Пример #1
0
def test_constraint_removal():
    digits = load_digits()
    X, y = digits.data, digits.target
    y = 2 * (y % 2) - 1  # even vs odd as +1 vs -1
    X = X / 16.
    pbl = BinaryClf(n_features=X.shape[1])
    clf_no_removal = OneSlackSSVM(model=pbl, max_iter=500, C=1,
                                  inactive_window=0, tol=0.01)
    clf_no_removal.fit(X, y)
    clf = OneSlackSSVM(model=pbl, max_iter=500, C=1, tol=0.01,
                       inactive_threshold=1e-8)
    clf.fit(X, y)
    # check that we learned something
    assert_greater(clf.score(X, y), .92)

    # results are mostly equal
    # if we decrease tol, they will get more similar
    assert_less(np.mean(clf.predict(X) != clf_no_removal.predict(X)), 0.02)

    # without removal, have as many constraints as iterations
    assert_equal(len(clf_no_removal.objective_curve_),
                 len(clf_no_removal.constraints_))

    # with removal, there are less constraints than iterations
    assert_less(len(clf.constraints_),
                len(clf.objective_curve_))
Пример #2
0
def test_standard_svm_blobs_2d_class_weight():
    # no edges, reduce to crammer-singer svm
    X, Y = make_blobs(n_samples=210,
                      centers=3,
                      random_state=1,
                      cluster_std=3,
                      shuffle=False)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X, Y = X[:170], Y[:170]

    X_graphs = [(x[np.newaxis, :], np.empty((0, 2), dtype=np.int)) for x in X]

    pbl = GraphCRF(n_features=3, n_states=3, inference_method='unary')
    svm = OneSlackSSVM(pbl, check_constraints=False, C=1000)

    svm.fit(X_graphs, Y[:, np.newaxis])

    weights = 1. / np.bincount(Y)
    weights *= len(weights) / np.sum(weights)

    pbl_class_weight = GraphCRF(n_features=3,
                                n_states=3,
                                class_weight=weights,
                                inference_method='unary')
    svm_class_weight = OneSlackSSVM(pbl_class_weight,
                                    C=10,
                                    check_constraints=False,
                                    break_on_bad=False)
    svm_class_weight.fit(X_graphs, Y[:, np.newaxis])

    assert_greater(f1_score(Y, np.hstack(svm_class_weight.predict(X_graphs))),
                   f1_score(Y, np.hstack(svm.predict(X_graphs))))
Пример #3
0
def test_with_crosses_bad_init():
    # use less perfect initialization
    rnd = np.random.RandomState(0)
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]
    crf = LatentGridCRF(n_states_per_label=2)
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    mask = rnd.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    one_slack_ssvm = OneSlackSSVM(crf,
                                  inactive_threshold=1e-8,
                                  cache_tol=.0001,
                                  inference_cache=50,
                                  C=100)
    clf = LatentSSVM(one_slack_ssvm)

    clf.fit(X, Y, H_init=H_init)
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(.98 < clf.score(X_test, Y_test) < 1)
Пример #4
0
def test_one_slack_constraint_caching():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10,
                                       noise=0.5,
                                       seed=0,
                                       size_x=9)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method='lp')
    clf = OneSlackSSVM(model=crf,
                       max_iter=150,
                       C=1,
                       check_constraints=True,
                       break_on_bad=True,
                       inference_cache=50,
                       inactive_window=0,
                       verbose=10)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_equal(len(clf.inference_cache_), len(X))
    # there should be 11 constraints, which are less than the 94 iterations
    # that are done
    assert_equal(len(clf.inference_cache_[0]), 11)
    # check that we didn't change the behavior of how we construct the cache
    constraints_per_sample = [len(cache) for cache in clf.inference_cache_]
    assert_equal(np.max(constraints_per_sample), 19)
    assert_equal(np.min(constraints_per_sample), 11)
Пример #5
0
    def __init__(self,
                 prob_estimator,
                 C_ssvm=1.,
                 inference='ad3',
                 inference_cache=50,
                 tol=1.,
                 max_iter=200,
                 n_jobs=1):
        """
        Called when initializing the classifier
        """
        #self.C_logreg = C_logreg
        self.C_ssvm = C_ssvm
        self.inference = inference
        self.inference_cache = inference_cache
        self.tol = tol
        self.max_iter = max_iter
        self.n_jobs = n_jobs

