path = os.path.join(frames_path, perturbed_frame_filename) save_frame(perturbed_frame_path, perturbed_frame) # TODO check the following lines! # Save randomly perturbed frames (if necessary). if with_random_patterns: for reference_index in tqdm.tqdm(reference_indices): reference_image = load_reference_image(reference_index, reference_images_path) for perturbation_pattern_index in random_patterns_indices: pattern = load_perturbation_pattern( perturbation_pattern_index, perturbation_patterns_path) # Get perturbed frame. amplitude = float(15) / float(256) # TODO change this value? frame = get_perturbed_frame(reference_image, pattern, amplitude, config) frame = float_frame_to_uint8_frame(frame) # Save frame in .bin file. bin_file.append(frame) # Save frame as .png file (if necessary). if perturbation_pattern_index < 100: perturbed_frame_filename = "perturbed_r{:05d}_p{:05d}.png".format( reference_index, perturbation_pattern_index) perturbed_frame_path = os.path.join( frames_path, perturbed_frame_filename) save_frame(perturbed_frame_path, frame) bin_file.close() print("End creating .bin file.") print("Start creating .vec and .csv files...") # Create .vec and .csv files. vec_filename = "{}.vec".format(name) vec_path = os.path.join(path, vec_filename) vec_file = open_vec_file(vec_path, nb_displays=nb_displays) csv_filename = "{}.csv".format(name) csv_path = os.path.join(path, csv_filename) csv_file = open_csv_file(csv_path, columns=['k_min', 'k_max', 'combination_id']) # Append adaptation. grey_frame_id = 0 for _ in range(0, nb_frame_displays): vec_file.append(grey_frame_id) # For each repetition... for repetition_index in range(0, nb_repetitions): # Add frozen patterns. combination_indices = permutations[repetition_index] for combination_index in combination_indices: combination_frame_id = combination_index k_min = vec_file.get_display_index() + 1 # Append trial. for _ in range(0, nb_frame_displays): vec_file.append(combination_frame_id) k_max = vec_file.get_display_index() csv_file.append(k_min=k_min, k_max=k_max, combination_id=combination_index) # Append intertrial. for _ in range(0, nb_frame_displays): vec_file.append(grey_frame_id) # TODO add a random pattern. # Add random patterns (if necessary). if with_random_patterns: random_combination_indices = random_combination_groups[ repetition_index] for combination_index in random_combination_indices: combination_frame_id = combination_index k_min = vec_file.get_display_index() + 1 # Append trial. for _ in range(0, nb_frame_displays): vec_file.append(combination_frame_id) k_max = vec_file.get_display_index() csv_file.append(k_min=k_min, k_max=k_max, combination_id=combination_index) # Append intertrial. for _ in range(0, nb_frame_displays): vec_file.append(grey_frame_id) csv_file.close() vec_file.close() print("End creating .vec and .csv files.") return
def generate(args): config = handle_arguments_and_configurations(name, args) pixel_size = 3.5 # µm # dmd_width = 1920 # px # dmd_height = 1080 # px frame_width_in_um = config['frame']['width'] frame_height_in_um = config['frame']['height'] frame_rate = config['frame']['rate'] nb_repetitions = config['nb_repetitions'] path = config['path'] if not os.path.isdir(path): os.makedirs(path) print(path) dtype = np.uint8 nb_grey_levels = np.iinfo(dtype).max - np.iinfo(dtype).min + 1 nb_images = nb_grey_levels frame_height_in_px, frame_width_in_px = shape(pixel_size, width=frame_width_in_um, height=frame_height_in_um) # Create .bin file. bin_filename = "{}.bin".format(name) bin_path = os.path.join(path, bin_filename) bin_file = open_bin_file(bin_path, nb_images, frame_width=frame_width_in_px, frame_height=frame_height_in_px, mode='w') for k in range(0, nb_grey_levels): grey_level = float(k) / nb_grey_levels frame = get_grey_frame(frame_width_in_px, frame_height_in_px, luminance=grey_level) frame = float_frame_to_uint8_frame(frame) bin_file.append(frame) bin_file.flush() bin_file.close() pattern_config = config['pattern'] pattern = get_pattern(pattern_config, frame_rate) intertrial_duration = config['intertrial_duration'] initial_adaptation_duration = config['initial_adaptation_duration'] assert (intertrial_duration * frame_rate).is_integer() # Create .csv file for pattern profile. csv_filename = "{}_luminance_profile.csv".format(name) csv_path = os.path.join(path, csv_filename) columns = ['luminance'] csv_file = open_csv_file(csv_path, columns=columns) luminances = digitize(pattern) for luminance in luminances: csv_file.append(luminance=luminance) csv_file.close() # Plot pattern profile. plot_filename = "{}.pdf".format(name) plot_path = os.path.join(path, plot_filename) fig, ax = plot_pattern(pattern, frame_rate) fig.savefig(plot_path) plt.close(fig) # nb_displays_per_trial = int(np.round(trial_duration * frame_rate)) nb_displays_per_trial = pattern.size nb_displays_per_intertrial = int(np.round(intertrial_duration * frame_rate)) nb_displays_in_initial_adaptation = int( np.round(initial_adaptation_duration * frame_rate)) nb_trials = nb_repetitions nb_intertrials = nb_trials nb_displays = \ nb_displays_in_initial_adaptation \ + nb_trials * nb_displays_per_trial \ + nb_intertrials * nb_displays_per_intertrial frame_indices = digitize(pattern) # Create .vec and .csv files. vec_filename = "{}.vec".format(name) vec_path = os.path.join(path, vec_filename) vec_file = open_vec_file(vec_path, nb_displays=nb_displays) csv_filename = "{}.csv".format(name) csv_path = os.path.join(path, csv_filename) csv_file = open_csv_file(csv_path, columns=['k_min', 'k_max', 'combination_id']) # Append initial adaptation. for _ in range(0, nb_displays_in_initial_adaptation): frame_index = 0 vec_file.append(frame_index) # For each repetition... for _ in range(0, nb_repetitions): k_min = vec_file.get_display_index() + 1 # Append trial. for k in range(0, nb_displays_per_trial): frame_id = frame_indices[k] vec_file.append(frame_id) k_max = vec_file.get_display_index() csv_file.append(k_min=k_min, k_max=k_max, combination_id=0) # Append intertrial. for _ in range(0, nb_displays_per_intertrial): frame_id = 0 vec_file.append(frame_id) csv_file.close() vec_file.close() # Print the total duration. duration = float(nb_displays) / frame_rate print("duration: {} s".format(duration)) print("duration: {} min".format(duration / 60.0)) return
def generate(args): config = handle_arguments_and_configurations(name, args) base_path = config['path'] if not os.path.isdir(base_path): os.makedirs(base_path) print("Generation in {}.".format(base_path)) # Get configuration parameters. stimuli_dirnames = config['stimuli'] mean_luminance = config['mean_luminance'] display_rate = config['display_rate'] adaptation_duration = config['adaptation_duration'] flash_duration = config['flash_duration'] inter_flash_duration = config['inter_flash_duration'] frame_width = config['frame']['width'] frame_height = config['frame']['height'] # nb_repetitions = config['nb_repetitions'] # TODO remove? seed = config['seed'] # ... stimulus_nbs = [] stimuli_params = {} for stimulus_nb, stimulus_dirname in stimuli_dirnames.items(): stimulus_nb = int(stimulus_nb) # TODO improve? assert os.path.isdir(stimulus_dirname), stimulus_dirname stimulus_nbs.append(stimulus_nb) stimuli_params[stimulus_nb] = { 'dirname': stimulus_dirname, 'name': os.path.split(stimulus_dirname)[-1], } stimulus_nbs = np.array(stimulus_nbs) # Set conditions parameters. condition_nb = 0 condition_params = collections.OrderedDict() for stimulus_nb in stimulus_nbs: assert condition_nb not in condition_params condition_params[condition_nb] = collections.OrderedDict([ ('stimulus_nb', stimulus_nb) ]) condition_nb += 1 condition_nbs = np.array(list(condition_params)) nb_conditions = len(condition_nbs) _ = nb_conditions # ... stimuli_nb_trials = {} stimuli_condition_nbs = {} # stimulus_nb, trial_nb -> condition_nb stimuli_bin_frame_nbs = { # stimulus_nb, condition_nb -> bin_frame_nb None: 0, # i.e. inter-flash frame (grey frame) } for stimulus_nb in stimulus_nbs: stimulus_params = stimuli_params[stimulus_nb] # ... stimulus_trial_csv_dirname = stimulus_params['dirname'] stimulus_trial_csv_filename = '{}_trials.csv'.format(stimulus_params['name']) stimulus_trial_csv_path = os.path.join(stimulus_trial_csv_dirname, stimulus_trial_csv_filename) stimulus_trials = load_csv_file(stimulus_trial_csv_path) # ... stimulus_condition_nbs = {} # trial_nb -> condition_nb stimulus_start_frame_nbs = {} # condition_nb -> start_frame_nb for trial_nb, stimulus_trial in stimulus_trials.iterrows(): stimulus_condition_nbs[trial_nb] = stimulus_trial['condition_nb'] stimulus_start_frame_nbs[trial_nb] = stimulus_trial['start_frame_nb'] # ... stimulus_vec_dirname = stimulus_params['dirname'] stimulus_vec_filename = '{}.vec'.format(stimulus_params['name']) stimulus_vec_path = os.path.join(stimulus_vec_dirname, stimulus_vec_filename) stimulus_vec = load_vec_file(stimulus_vec_path) # ... stimulus_bin_frame_nbs = {} nb_trials = len(stimulus_trials) for trial_nb in range(0, nb_trials): condition_nb = stimulus_condition_nbs[trial_nb] start_frame_nb = stimulus_start_frame_nbs[condition_nb] if condition_nb not in stimulus_bin_frame_nbs: stimulus_bin_frame_nbs[condition_nb] = stimulus_vec[start_frame_nb] else: assert stimulus_bin_frame_nbs[condition_nb] == stimulus_vec[start_frame_nb] # ... stimuli_nb_trials[stimulus_nb] = len(stimulus_trials) stimuli_condition_nbs[stimulus_nb] = stimulus_condition_nbs stimuli_bin_frame_nbs[stimulus_nb] = stimulus_bin_frame_nbs stimulus_sequence = np.concatenate(tuple([ np.repeat(stimulus_nb, len(stimuli_condition_nbs[stimulus_nb])) for stimulus_nb in stimulus_nbs ])) np.random.seed(seed) np.random.shuffle(stimulus_sequence) stimuli_indices = { stimulus_nb: np.where(stimulus_sequence == stimulus_nb)[0] for stimulus_nb in stimulus_nbs } trials = {} # trial_nb -> stimulus_nb, condition_nb trial_nb = 0 ordering = np.empty_like(stimulus_sequence, dtype=np.int) for stimulus_nb in stimulus_nbs: stimulus_condition_nbs = stimuli_condition_nbs[stimulus_nb] stimulus_indices = stimuli_indices[stimulus_nb] for condition_nb, stimulus_index in zip(stimulus_condition_nbs.values(), stimulus_indices): trials[trial_nb] = (stimulus_nb, condition_nb) ordering[stimulus_index] = trial_nb trial_nb += 1 nb_trials = len(trials) # # Set ordering. # np.random.seed(seed) # trial_nbs = np.arange(0, nb_trials) # ordering = np.copy(trial_nbs) # np.random.shuffle(ordering) # Create conditions .csv file. # TODO complete. # Get number of images in .bin files. stimuli_nb_bin_images = {} for stimulus_nb in stimulus_nbs: stimulus_params = stimuli_params[stimulus_nb] stimulus_bin_dirname = stimulus_params['dirname'] stimulus_bin_filename = '{}.bin'.format(stimulus_params['name']) stimulus_bin_path = os.path.join(stimulus_bin_dirname, stimulus_bin_filename) stimulus_bin_file = open_bin_file(stimulus_bin_path, mode='r') stimuli_nb_bin_images[stimulus_nb] = stimulus_bin_file.nb_frames # TODO Map stimulus bin frame numbers to bin frame numbers. bin_frame_nbs = { None: 0, } bin_frame_nb_offset = 1 for stimulus_nb in stimulus_nbs: bin_frame_nbs[stimulus_nb] = {} stimulus_bin_frame_nbs = stimuli_bin_frame_nbs[stimulus_nb] for condition_nb in stimulus_bin_frame_nbs.keys(): stimulus_bin_frame_nb = stimulus_bin_frame_nbs[condition_nb] bin_frame_nbs[stimulus_nb][condition_nb] = stimulus_bin_frame_nb + bin_frame_nb_offset bin_frame_nb_offset += stimuli_nb_bin_images[stimulus_nb] # Create .bin file. bin_filename = '{}.bin'.format(name) bin_path = os.path.join(base_path, bin_filename) nb_bin_images = 1 + int(np.sum([n for n in stimuli_nb_bin_images.values()])) # Open .bin file. bin_file = open_bin_file(bin_path, nb_bin_images, frame_width=frame_width, frame_height=frame_height, reverse=False, mode='w') # Add grey frame. grey_frame = get_grey_frame(frame_width, frame_height, luminance=mean_luminance) grey_frame = float_frame_to_uint8_frame(grey_frame) bin_file.append(grey_frame) # Add frames. for stimulus_nb in stimulus_nbs: stimulus_params = stimuli_params[stimulus_nb] stimulus_bin_dirname = stimulus_params['dirname'] stimulus_bin_filename = '{}.bin'.format(stimulus_params['name']) stimulus_bin_path = os.path.join(stimulus_bin_dirname, stimulus_bin_filename) stimulus_bin_file = open_bin_file(stimulus_bin_path, mode='r') assert stimulus_bin_file.width == frame_width assert stimulus_bin_file.height == frame_height frame_nbs = stimulus_bin_file.get_frame_nbs() for frame_nb in frame_nbs: frame_bytes = stimulus_bin_file.read_frame_as_bytes(frame_nb) bin_file.append(frame_bytes) # Close .bin file. bin_file.close() # ... print("End of .bin file creation.") # Create .vec file. print("Start creating .vec file...") vec_filename = "{}.vec".format(name) vec_path = os.path.join(base_path, vec_filename) csv_filename = "{}_trials.csv".format(name) csv_path = os.path.join(base_path, csv_filename) # ... nb_displays_during_adaptation = int(np.ceil(adaptation_duration * display_rate)) nb_displays_per_flash = int(np.ceil(flash_duration * display_rate)) nb_displays_per_inter_flash = int(np.ceil(inter_flash_duration * display_rate)) nb_displays_per_trial = nb_displays_per_flash + nb_displays_per_inter_flash nb_displays = nb_displays_during_adaptation + nb_trials * nb_displays_per_trial # Open .vec file. vec_file = open_vec_file(vec_path, nb_displays=nb_displays) # Open .csv file. csv_file = open_csv_file(csv_path, columns=['stimulus_nb', 'start_frame_nb', 'end_frame_nb']) # Add adaptation. # TODO swap and clean the 2 following lines. # bin_frame_nb = stimuli_bin_frame_nbs[None] # i.e. default frame (grey) bin_frame_nb = bin_frame_nbs[None] # i.e. default frame (grey) for _ in range(0, nb_displays_during_adaptation): vec_file.append(bin_frame_nb) # TODO remove the following commented lines. # # Add repetitions. # for repetition_nb in tqdm.tqdm(range(0, nb_repetitions)): # condition_nbs = repetition_orderings[repetition_nb] # for condition_nb in condition_nbs: # # Add flash. # start_frame_nb = vec_file.get_display_nb() + 1 # bin_frame_nb = bin_frame_nbs[condition_nb] # for _ in range(0, nb_displays_per_flash): # vec_file.append(bin_frame_nb) # end_frame_nb = vec_file.get_display_nb() # csv_file.append(condition_nb=condition_nb, start_frame_nb=start_frame_nb, end_frame_nb=end_frame_nb) # # Add inter flash. # bin_frame_nb = bin_frame_nbs[None] # i.e. default frame (grey) # for _ in range(0, nb_displays_per_inter_flash): # vec_file.append(bin_frame_nb) for trial_nb in tqdm.tqdm(ordering): stimulus_nb, condition_nb = trials[trial_nb] # Add flash. start_frame_nb = vec_file.get_display_nb() + 1 # TODO swap and clean the 2 following lines. # bin_frame_nb = stimuli_bin_frame_nbs[stimulus_nb][condition_nb] bin_frame_nb = bin_frame_nbs[stimulus_nb][condition_nb] for _ in range(0, nb_displays_per_flash): vec_file.append(bin_frame_nb) end_frame_nb = vec_file.get_display_nb() csv_file.append(stimulus_nb=stimulus_nb, start_frame_nb=start_frame_nb, end_frame_nb=end_frame_nb) # Add inter flash. # TODO swap and clean the 2 following lines. # bin_frame_nb = stimuli_bin_frame_nbs[None] bin_frame_nb = bin_frame_nbs[None] for _ in range(0, nb_displays_per_inter_flash): vec_file.append(bin_frame_nb) # Close .csv file. csv_file.close() # Close .vec file. vec_file.close() # ... print("End of .vec file creation.") # TODO create conditions .csv file for each stimulus. return
