def save_model_to_code(namespace, model, params, model_checksum, params_checksum, device, output, gencode_params): util.mkdir_p(output) cwd = os.path.dirname(__file__) j2_env = Environment(loader=FileSystemLoader(cwd + "/template"), trim_blocks=True) j2_env.filters["stringfy"] = stringfy template_name = "tensor_source.jinja2" counter = 0 for tensor in model.tensors: # convert tensor source = j2_env.get_template(template_name).render( tensor=tensor, tensor_id=counter, tag=namespace, ) with open(output + "/tensor" + str(counter) + ".cc", "w") as f: f.write(source) counter += 1 if gencode_params: template_name = "tensor_data.jinja2" source = j2_env.get_template(template_name).render( tag=namespace, model_data_size=len(params), model_data=params) with open(output + "/tensor_data.cc", "w") as f: f.write(source) template_name = "operator.jinja2" counter = 0 op_size = len(model.op) for start in range(0, op_size, 10): source = j2_env.get_template(template_name).render( start=start, end=min(start + 10, op_size), net=model, tag=namespace, device=device.value, ) with open(output + "/op" + str(counter) + ".cc", "w") as f: f.write(source) counter += 1 # generate model source files build_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") template_name = "model.jinja2" checksum = "{},{}".format(model_checksum, params_checksum) source = j2_env.get_template(template_name).render(net=model, tag=namespace, checksum=checksum, build_time=build_time) with open(output + "/model.cc", "w") as f: f.write(source) template_name = 'model_header.jinja2' source = j2_env.get_template(template_name).render(tag=namespace, ) with open(output + "/" + namespace + '.h', "w") as f: f.write(source)
def gen_mace_engine_factory(model_name, embed_model_data, output): util.mkdir_p(output) cwd = os.path.dirname(__file__) j2_env = Environment(loader=FileSystemLoader(cwd + "/template"), trim_blocks=True) # generate mace_run BUILD file template_name = 'mace_engine_factory.h.jinja2' model_name = list(model_name) source = j2_env.get_template(template_name).render( model_tags=model_name, embed_model_data=embed_model_data, ) with open(output + '/mace_engine_factory.h', "w") as f: f.write(source)
def convert(conf, output): for model_name, model_conf in conf["models"].items(): model_output = output + "/" + model_name + "/model" org_model_dir = output + "/" + model_name + "/org_model" util.mkdir_p(model_output) util.mkdir_p(org_model_dir) model_conf = normalize_model_config(model_conf) model_file = util.download_or_get_model( model_conf[ModelKeys.model_file_path], # noqa model_conf[ModelKeys.model_sha256_checksum], # noqa output + "/" + model_name + "/org_model") model_conf[ModelKeys.model_file_path] = model_file if ModelKeys.weight_file_path in model_conf: weight_file = util.download_or_get_model( model_conf[ModelKeys.weight_file_path], model_conf[ModelKeys.weight_sha256_checksum], "/tmp/") model_conf[ModelKeys.weight_file_path] = weight_file # TODO: remove the following after quantize tool is made if ModelKeys.quantize_range_file in model_conf: range_file = util.download_or_get_model( model_conf[ModelKeys.quantize_range_file], "", model_output) model_conf[ModelKeys.quantize_range_file] = range_file mace_model = convert_model(model_conf) try: visualizer = visualize_model.ModelVisualizer( model_name, mace_model, model_output) visualizer.save_html() except: # noqa print("Failed to visualize model:", sys.exc_info()) model, params = merge_params(mace_model) output_model_file = model_output + "/" + model_name + ".pb" output_params_file = model_output + "/" + model_name + ".data" with open(output_model_file, "wb") as f: f.write(model.SerializeToString()) with open(output_params_file, "wb") as f: f.write(bytearray(params)) with open(output_model_file + "_txt", "w") as f: f.write(str(model))
def save_model_to_file(model_name, model, params, output): util.mkdir_p(output) with open(output + "/" + model_name + ".pb", "wb") as f: f.write(model.SerializeToString()) with open(output + "/" + model_name + ".data", "wb") as f: f.write(params)
def run_model_for_device(flags, args, dev, model_name, model_conf): runtime = flags.runtime target_abi = flags.target_abi install_dir = run_target.default_install_dir(target_abi) + "/" + model_name sysdir = install_dir + "/interior" dev.mkdir(sysdir) if not runtime: runtime = model_conf[ModelKeys.runtime] if runtime == DeviceType.CPU_GPU: runtime = DeviceType.GPU else: runtime = config_parser.parse_device_type(runtime) # install models to devices workdir = flags.output + "/" + model_name model_file = model_name + ".pb" model_data_file = model_name + ".data" model_path = workdir + "/model/" + model_file model_data_path = workdir + "/model/" + model_data_file if os.path.exists(model_path) and os.path.exists(model_data_path): dev.install(Target(model_path), install_dir) dev.install(Target(model_data_path), install_dir) else: MaceLogger.warning("No models exist in %s, use --model_file and" " --model_data_file specified in args" % model_path) if ModelKeys.check_tensors in model_conf: model_conf[ModelKeys.output_tensors] = model_conf[ ModelKeys.check_tensors] model_conf[ModelKeys.output_shapes] = model_conf[ ModelKeys.check_shapes] model_file_path = "" if not flags.gencode_model: model_file_path = install_dir + "/" + model_file model_data_file_path = "" if not flags.gencode_param: model_data_file_path = install_dir + "/" + model_data_file model_args = { "model_name": model_name, "model_file": model_file_path, "model_data_file": model_data_file_path, "input_node": ",".join(model_conf[ModelKeys.input_tensors]), "input_shape": join_2d_array(model_conf[ModelKeys.input_shapes]), "output_node": ",".join(model_conf[ModelKeys.output_tensors]), "output_shape": join_2d_array(model_conf[ModelKeys.output_shapes]), "input_data_format": ",".join([df.name for df in model_conf[ModelKeys.input_data_formats]]), "output_data_format": ",".join([df.name for df in model_conf[ModelKeys.output_data_formats]]), "device": runtime.name } opts = [ "--%s=%s" % (arg_key, arg_val) for arg_key, arg_val in model_args.items() ] + args should_generate_data = (flags.validate or flags.tune or "--benchmark" in opts) if should_generate_data: tmpdirname = tempfile.mkdtemp() input_file_prefix = tmpdirname + "/" + model_name if ModelKeys.validation_inputs_data in model_conf: input_tensor = model_conf[ModelKeys.input_tensors] input_data = model_conf[ModelKeys.validation_inputs_data] mace_check( len(input_tensor) == len(input_data), "len(input_tensor) != len(validate_data") for i in range(len(input_tensor)): util.download_or_get_file( model_conf[ModelKeys.validation_inputs_data][i], "", util.formatted_file_name(input_file_prefix, input_tensor[i])) else: generate_input_data(input_file_prefix, model_conf[ModelKeys.input_tensors], model_conf[ModelKeys.input_shapes], model_conf[ModelKeys.input_ranges], model_conf[ModelKeys.input_data_types]) dev.install(Target(tmpdirname), install_dir + "/validate_in") target_input_file = "%s/validate_in/%s" % (install_dir, model_name) target_output_dir = "%s/validate_out" % install_dir dev.mkdir(target_output_dir) target_output_file = target_output_dir + "/" + model_name opts += [ "--input_file=%s" % target_input_file, "--output_file=%s" % target_output_file ] # run envs = flags.envs.split(" ") + ["MACE_INTERNAL_STORAGE_PATH=%s" % sysdir] if flags.tune: envs += [ "MACE_TUNING=1", "MACE_RUN_PARAMETER_PATH=%s/interior/tune_params" % install_dir ] opts += ["--round=0"] if flags.vlog_level > 0: envs += ["MACE_CPP_MIN_VLOG_LEVEL=%s" % flags.vlog_level] build_dir = flags.build_dir + "/" + target_abi libs = [] if model_conf[ModelKeys.runtime] == DeviceType.HEXAGON: libs += ["third_party/nnlib/%s/libhexagon_controller.so" % target_abi] elif model_conf[ModelKeys.runtime] == DeviceType.APU: libs += ["third_party/apu/libapu-frontend.so"] target = Target(build_dir + "/install/bin/mace_run", libs, opts=opts, envs=envs) run_target.run_target(target_abi, install_dir, target, device_ids=flags.target_socs) if runtime == DeviceType.GPU: opencl_dir = workdir + "/opencl" util.mkdir_p(opencl_dir) dev.pull( Target(install_dir + "/interior/mace_cl_compiled_program.bin"), "%s/%s_compiled_opencl_kernel.%s.%s.bin" % (opencl_dir, model_name, dev.info()["ro.product.model"].replace( ' ', ''), dev.info()["ro.board.platform"])) if flags.tune: dev.pull( Target(install_dir + "/interior/tune_params"), "%s/%s_tuned_opencl_parameter.%s.%s.bin" % (opencl_dir, model_name, dev.info()["ro.product.model"].replace( ' ', ''), dev.info()["ro.board.platform"])) if flags.validate: validate_model_file = util.download_or_get_model( model_conf[ModelKeys.model_file_path], model_conf[ModelKeys.model_sha256_checksum], tmpdirname) validate_weight_file = "" if ModelKeys.weight_file_path in model_conf: validate_weight_file = util.download_or_get_model( model_conf[ModelKeys.weight_file_path], model_conf[ModelKeys.weight_sha256_checksum], tmpdirname) dev.pull(Target(target_output_dir), tmpdirname + "/validate_out") output_file_prefix = tmpdirname + "/validate_out/" + model_name validate.validate( model_conf[ModelKeys.platform], validate_model_file, validate_weight_file, input_file_prefix, output_file_prefix, model_conf[ModelKeys.input_shapes], model_conf[ModelKeys.output_shapes], model_conf[ModelKeys.input_data_formats], model_conf[ModelKeys.output_data_formats], model_conf[ModelKeys.input_tensors], model_conf[ModelKeys.output_tensors], flags.validate_threshold, model_conf[ModelKeys.input_data_types], flags.backend, "", "") if should_generate_data: shutil.rmtree(tmpdirname)
parser.add_argument( '--output', type=str, default="build", help="output dir") parser.add_argument( "--gencode", action="store_true", help="generate code") flgs, _ = parser.parse_known_args() return flgs if __name__ == '__main__': flags = parse_args() util.mkdir_p(flags.output) opencl_binary_files = [] if flags.binary_files: opencl_binary_files = flags.binary_files.split(",") opencl_tuning_files = [] if flags.tuning_files: opencl_tuning_files = flags.tuning_files.split(",") compiled_opencl_kernel_prefix = "compiled_opencl_kernel" tuned_opencl_parameter_prefix = "tuned_opencl_parameter" if not opencl_binary_files and not opencl_tuning_files: for root, dirs, files in os.walk("build", topdown=False): for name in files: if compiled_opencl_kernel_prefix in name: opencl_binary_files.append(os.path.join(root, name))