        self.prob_estimator = prob_estimator
        self.crf = EdgeFeatureGraphCRF(inference_method=inference)
        self.ssvm = OneSlackSSVM(self.crf,
                                 inference_cache=inference_cache,
                                 C=C_ssvm,
                                 tol=tol,
                                 max_iter=max_iter,
                                 n_jobs=n_jobs)
Пример #6
0
def do_comparison(X_train, y_train, X_test, y_test, dataset):
    # evaluate both svms on a given datasets, generate plots
    Cs = 10.**np.arange(-4, 1)
    multisvm = MultiSVM()
    svm = OneSlackSSVM(MultiClassClf(), tol=0.01)

    accs_pystruct, times_pystruct = eval_on_data(X_train,
                                                 y_train,
                                                 X_test,
                                                 y_test,
                                                 svm,
                                                 Cs=Cs)
    accs_svmstruct, times_svmstruct = eval_on_data(X_train,
                                                   y_train,
                                                   X_test,
                                                   y_test,
                                                   multisvm,
                                                   Cs=Cs)

    plot_curves(times_svmstruct,
                times_pystruct,
                Cs=Cs,
                title="learning time (s) %s" % dataset,
                filename="times_%s.pdf" % dataset)
    plot_curves(accs_svmstruct,
                accs_pystruct,
                Cs=Cs,
                title="accuracy %s" % dataset,
                filename="accs_%s.pdf" % dataset)
Пример #7
0
def msrc():
    models_basedir = 'models/msrc/'
    crf = EdgeCRF(n_states=24, n_features=2028, n_edge_features=4,
                  inference_method='gco')
    clf = OneSlackSSVM(crf, max_iter=10000, C=0.01, verbose=2,
                       tol=0.1, n_jobs=4,
                       inference_cache=100)

    X, Y = load_msrc('train')
    Y = remove_areas(Y)

    start = time()
    clf.fit(X, Y)
    stop = time()

    np.savetxt(models_basedir + 'msrc_full.csv', clf.w)
    with open(models_basedir + 'msrc_full' + '.pickle', 'w') as f:
        cPickle.dump(clf, f)

    X, Y = load_msrc('test')
    Y = remove_areas(Y)

    Y_pred = clf.predict(X)

    print 'Error on test set: %f' % compute_error(Y, Y_pred)
    print 'Score on test set: %f' % clf.score(X, Y)
    print 'Norm of weight vector: |w|=%f' % np.linalg.norm(clf.w)
    print 'Elapsed time: %f s' % (stop - start)

    return clf
Пример #8
0
def test_class_weights_rescale_C():
    # check that our crammer-singer implementation with class weights and
    # rescale_C=True is the same as LinearSVC's c-s class_weight implementation
    raise SkipTest("class weight test needs update")
    from sklearn.svm import LinearSVC
    X, Y = make_blobs(n_samples=210,
                      centers=3,
                      random_state=1,
                      cluster_std=3,
                      shuffle=False)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X, Y = X[:170], Y[:170]

    weights = len(Y) / (np.bincount(Y) * len(np.unique(Y)))
    pbl_class_weight = MultiClassClf(n_features=3,
                                     n_classes=3,
                                     class_weight=weights,
                                     rescale_C=True)
    svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10, tol=1e-5)
    svm_class_weight.fit(X, Y)

    try:
        linearsvm = LinearSVC(multi_class='crammer_singer',
                              fit_intercept=False,
                              class_weight='balanced',
                              C=10)
        linearsvm.fit(X, Y)

        assert_array_almost_equal(svm_class_weight.w, linearsvm.coef_.ravel(),
                                  3)
    except TypeError:
        # travis has a really old sklearn version that doesn't support
        # class_weight in LinearSVC
        pass
Пример #9
0
def syntetic():
    # train model on a single set
    models_basedir = 'models/syntetic/'
    crf = EdgeCRF(n_states=10, n_features=10, n_edge_features=2,
                  inference_method='gco')
    clf = OneSlackSSVM(crf, max_iter=10000, C=0.01, verbose=2,
                       tol=0.1, n_jobs=4, inference_cache=100)

