Пример #1
0
def save_model_to_code(namespace, model, params, model_checksum,
                       params_checksum, device, output, gencode_params):
    util.mkdir_p(output)
    cwd = os.path.dirname(__file__)
    j2_env = Environment(loader=FileSystemLoader(cwd + "/template"),
                         trim_blocks=True)
    j2_env.filters["stringfy"] = stringfy

    template_name = "tensor_source.jinja2"
    counter = 0
    for tensor in model.tensors:
        # convert tensor
        source = j2_env.get_template(template_name).render(
            tensor=tensor,
            tensor_id=counter,
            tag=namespace,
        )
        with open(output + "/tensor" + str(counter) + ".cc", "w") as f:
            f.write(source)
        counter += 1

    if gencode_params:
        template_name = "tensor_data.jinja2"
        source = j2_env.get_template(template_name).render(
            tag=namespace, model_data_size=len(params), model_data=params)
        with open(output + "/tensor_data.cc", "w") as f:
            f.write(source)

    template_name = "operator.jinja2"
    counter = 0
    op_size = len(model.op)

    for start in range(0, op_size, 10):
        source = j2_env.get_template(template_name).render(
            start=start,
            end=min(start + 10, op_size),
            net=model,
            tag=namespace,
            device=device.value,
        )
        with open(output + "/op" + str(counter) + ".cc", "w") as f:
            f.write(source)
        counter += 1

    # generate model source files
    build_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    template_name = "model.jinja2"
    checksum = "{},{}".format(model_checksum, params_checksum)
    source = j2_env.get_template(template_name).render(net=model,
                                                       tag=namespace,
                                                       checksum=checksum,
                                                       build_time=build_time)
    with open(output + "/model.cc", "w") as f:
        f.write(source)

    template_name = 'model_header.jinja2'
    source = j2_env.get_template(template_name).render(tag=namespace, )
    with open(output + "/" + namespace + '.h', "w") as f:
        f.write(source)
Пример #2
0
def gen_mace_engine_factory(model_name, embed_model_data, output):
    util.mkdir_p(output)
    cwd = os.path.dirname(__file__)
    j2_env = Environment(loader=FileSystemLoader(cwd + "/template"),
                         trim_blocks=True)
    # generate mace_run BUILD file
    template_name = 'mace_engine_factory.h.jinja2'
    model_name = list(model_name)
    source = j2_env.get_template(template_name).render(
        model_tags=model_name,
        embed_model_data=embed_model_data,
    )
    with open(output + '/mace_engine_factory.h', "w") as f:
        f.write(source)
Пример #3
0
def convert(conf, output):
    for model_name, model_conf in conf["models"].items():
        model_output = output + "/" + model_name + "/model"
        org_model_dir = output + "/" + model_name + "/org_model"
        util.mkdir_p(model_output)
        util.mkdir_p(org_model_dir)

        model_conf = normalize_model_config(model_conf)

        model_file = util.download_or_get_model(
            model_conf[ModelKeys.model_file_path],  # noqa
            model_conf[ModelKeys.model_sha256_checksum],  # noqa
            output + "/" + model_name + "/org_model")
        model_conf[ModelKeys.model_file_path] = model_file
        if ModelKeys.weight_file_path in model_conf:
            weight_file = util.download_or_get_model(
                model_conf[ModelKeys.weight_file_path],
                model_conf[ModelKeys.weight_sha256_checksum], "/tmp/")
            model_conf[ModelKeys.weight_file_path] = weight_file

        # TODO: remove the following after quantize tool is made
        if ModelKeys.quantize_range_file in model_conf:
            range_file = util.download_or_get_model(
                model_conf[ModelKeys.quantize_range_file], "", model_output)
            model_conf[ModelKeys.quantize_range_file] = range_file

        mace_model = convert_model(model_conf)

        try:
            visualizer = visualize_model.ModelVisualizer(
                model_name, mace_model, model_output)
            visualizer.save_html()
        except:  # noqa
            print("Failed to visualize model:", sys.exc_info())

        model, params = merge_params(mace_model)

