Пример #1
0
def get_RE(com_rank, duplicate=10):
    ind = 0
    XErList = []
    ThetaErList = np.zeros((duplicate, len(missList)))
    for miss in missList:
        RETheta = []
        REX = []
        for dup in range(duplicate):
            np.random.seed(dup * 4)
            #每次都用同一份数据去做
            data = dat.copy()
            #观测值:丢失部分数据的
            Omega = (np.random.random(siz) > miss) * 1
            data[Omega == 0] -= data[Omega == 0]

            #补全时候用的rank
            print('missing ratio: {0}'.format(miss))

            data = pyten.tenclass.tensor.Tensor(data)
            self2 = PoissonAirCP(data,
                                 omega=Omega,
                                 rank=com_rank,
                                 max_iter=3000,
                                 tol=1e-5,
                                 OnlyObs=True,
                                 TrueValue=true_data,
                                 alpha=[10, 10, 10],
                                 lmbda=10,
                                 sim_mats=simMat2)
            self2.run()

            #这里看对原始数据的补全准不准
            [EErr, EReErr1, EReErr2] = tenerror(self2.X, true_data, Omega)
            REX.append(EReErr1)

            #这里看对原始theta矩阵的估计准不准
            pred2 = pyten.tenclass.Ktensor(np.ones(com_rank),
                                           us=self2.U).totensor()
            ThetaRE = np.linalg.norm(pred2.data - theta.data) / np.linalg.norm(
                theta.data)
            RETheta.append(ThetaRE)

        # print(np.mean(RECP),np.mean(RE1),np.mean(RE2))
        XErList.append(np.mean(REX))
        ThetaErList[:, ind] = RETheta
        ind = ind + 1

    print(XErList)
    print(ThetaErList)
    return ((XErList, ThetaErList))
Пример #2
0
                                 tol=1e-5,
                                 OnlyObs=True,
                                 TrueValue=true_data,
                                 sim_mats=aux,
                                 alpha=para_alpha,
                                 lmbda=para_lmbda)
            self2.run()
            temp_aux = cons_similarity(self2.X.data)
            simerror = np.max((np.linalg.norm(aux[0] - temp_aux[0]),
                               np.linalg.norm(aux[1] - temp_aux[1]),
                               np.linalg.norm(aux[2] - temp_aux[2])))
            aux = temp_aux
            Iter = Iter + 1

            print('ExpAirCP loop with similarity error: {0}'.format(simerror))
            [EEr, EReEr1, EReEr2] = tenerror(self2.X, true_data, Omega)
            if Iter == 2:
                RE22.append(EReEr1)
            print(EReEr1)
        # 到这里为止
        [EErr, EReErr1, EReErr2] = tenerror(self2.X, true_data, Omega)
        print('ExpAirCP Completion Error: {0}, {1}, {2}'.format(
            EErr, EReErr1, EReErr2))

        RE2.append(EReErr1)

    finalList22.append(np.mean(RE22))
    finalList2.append(np.mean(RE2))

for miss in missList:
    aux = [
Пример #3
0
                             eta=1e-4)

        self3 = TNCP(data, Omega, rank=com_rank, alpha=[3, 3, 3], lmbda=3)

        rX1 = falrtc(data, Omega, max_iter=100)
        try:
            #print(data.data)
            self1.run()
            #print(data.data)
            self2.run()
            self3.run()
        except:
            continue

        #这里看对原始数据的补全准不准
        [Err, ReErr1, ReErr2] = tenerror(self1.X, true_data, Omega)
        [EErr, EReErr1, EReErr2] = tenerror(self2.X, true_data, Omega)
        [ErrTNCP, ReErrTNCP, ReErr2TNCP] = tenerror(self3.X, true_data, Omega)
        #[Errfal, ReErrfal, ReErr2fal] = tenerror(rX1, true_data, Omega)

        print('AirCP Completion Error: {0}, {1}, {2}'.format(
            Err, ReErr1, ReErr2))
        print('ExpAirCP Completion Error: {0}, {1}, {2}'.format(
            EErr, EReErr1, EReErr2))
        print('TNCP Completion Error: {0}, {1}, {2}'.format(
            ErrTNCP, ReErrTNCP, ReErr2TNCP))
        #print ('falrtc Completion Error: {0}, {1}, {2}'.format(Errfal, ReErrfal, ReErr2fal))

        #这里看对原始theta矩阵的估计准不准
        pred2 = pyten.tenclass.Ktensor(np.ones(com_rank),
                                       us=self2.U).totensor()
Пример #4
0
                               OnlyObs=True,
                               TrueValue=true_data,
                               sim_mats=simMat,
                               alpha=[3, 3, 3],
                               lmbda=3)
        self3 = TNCP(data, Omega, rank=com_rank, alpha=[3, 3, 3], lmbda=3)

        #rX1 = falrtc(data, Omega, max_iter=100)

        self1.run()
        self2.run()
        self3.run()