    X, Y = load_syntetic(1)

    x_train, x_test, y_train, y_test = train_test_split(X, Y,
                                                        train_size=100,
                                                        random_state=179)

    start = time()
    clf.fit(x_train, y_train)
    stop = time()

    np.savetxt(models_basedir + 'syntetic_full.csv', clf.w)
    with open(models_basedir + 'syntetic_full' + '.pickle', 'w') as f:
        cPickle.dump(clf, f)

    y_pred = clf.predict(x_test)

    print 'Error on test set: %f' % compute_error(y_test, y_pred)
    print 'Score on test set: %f' % clf.score(x_test, y_test)
    print 'Score on train set: %f' % clf.score(x_train, y_train)
    print 'Norm of weight vector: |w|=%f' % np.linalg.norm(clf.w)
    print 'Elapsed time: %f s' % (stop - start)

    return clf
Пример #10
0
def test_binary_blocks_one_slack_graph():
    #testing cutting plane ssvm on easy binary dataset
    # generate graphs explicitly for each example
    X, Y = generate_blocks(n_samples=3)
    crf = GraphCRF(inference_method=inference_method)
    clf = OneSlackSSVM(model=crf, max_iter=100, C=1,
                       check_constraints=True, break_on_bad=True,
                       n_jobs=1, tol=.1)
    x1, x2, x3 = X
    y1, y2, y3 = Y
    n_states = len(np.unique(Y))
    # delete some rows to make it more fun
    x1, y1 = x1[:, :-1], y1[:, :-1]
    x2, y2 = x2[:-1], y2[:-1]
    # generate graphs
    X_ = [x1, x2, x3]
    G = [make_grid_edges(x) for x in X_]

    # reshape / flatten x and y
    X_ = [x.reshape(-1, n_states) for x in X_]
    Y = [y.ravel() for y in [y1, y2, y3]]

    X = list(zip(X_, G))

    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    for y, y_pred in zip(Y, Y_pred):
        assert_array_equal(y, y_pred)
Пример #11
0
def test_latent_node_boxes_edge_features():
    # learn the "easy" 2x2 boxes dataset.
    # smoketest using a single constant edge feature

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = EdgeFeatureLatentNodeCRF(n_labels=2,
                                          n_hidden_states=2,
                                          n_features=1)
    base_svm = OneSlackSSVM(latent_crf)
    base_svm.C = 10
    latent_svm = LatentSSVM(base_svm, latent_iter=10)

    G = [make_grid_edges(x) for x in X]

    # make edges for hidden states:
    edges = make_edges_2x2()

    G = [np.vstack([make_grid_edges(x), edges]) for x in X]

    # reshape / flatten x and y
    X_flat = [x.reshape(-1, 1) for x in X]
    Y_flat = [y.ravel() for y in Y]

    #X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
    # add edge features
    X_ = [(x, g, np.ones((len(g), 1)), 4) for x, g in zip(X_flat, G)]
    latent_svm.fit(X_[:20], Y_flat[:20])

    assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
    assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

    # test that score is not always 1
    assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
Пример #12
0
def syntetic_test():
    # test model on different train set size & on different train sets
    results = np.zeros((18, 5))
    full_labeled = np.array([2, 4, 10, 25, 100])
    train_size = 400

    for dataset in xrange(1, 19):
        X, Y = load_syntetic(dataset)

        for j, nfull in enumerate(full_labeled):
            crf = EdgeCRF(n_states=10, n_features=10, n_edge_features=2,
                          inference_method='qpbo')
            clf = OneSlackSSVM(crf, max_iter=10000, C=0.01, verbose=0,
                               tol=0.1, n_jobs=4, inference_cache=100)

            x_train = X[:nfull]
            y_train = Y[:nfull]
            x_test = X[(train_size + 1):]
            y_test = Y[(train_size + 1):]

            try:
                clf.fit(x_train, y_train)
                y_pred = clf.predict(x_test)

                results[dataset - 1, j] = compute_error(y_test, y_pred)

                print 'dataset=%d, nfull=%d, error=%f' % (dataset, nfull,
                                                          results[dataset - 1, j])
            except ValueError:
                print 'dataset=%d, nfull=%d: Failed' % (dataset, nfull)