        output_model_file = model_output + "/" + model_name + ".pb"
        output_params_file = model_output + "/" + model_name + ".data"
        with open(output_model_file, "wb") as f:
            f.write(model.SerializeToString())
        with open(output_params_file, "wb") as f:
            f.write(bytearray(params))
        with open(output_model_file + "_txt", "w") as f:
            f.write(str(model))
Пример #4
0
def save_model_to_file(model_name, model, params, output):
    util.mkdir_p(output)
    with open(output + "/" + model_name + ".pb", "wb") as f:
        f.write(model.SerializeToString())
    with open(output + "/" + model_name + ".data", "wb") as f:
        f.write(params)
Пример #5
0
def run_model_for_device(flags, args, dev, model_name, model_conf):
    runtime = flags.runtime
    target_abi = flags.target_abi
    install_dir = run_target.default_install_dir(target_abi) + "/" + model_name
    sysdir = install_dir + "/interior"
    dev.mkdir(sysdir)

    if not runtime:
        runtime = model_conf[ModelKeys.runtime]
        if runtime == DeviceType.CPU_GPU:
            runtime = DeviceType.GPU
    else:
        runtime = config_parser.parse_device_type(runtime)

    # install models to devices
    workdir = flags.output + "/" + model_name
    model_file = model_name + ".pb"
    model_data_file = model_name + ".data"
    model_path = workdir + "/model/" + model_file
    model_data_path = workdir + "/model/" + model_data_file
    if os.path.exists(model_path) and os.path.exists(model_data_path):
        dev.install(Target(model_path), install_dir)
        dev.install(Target(model_data_path), install_dir)
    else:
        MaceLogger.warning("No models exist in %s, use --model_file and"
                           " --model_data_file specified in args" % model_path)

    if ModelKeys.check_tensors in model_conf:
        model_conf[ModelKeys.output_tensors] = model_conf[
            ModelKeys.check_tensors]
        model_conf[ModelKeys.output_shapes] = model_conf[
            ModelKeys.check_shapes]

    model_file_path = ""
    if not flags.gencode_model:
        model_file_path = install_dir + "/" + model_file
    model_data_file_path = ""
    if not flags.gencode_param:
        model_data_file_path = install_dir + "/" + model_data_file
    model_args = {
        "model_name":
        model_name,
        "model_file":
        model_file_path,
        "model_data_file":
        model_data_file_path,
        "input_node":
        ",".join(model_conf[ModelKeys.input_tensors]),
        "input_shape":
        join_2d_array(model_conf[ModelKeys.input_shapes]),
        "output_node":
        ",".join(model_conf[ModelKeys.output_tensors]),
        "output_shape":
        join_2d_array(model_conf[ModelKeys.output_shapes]),
        "input_data_format":
        ",".join([df.name for df in model_conf[ModelKeys.input_data_formats]]),
        "output_data_format":
        ",".join([df.name
                  for df in model_conf[ModelKeys.output_data_formats]]),
        "device":
        runtime.name
    }

    opts = [
        "--%s=%s" % (arg_key, arg_val)
        for arg_key, arg_val in model_args.items()
    ] + args
    should_generate_data = (flags.validate or flags.tune
                            or "--benchmark" in opts)

    if should_generate_data:
        tmpdirname = tempfile.mkdtemp()
        input_file_prefix = tmpdirname + "/" + model_name

        if ModelKeys.validation_inputs_data in model_conf:
            input_tensor = model_conf[ModelKeys.input_tensors]
            input_data = model_conf[ModelKeys.validation_inputs_data]
            mace_check(
                len(input_tensor) == len(input_data),
                "len(input_tensor) != len(validate_data")

            for i in range(len(input_tensor)):
                util.download_or_get_file(
                    model_conf[ModelKeys.validation_inputs_data][i], "",
                    util.formatted_file_name(input_file_prefix,
                                             input_tensor[i]))
        else:
            generate_input_data(input_file_prefix,
                                model_conf[ModelKeys.input_tensors],
                                model_conf[ModelKeys.input_shapes],
                                model_conf[ModelKeys.input_ranges],
                                model_conf[ModelKeys.input_data_types])

        dev.install(Target(tmpdirname), install_dir + "/validate_in")
        target_input_file = "%s/validate_in/%s" % (install_dir, model_name)
        target_output_dir = "%s/validate_out" % install_dir
        dev.mkdir(target_output_dir)
        target_output_file = target_output_dir + "/" + model_name
        opts += [
            "--input_file=%s" % target_input_file,
            "--output_file=%s" % target_output_file
        ]