        #这里看对原始数据的补全准不准

        [Err, ReErr1, ReErr2] = tenerror(self1.X, true_data, Omega)
        [EErr, EReErr1, EReErr2] = tenerror(self2.X, true_data, Omega)
        [Errcp, ReErrcp, ReErr2cp] = tenerror(self3.X, true_data, Omega)
        #[Errfal, ReErrfal, ReErr2fal] = tenerror(rX1, true_data, Omega)

        print('AirCP Completion Error: {0}, {1}, {2}'.format(
            Err, ReErr1, ReErr2))
        print('ExpAirCP Completion Error: {0}, {1}, {2}'.format(
            EErr, EReErr1, EReErr2))
        print('TNCP Completion Error: {0}, {1}, {2}'.format(
            Errcp, ReErrcp, ReErr2cp))
        #print ('falrtc Completion Error: {0}, {1}, {2}'.format(Errfal, ReErrfal, ReErr2fal))

        pred2 = pyten.tenclass.Ktensor(np.ones(com_rank),
                                       us=self2.U).totensor()
        print('Theta Error for ExpAirCP: {0}'.format(
Пример #5
0
                             failuresR=failuresR2,
                             omega=Omega,
                             rank=com_rank,
                             max_iter=3000,
                             tol=1e-5,
                             OnlyObs=True,
                             TrueValue=true_data,
                             sim_mats=simMat,
                             alpha=[3, 3, 3],
                             lmbda=3)

        self2.run()
        self3.run()

        #这里看对原始数据的补全准不准
        [EErr, EReErr1, EReErr2] = tenerror(self2.X, true_data, Omega)
        [EErr2, EReErr3, EReErr4] = tenerror(self3.X, true_data, Omega)

        RE2.append(EReErr1)
        RE3.append(EReErr3)

        # #
        # x = self1.X.data-true_data.data
        # y = self2.X.data-true_data.data
        # all_data=[x.reshape(np.prod(siz)),y.reshape(np.prod(siz))]
        #
        # figure,axes=plt.subplots() #得到画板、轴
        # axes.boxplot(all_data) #描点上色
        # plt.show()

    finalList2[:, ind] = RE2
Пример #6
0
# Tucker-ALS
[T2, rX2] = tucker_als(X1, R, Omega1)  # if no missing data just omit Omega1
# FalRTC, SiLRTC, HaLRTC
rX3 = falrtc(X1, Omega1)
rX4 = silrtc(X1, Omega1)
rX5 = halrtc(X1, Omega1)
# TNCP
self1 = TNCP(X1, Omega1, rank=r)
self1.run()

# Error Testing
from pyten.tools import tenerror

realX = sol1.totensor()
[Err1, ReErr11, ReErr21] = tenerror(rX1, realX, Omega1)
[Err2, ReErr12, ReErr22] = tenerror(rX2, realX, Omega1)
[Err3, ReErr13, ReErr23] = tenerror(rX3, realX, Omega1)
[Err4, ReErr14, ReErr24] = tenerror(rX4, realX, Omega1)
[Err5, ReErr15, ReErr25] = tenerror(rX5, realX, Omega1)
[Err6, ReErr16, ReErr26] = tenerror(self1.X, realX, Omega1)
print '\n', 'The Relative Error of the Six Methods are:', ReErr21, ReErr22, ReErr23, ReErr24, ReErr25, ReErr26

# 2. Real Problem - Image Recovery
import matplotlib.image as mpimg  # Use it to load image
import numpy as np

lena = mpimg.imread("./test/testImg.png")
im = np.double(np.uint8(lena * 255))
im = im[0:50, 0:50, 0:3]
Пример #7
0
                simerror = 1
                Iter = 1
                while (simerror > 1e-3 and Iter < 10):
                    self1 = PoissonAirCP(data,
                                         omega=Omega,
                                         rank=com_rank,
                                         max_iter=3000,
                                         tol=1e-5,
                                         OnlyObs=True,
                                         TrueValue=true_data,
                                         sim_mats=aux,
                                         alpha=para_alpha,
                                         lmbda=para_lmbda)
                    self1.run()
                    temp_aux = cons_similarity(self1.X.data)
                    simerror = np.max((np.linalg.norm(aux[0] - temp_aux[0]),
                                       np.linalg.norm(aux[1] - temp_aux[1]),
                                       np.linalg.norm(aux[2] - temp_aux[2])))
                    aux = temp_aux
                    Iter = Iter + 1
                    print(simerror)
                # 到这里为止

                [EEr, EReEr1, EReEr2] = tenerror(self1.X, true_data, Omega)
                print('ExpAirCP with aux: {0}, {1}, {2}'.format(
                    EEr, EReEr1, EReEr2))
                RE1.append(EReEr1)
            result[i, j, k] = np.mean(RE1)

print(result)
np.save('GDELTstep5.npy', result)