    np.savetxt('results/syntetic/full_labeled.txt', results)
Пример #13
0
def ssvm_classifier() :

	x_train,y_train,x_test,y_test = load_data1()

	print "Data Loaded"
	

	pca = PCA(n_components= 1000)
	x_train_reduced = pca.fit_transform(x_train)
	x_test_reduced = pca.fit_transform(x_test)

	print "PCA finished"

	print "Learning the model"

	n_labels = y_train.shape[1]

	full = np.vstack([x for x in itertools.combinations(range(n_labels), 2)])
	tree = chow_liu_tree(y_train)

	
	independent_model = MultiLabelClf(inference_method='unary')


	independent_ssvm = OneSlackSSVM(independent_model, C=.1, tol=0.01)
	independent_ssvm.fit(x_train_reduced, y_train)
	print "saving model ..."
	with open("data/independent_ssvm.pkl","wb+") as f :
		cp.dump(independent_ssvm,f)
	#print "Calculatin the cross-validation scores"
	#scores = model_selection.cross_val_score(independent_ssvm,x_train_reduced,y_train,cv=3)

	print independent_ssvm.score(x_test_reduced,y_test)
def train(x_train, y_train, x_test, y_test):
    x_train = np.asarray(x_train, dtype=np.float)
    y_train = np.asarray(y_train, dtype=np.int64)
    # x_test = np.asarray(x_test, dtype=np.float)
    # y_test = np.asarray(y_test, dtype=np.int64)
    x_test = x_train
    y_test = y_train

    from pystruct.learners import NSlackSSVM, OneSlackSSVM, SubgradientSSVM, LatentSSVM, SubgradientLatentSSVM, PrimalDSStructuredSVM
    from pystruct.models import MultiLabelClf, MultiClassClf

    clf = OneSlackSSVM(MultiLabelClf(),
                       C=1,
                       show_loss_every=1,
                       verbose=1,
                       max_iter=1000)
    # print(x_train, y_train)
    # input()
    clf.fit(x_train, y_train)
    result = clf.predict(x_test)
    print('Result: \n', result)
    print('True label:\n', y_test)
    clf.score(x_test, y_test)
    print('\n')

    count = 0
    for i in range(len(result)):
        # print(np.sum(np.square(y_test[i]-result[i])))
        if np.sum(np.square(y_test[i] - result[i])) != 0:
            print('True label: ', y_test[i], 'Predict:  ', result[i])
            count += 1
    print(count)

    translate_vector(x_test, y_test)
Пример #15
0
def test_latent_node_boxes_standard_latent():
    # learn the "easy" 2x2 boxes dataset.
    # a 2x2 box is placed randomly in a 4x4 grid
    # we add a latent variable for each 2x2 patch
    # that should make the model fairly simple

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm, latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_[:20], Y_flat[:20])

        assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
        assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

        # test that score is not always 1
        assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
Пример #16
0
def test_one_slack_constraint_caching():
    # testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.5, seed=0,
                                       size_x=9)
    n_labels = len(np.unique(Y))
    exact_inference = get_installed([('ad3', {'branch_and_bound': True}), "lp"])[0]
    crf = GridCRF(n_states=n_labels, inference_method=exact_inference)
    clf = OneSlackSSVM(model=crf, max_iter=150, C=1,
                       check_constraints=True, break_on_bad=True,
                       inference_cache=50, inactive_window=0)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_equal(len(clf.inference_cache_), len(X))
    # there should be 13 constraints, which are less than the 94 iterations
    # that are done
    # check that we didn't change the behavior of how we construct the cache
    constraints_per_sample = [len(cache) for cache in clf.inference_cache_]
    if exact_inference == "lp":
        assert_equal(len(clf.inference_cache_[0]), 18)
        assert_equal(np.max(constraints_per_sample), 18)
        assert_equal(np.min(constraints_per_sample), 18)
    else:
        assert_equal(len(clf.inference_cache_[0]), 13)
        assert_equal(np.max(constraints_per_sample), 20)
        assert_equal(np.min(constraints_per_sample), 11)
Пример #17
0
def CRF_pred(eeg1,
             eeg2,
             emg,
             y,
             eeg1test,
             eeg2test,
             emgtest,
             C=0.9,
             weight_shift=0,
             max_iter=1000,
             fs=128):