def generate(args): config = handle_arguments_and_configurations(name, args) frame_width_in_um = config['frame']['width'] frame_height_in_um = config['frame']['height'] frame_rate = config['frame']['rate'] frame_resolution = config['frame']['resolution'] background_luminance = config['background_luminance'] size = config['size'] duration = config['duration'] nb_repetitions = config['nb_repetitions'] path = config['path'] pixel_size = frame_resolution * 1e+6 # µm # Check duration. assert (duration * frame_rate).is_integer() assert int(duration * frame_rate) % 2 == 0 # Create output directory (if necessary). if not os.path.isdir(path): os.makedirs(path) print(path) # Collect frame parameters. frame_height_in_px, frame_width_in_px = shape(pixel_size, width=frame_width_in_um, height=frame_height_in_um) x, y = linspace(pixel_size, width=frame_width_in_um, height=frame_height_in_um) xm = np.logical_and(-size / 2.0 <= x, x <= +size / 2.0) ym = np.logical_and(-size / 2.0 <= y, y <= +size / 2.0) i = np.nonzero(xm)[0] j = np.nonzero(ym)[0] i_min, i_max = i[0], i[-1] j_min, j_max = j[0], j[-1] # Create white frame. white_frame = get_grey_frame(frame_width_in_px, frame_height_in_px, luminance=background_luminance) white_frame[j_min:j_max + 1, i_min:i_max + 1] = 1.0 white_frame = float_frame_to_uint8_frame(white_frame) # Create black frame. black_frame = get_grey_frame(frame_width_in_px, frame_height_in_px, luminance=background_luminance) black_frame[j_min:j_max + 1, i_min:i_max + 1] = 0.0 black_frame = float_frame_to_uint8_frame(black_frame) nb_images = 2 # Create .bin file. bin_filename = "{}.bin".format(name) bin_path = os.path.join(path, bin_filename) bin_file = open_bin_file(bin_path, nb_images, frame_width=frame_width_in_px, frame_height=frame_height_in_px, mode='w') bin_file.append(black_frame) bin_file.append(white_frame) bin_file.close() nb_displays_per_repetition = int(duration * frame_rate) nb_displays = nb_displays_per_repetition * nb_repetitions # Create .vec file. vec_filename = "{}.vec".format(name) vec_path = os.path.join(path, vec_filename) vec_file = open_vec_file(vec_path, nb_displays) for _ in range(0, nb_repetitions): for _ in range(0, nb_displays_per_repetition // 2): frame_index = 1 # i.e.white vec_file.append(frame_index) for _ in range(0, nb_displays_per_repetition // 2): frame_index = 0 # i.e. black vec_file.append(frame_index) vec_file.close() return
def generate(args): config = handle_arguments_and_configurations(name, args) base_path = config['path'] if not os.path.isdir(base_path): os.makedirs(base_path) print("Generation in {}.".format(base_path)) # Get configuration parameters. stimulus_names = config['stimuli'] mean_luminance = config['mean_luminance'] display_rate = config['display_rate'] adaptation_duration = config['adaptation_duration'] flash_duration = config['flash_duration'] inter_flash_duration = config['inter_flash_duration'] frame_width = config['frame']['width'] frame_height = config['frame']['height'] seed = config['seed'] to_interleave = config['to_interleave'] # TODO pour chaque stimulus, récupérer les condition_nbs. # TODO pour chaque stimulus, récupérer le mapping condition_nb -> bin_frame_nb. # TODO pour chaque stimulus, récupérer la séquence de condition_nb. # TODO créer une séquence 'interleaved' de (stimulus_nb, condition_nb). # TODO convertir en séquence (stimulus_nb, bin_frame_nb). # TODO convertir en séquence bin_frame_nb. nb_stimuli = len(stimulus_names) stimulus_nbs = np.arange(0, nb_stimuli) stimuli_params_dict = {} # stimulus_nb -> stimulus_params for