    # run
    envs = flags.envs.split(" ") + ["MACE_INTERNAL_STORAGE_PATH=%s" % sysdir]
    if flags.tune:
        envs += [
            "MACE_TUNING=1",
            "MACE_RUN_PARAMETER_PATH=%s/interior/tune_params" % install_dir
        ]
        opts += ["--round=0"]
    if flags.vlog_level > 0:
        envs += ["MACE_CPP_MIN_VLOG_LEVEL=%s" % flags.vlog_level]

    build_dir = flags.build_dir + "/" + target_abi
    libs = []
    if model_conf[ModelKeys.runtime] == DeviceType.HEXAGON:
        libs += ["third_party/nnlib/%s/libhexagon_controller.so" % target_abi]
    elif model_conf[ModelKeys.runtime] == DeviceType.APU:
        libs += ["third_party/apu/libapu-frontend.so"]

    target = Target(build_dir + "/install/bin/mace_run",
                    libs,
                    opts=opts,
                    envs=envs)
    run_target.run_target(target_abi,
                          install_dir,
                          target,
                          device_ids=flags.target_socs)

    if runtime == DeviceType.GPU:
        opencl_dir = workdir + "/opencl"
        util.mkdir_p(opencl_dir)
        dev.pull(
            Target(install_dir + "/interior/mace_cl_compiled_program.bin"),
            "%s/%s_compiled_opencl_kernel.%s.%s.bin" %
            (opencl_dir, model_name, dev.info()["ro.product.model"].replace(
                ' ', ''), dev.info()["ro.board.platform"]))
        if flags.tune:
            dev.pull(
                Target(install_dir + "/interior/tune_params"),
                "%s/%s_tuned_opencl_parameter.%s.%s.bin" %
                (opencl_dir, model_name,
                 dev.info()["ro.product.model"].replace(
                     ' ', ''), dev.info()["ro.board.platform"]))

    if flags.validate:
        validate_model_file = util.download_or_get_model(
            model_conf[ModelKeys.model_file_path],
            model_conf[ModelKeys.model_sha256_checksum], tmpdirname)

        validate_weight_file = ""
        if ModelKeys.weight_file_path in model_conf:
            validate_weight_file = util.download_or_get_model(
                model_conf[ModelKeys.weight_file_path],
                model_conf[ModelKeys.weight_sha256_checksum], tmpdirname)

        dev.pull(Target(target_output_dir), tmpdirname + "/validate_out")
        output_file_prefix = tmpdirname + "/validate_out/" + model_name
        validate.validate(
            model_conf[ModelKeys.platform], validate_model_file,
            validate_weight_file, input_file_prefix, output_file_prefix,
            model_conf[ModelKeys.input_shapes],
            model_conf[ModelKeys.output_shapes],
            model_conf[ModelKeys.input_data_formats],
            model_conf[ModelKeys.output_data_formats],
            model_conf[ModelKeys.input_tensors],
            model_conf[ModelKeys.output_tensors], flags.validate_threshold,
            model_conf[ModelKeys.input_data_types], flags.backend, "", "")
    if should_generate_data:
        shutil.rmtree(tmpdirname)
Пример #6
0
    parser.add_argument(
        '--output',
        type=str,
        default="build",
        help="output dir")
    parser.add_argument(
        "--gencode",
        action="store_true",
        help="generate code")
    flgs, _ = parser.parse_known_args()
    return flgs


if __name__ == '__main__':
    flags = parse_args()
    util.mkdir_p(flags.output)
    opencl_binary_files = []
    if flags.binary_files:
        opencl_binary_files = flags.binary_files.split(",")
    opencl_tuning_files = []
    if flags.tuning_files:
        opencl_tuning_files = flags.tuning_files.split(",")

    compiled_opencl_kernel_prefix = "compiled_opencl_kernel"
    tuned_opencl_parameter_prefix = "tuned_opencl_parameter"

    if not opencl_binary_files and not opencl_tuning_files:
        for root, dirs, files in os.walk("build", topdown=False):
            for name in files:
                if compiled_opencl_kernel_prefix in name:
                    opencl_binary_files.append(os.path.join(root, name))