    # For the ith iteration, select as trainin the sub_indices other than those at index i for train_index
    eeg1_train = eeg1.values
    eeg2_train = eeg2.values
    emg_train = emg.values
    y_train = y.values

    # The test subject is the one at index i
    eeg1_test = eeg1test.values
    eeg2_test = eeg2test.values
    emg_test = emgtest.values

    # CRF Model Preprocessing
    eeg1_ = process_EEG(eeg1_train)
    eeg2_ = process_EEG(eeg2_train)
    emg_ = process_EMG(emg_train)
    xtrain_ = np.concatenate((eeg1_, eeg2_, emg_), axis=1)
    ytrain_classes = np.reshape(y_train, (y_train.shape[0], ))
    ytrain_ = y_train

    eeg1_ = process_EEG(eeg1_test)
    eeg2_ = process_EEG(eeg2_test)
    emg_ = process_EMG(emg_test)
    xtest_ = np.concatenate((eeg1_, eeg2_, emg_), axis=1)

    xtrain_crf = np.reshape(
        xtrain_,
        (3, -1, xtrain_.shape[1]))  # Reshape so that it works with CRF
    ytrain_crf = np.reshape(ytrain_,
                            (3, -1)) - 1  # Reshape so that it works with CRF

    # CRF Model fitting:
    classes = np.unique(ytrain_)
    weights_crf = compute_class_weight("balanced", list(classes),
                                       list(ytrain_classes))
    weights_crf[0] = weights_crf[0] + (2.5 * weight_shift)
    weights_crf[1] = weights_crf[1] + (1.5 * weight_shift)

    model = ChainCRF(class_weight=weights_crf)
    ssvm = OneSlackSSVM(model=model, C=C, max_iter=max_iter)
    ssvm.fit(xtrain_crf, ytrain_crf)

    # Test on the third guy
    xtest_crf = np.reshape(xtest_, (2, -1, xtest_.shape[1]))
    y_pred_crf = ssvm.predict(xtest_crf)
    y_pred_crf = np.asarray(y_pred_crf).reshape(-1) + 1
    return y_pred_crf
Пример #18
0
def losocv_CRF_prepro(xtrain, y, C=0.5, weight_shift=0, max_iter=1000, fs=128):
    """Leave one subject out cross validation for the CRF model becasuse it requires
    special datahandling. Input should be a Pandas Dataframe."""

    epochs = 21600
    num_sub = 3
    # Indices of the subjects
    sub_indices = [
        np.arange(0, epochs),
        np.arange(epochs, epochs * 2),
        np.arange(epochs * 2, epochs * 3)
    ]
    res = []

    for i in range(len(sub_indices)):

        # For the ith iteration, select as trainin the sub_indices other than those at index i for train_index
        train_index = np.concatenate(
            [sub_indices[(i + 1) % num_sub], sub_indices[(i + 2) % num_sub]])
        xtrain_ = xtrain[train_index]
        y_train = y.values[train_index]
        ytrain_ = y_train

        # The test subject is the one at index i
        test_index = sub_indices[i]
        xtest_ = xtrain[test_index]
        y_test = y.values[test_index]
        ytest_ = y_test

        # CRF Model Preprocessing
        ytrain_classes = np.reshape(y_train, (y_train.shape[0], ))
        xtrain_crf = np.reshape(
            xtrain_,
            (2, -1, xtrain_.shape[1]))  # Reshape so that it works with CRF
        ytrain_crf = np.reshape(
            ytrain_, (2, -1)) - 1  # Reshape so that it works with CRF

        # CRF Model fitting:
        classes = np.unique(ytrain_)
        weights_crf = compute_class_weight("balanced", list(classes),
                                           list(ytrain_classes))
        weights_crf[0] = weights_crf[0] + (2.5 * weight_shift)
        weights_crf[1] = weights_crf[1] + (1.5 * weight_shift)

        model = ChainCRF(class_weight=weights_crf)
        ssvm = OneSlackSSVM(model=model, C=C, max_iter=max_iter)
        ssvm.fit(xtrain_crf, ytrain_crf)