stimulus_nb in stimulus_nbs: stimulus_name = stimulus_names[stimulus_nb] stimulus_params = { 'name': stimulus_name, 'bin_path': os.path.join(pystim_path, stimulus_name, '{}.bin'.format(stimulus_name)), 'vec_path': os.path.join(pystim_path, stimulus_name, '{}.vec'.format(stimulus_name)), 'trials_path': os.path.join(pystim_path, stimulus_name, '{}_trials.csv'.format(stimulus_name)), } stimuli_params_dict[stimulus_nb] = stimulus_params # Get number of bin frames for each stimulus. for stimulus_nb in stimulus_nbs: stimulus_bin_path = stimuli_params_dict[stimulus_nb]['bin_path'] stimulus_nb_bin_frames = load_nb_bin_frames(stimulus_bin_path) stimuli_params_dict[stimulus_nb][ 'nb_bin_frames'] = stimulus_nb_bin_frames # Create .bin file. bin_filename = '{}.bin'.format(name) bin_path = os.path.join(base_path, bin_filename) nb_bin_frames = 1 + int( np.sum([ stimuli_params_dict[stimulus_nb]['nb_bin_frames'] for stimulus_nb in stimulus_nbs ])) # Open .bin file. bin_file = open_bin_file(bin_path, nb_bin_frames, frame_width=frame_width, frame_height=frame_height, reverse=False, mode='w') # ... bin_frame_nbs_dict = { } # stimulus_nb -> stimulus_bin_frame_nb -> bin_frame_nb # Add grey frame. grey_frame = get_grey_frame(frame_width, frame_height, luminance=mean_luminance) grey_frame = float_frame_to_uint8_frame(grey_frame) bin_file.append(grey_frame) bin_frame_nbs_dict[None] = bin_file.get_frame_nb() # Add frames. for stimulus_nb in stimulus_nbs: stimulus_params = stimuli_params_dict[stimulus_nb] # Open stimulus .bin file. stimulus_bin_path = stimulus_params['bin_path'] stimulus_bin_file = open_bin_file(stimulus_bin_path, mode='r') # Copy frames from stimulus .bin file to .bin file. stimulus_bin_frame_nbs = stimulus_bin_file.get_frame_nbs() bin_frame_nbs_dict[stimulus_nb] = {} for stimulus_bin_frame_nb in stimulus_bin_frame_nbs: frame_bytes = stimulus_bin_file.read_frame_as_bytes( stimulus_bin_frame_nb) bin_file.append(frame_bytes) bin_frame_nbs_dict[stimulus_nb][ stimulus_bin_frame_nb] = bin_file.get_frame_nb() # Close stimulus .bin file. stimulus_bin_file.close() # ... assert bin_file.get_frame_nb() == nb_bin_frames - 1, "{} != {} - 1".format( bin_file.get_frame_nb(), nb_bin_frames) # Close .bin file. bin_file.close() # ... print("End of .bin file creation.") # Get trials for each stimulus. for stimulus_nb in stimulus_nbs: stimulus_trials_path = stimuli_params_dict[stimulus_nb]['trials_path'] stimulus_trials = load_csv_file(stimulus_trials_path, expected_columns=[ 'condition_nb', 'start_display_nb', 'end_display_nb' ]) stimuli_params_dict[stimulus_nb]['trials'] = stimulus_trials # Compute the number of trials for each stimulus. for stimulus_nb in stimulus_nbs: stimulus_trials = stimuli_params_dict[stimulus_nb]['trials'] stimulus_nb_trials = len(stimulus_trials) stimuli_params_dict[stimulus_nb]['nb_trials'] = stimulus_nb_trials # Compute the number of trials after the merger. nb_trials = int( np.sum([ stimuli_params_dict[stimulus_nb]['nb_trials'] for stimulus_nb in stimulus_nbs ])) # Generate the interleaved sequence of stimulus numbers. merged_stimulus_nbs_sequence = [] for stimulus_nb in stimulus_nbs: stimulus_nb_trials = stimuli_params_dict[stimulus_nb]['nb_trials'] merged_stimulus_nbs_sequence.extend(stimulus_nb_trials * [stimulus_nb]) merged_stimulus_nbs_sequence = np.array(merged_stimulus_nbs_sequence) assert merged_stimulus_nbs_sequence.size == nb_trials if to_interleave: np.random.seed(seed) np.random.shuffle(merged_stimulus_nbs_sequence) # Compute the corresponding interleaved sequence of stimulus condition numbers. merged_stimulus_condition_nbs_sequence = np.empty(nb_trials, dtype=np.int) for stimulus_nb in stimulus_nbs: indices = np.where(merged_stimulus_nbs_sequence == stimulus_nb)[0] merged_stimulus_condition_nbs_sequence[indices] = stimuli_params_dict[ stimulus_nb]['trials']['condition_nb'] # Compute the corresponding interleaved sequence of stimulus bin frame numbers. merged_stimulus_bin_frame_nbs_sequence = np.empty(nb_trials, dtype=np.int) for stimulus_nb in stimulus_nbs: stimulus_trials = stimuli_params_dict[stimulus_nb]['trials'] stimulus_vec_path = stimuli_params_dict[stimulus_nb]['vec_path'] stimulus_bin_frame_nbs_sequence = load_vec_file(stimulus_vec_path) tmp = np.empty(len(stimulus_trials), dtype=np.int) for index, stimulus_trial in stimulus_trials.iterrows(): start_display_nb = stimulus_trials['start_display_nb'][index] end_display_nb = stimulus_trials['end_display_nb'][index] try: bin_frame_nbs_sequence = stimulus_bin_frame_nbs_sequence[ start_display_nb:end_display_nb + 1] except TypeError as e: print(start_display_nb) print(end_display_nb) raise e assert np.all(bin_frame_nbs_sequence == bin_frame_nbs_sequence[0]) bin_frame_nb = bin_frame_nbs_sequence[0] tmp[index] = bin_frame_nb indices = np.where(merged_stimulus_nbs_sequence == stimulus_nb)[0] merged_stimulus_bin_frame_nbs_sequence[indices] = tmp # Summarize everything in a data frame. merged_trials_dataframe = pd.DataFrame( data={ 'stimulus_nb': merged_stimulus_nbs_sequence, 'condition_nb': merged_stimulus_condition_nbs_sequence, 'bin_frame_nb': merged_stimulus_bin_frame_nbs_sequence, }) # Create .vec file. print("Start creating .vec file...") vec_filename = "{}.vec".format(name) vec_path = os.path.join(base_path, vec_filename) csv_filename = "{}_trials.csv".format(name) csv_path = os.path.join(base_path, csv_filename) csv_filenames = { stimulus_nb: os.path.join( base_path, '{}_{}_trials.csv'.format(name, stimulus_names[stimulus_nb])) for stimulus_nb in stimulus_nbs } csv_paths = { stimulus_nb: os.path.join(base_path, csv_filenames[stimulus_nb]) for stimulus_nb in stimulus_nbs } # ... nb_displays_during_adaptation = int( np.ceil(adaptation_duration * display_rate)) nb_displays_per_flash = int(np.ceil(flash_duration * display_rate)) nb_displays_per_inter_flash = int( np.ceil(inter_flash_duration * display_rate)) nb_displays_per_trial = nb_displays_per_flash + nb_displays_per_inter_flash nb_displays = nb_displays_during_adaptation + nb_trials * nb_displays_per_trial # # Open .vec file. vec_file = open_vec_file(vec_path, nb_displays=nb_displays) # # Open .csv files. columns = ['condition_nb', 'start_display_nb', 'end_display_nb'] csv_file = open_csv_file(csv_path, columns=columns) csv_files = { stimulus_nb: open_csv_file(csv_paths[stimulus_nb], columns=columns) for stimulus_nb in stimulus_nbs } # # Add adaptation. bin_frame_nb = bin_frame_nbs_dict[None] # i.e. default frame (grey) for _ in range(0, nb_displays_during_adaptation): vec_file.append(bin_frame_nb) for _, merged_trial in tqdm.tqdm(merged_trials_dataframe.iterrows()): stimulus_nb = merged_trial['stimulus_nb'] stimulus_condition_nb = merged_trial['condition_nb'] stimulus_bin_frame_nb = merged_trial['bin_frame_nb'] # Add flash. start_display_nb = vec_file.get_display_nb() + 1 bin_frame_nb = bin_frame_nbs_dict[stimulus_nb][stimulus_bin_frame_nb] for _ in range(0, nb_displays_per_flash): vec_file.append(bin_frame_nb) end_display_nb = vec_file.get_display_nb() csv_file.append(condition_nb=stimulus_nb, start_display_nb=start_display_nb, end_display_nb=end_display_nb) csv_files[stimulus_nb].append(condition_nb=stimulus_condition_nb, start_display_nb=start_display_nb, end_display_nb=end_display_nb) # Add inter flash. bin_frame_nb = bin_frame_nbs_dict[None] for _ in range(0, nb_displays_per_inter_flash): vec_file.append(bin_frame_nb) # Close .csv files. csv_file.close() for csv_file in csv_files.values(): csv_file.close() # Close .vec file. vec_file.close() # ... print("End of .vec file creation.") return