def get_data(self, **kwargs): states = kwargs.get('states') years = kwargs.get('years') #json_path = kwargs.get('json_path',None) #Removing Duplicates states = list(set(states)) years = list(set(years)) #Checking Errors self.check_state_years_inputs_errors(states, years) #Downloading Data #json_result = self.io_utils.read_json(json_path) if json_path else {'metadata': {'column_descriptions':{}}} for state in states: for year in years: dir_path = os.path.join(self.sinasc_raw_dir, state) year_str = str(year) if not os.path.exists(dir_path): self.io_utils.create_folder_structure(folder=dir_path) if not os.path.exists( os.path.join(dir_path, f'{state}_{year_str}.csv.gz')): df = download(state, year) self.io_utils.save_df_zipped_csv( df=df, dirpath=dir_path, file_name=f'{state}_{year_str}')
def test_download_new(self): df = download('SE', 2015) self.assertIn('IDADEMAE', df.columns) self.assertGreater(len(df), 0)
def test_download_old(self): df = download('AL', 1994) self.assertIn('IDADE_MAE', df.columns) self.assertGreater(len(df), 0)
def test_download_new(self): df = download("SE", 2015) self.assertIn("IDADEMAE", df.columns) self.assertGreater(len(df), 0)
def test_download_old(self): df = download("AL", 1994) self.assertIn("IDADE_MAE", df.columns) self.assertGreater(len(df), 0)