        # Test on the third guy
        xtest_crf = np.reshape(xtest_, (1, -1, xtest_.shape[1]))
        ytest_crf = np.reshape(ytest_, (1, -1)) - 1
        y_pred_crf = ssvm.predict(xtest_crf)
        y_pred_crf = np.asarray(y_pred_crf).reshape(-1) + 1

        resy = sklearn.metrics.balanced_accuracy_score(ytest_, y_pred_crf)
        print("Iteration, result:", i, resy)
        res.append(resy)
    return res
 def __init__(self):
     # the model
     self.model = ChainCRF(directed=True)
     # the learner
     self.learner = OneSlackSSVM(model=self.model,
                                 C=.1,
                                 inference_cache=50,
                                 tol=0.1,
                                 n_jobs=1)
Пример #20
0
    def train(self, trajid_list, n_jobs=4):
        if self.poi_info is None:
            self.poi_info = self.dat_obj.calc_poi_info(trajid_list)

        # build POI_ID <--> POI__INDEX mapping for POIs used to train CRF
        # which means only POIs in traj such that len(traj) >= 2 are included
        poi_set = {p for tid in trajid_list for p in self.dat_obj.traj_dict[tid]
                   if len(self.dat_obj.traj_dict[tid]) >= 2}
        self.poi_list = sorted(poi_set)
        self.poi_id_dict, self.poi_id_rdict = dict(), dict()
        for idx, poi in enumerate(self.poi_list):
            self.poi_id_dict[poi] = idx
            self.poi_id_rdict[idx] = poi

        # generate training data
        train_traj_list = [self.dat_obj.traj_dict[k] for k in trajid_list if len(self.dat_obj.traj_dict[k]) >= 2]
        node_features_list = Parallel(n_jobs=n_jobs)(delayed(calc_node_features)(
            tr[0], len(tr), self.poi_list, self.poi_info, self.dat_obj) for tr in train_traj_list)
        edge_features = calc_edge_features(trajid_list, self.poi_list, self.poi_info, self.dat_obj)

        # feature scaling: node features
        # should each example be flattened to one vector before scaling?
        self.fdim_node = node_features_list[0].shape
        X_node_all = np.vstack(node_features_list)
        X_node_all = self.scaler_node.fit_transform(X_node_all)
        X_node_all = X_node_all.reshape(-1, self.fdim_node[0], self.fdim_node[1])

        # feature scaling: edge features
        fdim_edge = edge_features.shape
        edge_features = self.scaler_edge.fit_transform(edge_features.reshape(fdim_edge[0] * fdim_edge[1], -1))
        self.edge_features = edge_features.reshape(fdim_edge)

        assert(len(train_traj_list) == X_node_all.shape[0])
        X_train = [(X_node_all[k, :, :],
                    self.edge_features.copy(),
                    (self.poi_id_dict[train_traj_list[k][0]], len(train_traj_list[k])))
                   for k in range(len(train_traj_list))]
        y_train = [np.array([self.poi_id_dict[k] for k in tr]) for tr in train_traj_list]
        assert(len(X_train) == len(y_train))

        # train
        sm = MyModel(inference_train=self.inference_train, inference_pred=self.inference_pred,
                     share_params=self.share_params, multi_label=self.multi_label)
        if self.debug is True:
            print('C:', self.C)
        verbose = 1 if self.debug is True else 0
        self.osssvm = OneSlackSSVM(model=sm, C=self.C, n_jobs=n_jobs, verbose=verbose)
        try:
            self.osssvm.fit(X_train, y_train, initialize=True)
            self.trained = True
            print('SSVM training finished.')
        # except ValueError:
        except:
            self.trained = False
            sys.stderr.write('SSVM training FAILED.\n')
            # raise
        return self.trained
Пример #21
0
def model_test(k, head, tail):
    """
    CRF训练和预测
    """
    each_fold_time = time.time()  #开始计时

    #divide train set and test set
    train_id = dataId[head:tail]
    test_id = dataId[:head] + dataId[tail:]

    X_train = X_arr[train_id, :]
    Y_train = Y_arr[train_id]
    X_test = X_arr[test_id, :]
    Y_test = Y_arr[test_id]
    campTest = Camp_arr[test_id]
    #ends divide train set and test set
    if len(X_train) > 0:
        #实例化CRF
        EFGCRF = EdgeFeatureGraphCRF(inference_method='qpbo',
                                     class_weight=CLASS_WEIGHT)
        if LEARNER == "OneSlackSSVM":
            #利用OneSlackSSVM训练模型参数
            ssvm = OneSlackSSVM(EFGCRF,
                                C=.1,
                                tol=.1,
                                max_iter=100,
                                switch_to='ad3')
        elif LEARNER == "FrankWolfeSSVM":
            #利用FrankWolfeSSVM训练模型参数
            ssvm = FrankWolfeSSVM(EFGCRF, C=.1, tol=.1, max_iter=100)
        else:
            #没有选择分类器退出
            pass

        ssvm.fit(X_train, Y_train)
        Y_pred = ssvm.predict(X_test)

        df_result = statistic_result(Y_pred, Y_test, campTest)
        V_precision = precision_score(df_result["label"], df_result["pred"])
        V_recall = recall_score(df_result["label"], df_result["pred"])
        V_f1 = f1_score(df_result["label"], df_result["pred"])

        camps_pred, camps_lbl = statistic_campaign_result(Y_pred, Y_test)
        C_precision = precision_score(camps_lbl, camps_pred)
        C_recall = recall_score(camps_lbl, camps_pred)
        C_f1 = f1_score(camps_lbl, camps_pred)

        result_Queue.put(
            [V_precision, V_recall, V_f1, C_precision, C_recall, C_f1])

    else:
        print("TRAIN SET is NULL")

    print("the {}th fold using time: {:.4f} min".format(
        k + 1, (time.time() - each_fold_time) / 60))
    del X_train, Y_train, X_test, Y_test, Y_pred, campTest
Пример #22
0
def test_switch_to_ad3():
    # test if switching between qpbo and ad3 works

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = generate_blocks_multinomial(n_samples=5, noise=1.5, seed=0)
    crf = GridCRF(n_states=3, inference_method='qpbo')

    ssvm = OneSlackSSVM(crf, inference_cache=50, max_iter=10000)

    ssvm_with_switch = OneSlackSSVM(crf, inference_cache=50, max_iter=10000,
                                    switch_to=('ad3'))
    ssvm.fit(X, Y)
    ssvm_with_switch.fit(X, Y)
    assert_equal(ssvm_with_switch.model.inference_method, 'ad3')
    # we check that the dual is higher with ad3 inference
    # as it might use the relaxation, that is pretty much guraranteed
    assert_greater(ssvm_with_switch.objective_curve_[-1],
                   ssvm.objective_curve_[-1])
Пример #23
0
def train(X,y):
    X_train_directions = make_directions(X)
    Y_train_flat = [y.ravel()]
    inference = 'qpbo'
    # first, train on X with directions only:
    crf = EdgeFeatureGraphCRF(inference_method=inference)
    ssvm = OneSlackSSVM(crf, inference_cache=50, C=.1, tol=.1, max_iter=10,
                        n_jobs=1,show_loss_every=1)
    ssvm.fit(X_train_directions, Y_train_flat, warm_start=False)
    return ssvm
Пример #24
0
def train_seq(X, y, crf_params):
    X_ = [X[k] for k in sorted(X.keys())]
    y_ = [y[k] for k in sorted(y.keys())]
    class_sizes = np.bincount(np.hstack(y_))
    cw = 1. / class_sizes
    cw = cw / cw.sum()
    return OneSlackSSVM(model=ChainCRF(inference_method='max-product',
                                       class_weight=cw),
                        max_iter=100000,
                        verbose=False,
                        **crf_params).fit(X_, y_)
Пример #25
0
def test_multinomial_blocks_one_slack():
    #testing cutting plane ssvm on easy multinomial dataset
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.5, seed=0)
    n_labels = len(np.unique(Y))
    crf = GridCRF(n_states=n_labels, inference_method=inference_method)
    clf = OneSlackSSVM(model=crf, max_iter=150, C=1,
                       check_constraints=True, break_on_bad=True, tol=.1,
                       inference_cache=50)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
Пример #26
0
def test_equal_class_weights():
    # test that equal class weight is the same as no class weight
    X, Y = make_blobs(n_samples=80, centers=3, random_state=42)
    X = np.hstack([X, np.ones((X.shape[0], 1))])
    X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]

    pbl = MultiClassClf(n_features=3, n_classes=3)
    svm = OneSlackSSVM(pbl, C=10)

    svm.fit(X_train, Y_train)
    predict_no_class_weight = svm.predict(X_test)

    pbl_class_weight = MultiClassClf(n_features=3,
                                     n_classes=3,
                                     class_weight=np.ones(3))
    svm_class_weight = OneSlackSSVM(pbl_class_weight, C=10)
    svm_class_weight.fit(X_train, Y_train)
    predict_class_weight = svm_class_weight.predict(X_test)

    assert_array_equal(predict_no_class_weight, predict_class_weight)
    assert_array_almost_equal(svm.w, svm_class_weight.w)
Пример #27
0
def test_one_slack_attractive_potentials():
    # test that submodular SSVM can learn the block dataset
    X, Y = generate_blocks(n_samples=10)
    crf = GridCRF(inference_method=inference_method)
    submodular_clf = OneSlackSSVM(model=crf, max_iter=200, C=1,
                                  check_constraints=True,
                                  negativity_constraint=[5],
                                  inference_cache=50)
    submodular_clf.fit(X, Y)
    Y_pred = submodular_clf.predict(X)
    assert_array_equal(Y, Y_pred)
    assert_true(submodular_clf.w[5] < 0)
Пример #28
0
def test_blobs_2d_one_slack():
    # make two gaussian blobs
    X, Y = make_blobs(n_samples=80, centers=3, random_state=42)
    # we have to add a constant 1 feature by hand :-/
    X = np.hstack([X, np.ones((X.shape[0], 1))])

    X_train, X_test, Y_train, Y_test = X[:40], X[40:], Y[:40], Y[40:]

    pbl = MultiClassClf(n_features=3, n_classes=3)
    svm = OneSlackSSVM(pbl, check_constraints=True, C=1000)

    svm.fit(X_train, Y_train)
    assert_array_equal(Y_test, np.hstack(svm.predict(X_test)))
Пример #29
0
def test_one_slack_repellent_potentials():
    # test non-submodular problem with and without submodularity constraint
    # dataset is checkerboard
    X, Y = generate_checker()
    crf = GridCRF(inference_method=inference_method)
    clf = OneSlackSSVM(model=crf, max_iter=10, C=.01,
                       check_constraints=True)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    # standard crf can predict perfectly
    assert_array_equal(Y, Y_pred)

    submodular_clf = OneSlackSSVM(model=crf, max_iter=10, C=.01,
                                  check_constraints=True,
                                  negativity_constraint=[4, 5, 6])
    submodular_clf.fit(X, Y)
    Y_pred = submodular_clf.predict(X)
    assert_less(submodular_clf.score(X, Y), .99)
    # submodular crf can not do better than unaries
    for i, x in enumerate(X):
        y_pred_unaries = crf.inference(x, np.array([1, 0, 0, 1, 0, 0, 0]))
        assert_array_equal(y_pred_unaries, Y_pred[i])
Пример #30
0
def test_switch_to_ad3():
    # smoketest only
    # test if switching between qpbo and ad3 works inside latent svm
    # use less perfect initialization

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]

    crf = LatentGridCRF(n_states_per_label=2, inference_method='qpbo')
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    np.random.seed(0)
    mask = np.random.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    base_ssvm = OneSlackSSVM(crf,
                             inactive_threshold=1e-8,
                             cache_tol=.0001,
                             inference_cache=50,
                             max_iter=10000,
                             switch_to=('ad3', {
                                 'branch_and_bound': True
                             }),
                             C=10.**3)
    clf = LatentSSVM(base_ssvm)

    # evil hackery to get rid of ad3 output
    try:
        devnull = open('/dev/null', 'w')
        oldstdout_fno = os.dup(sys.stdout.fileno())
        os.dup2(devnull.fileno(), 1)
        replaced_stdout = True
    except:
        replaced_stdout = False

    clf.fit(X, Y, H_init=H_init)

    if replaced_stdout:
        os.dup2(oldstdout_fno, 1)
    assert_equal(clf.model.inference_method[0], 'ad3')

    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(.98 < clf.score(X_test, Y_test) < 1)