Пример #1
0
        matrixSize = int(arg)
    elif opt in ("-b", "--bandwidth"):
        bandwidth = int(arg)
    elif opt in ("-p", "--partitions"):
        partitionNumber = int(arg)
    elif opt in ("-r", "--runs"):
        runs = int(arg)

config = {
    'matrixSize': matrixSize,
    'bandwidth': bandwidth,
    'partitionNumber': partitionNumber,
}

# create Matrices
A = sparse_creator.create_banded_matrix(matrixSize, bandwidth / 2, bandwidth / 2)
#x = numpy.ones(matrixSize)
#x = numpy.random.rand(matrixSize)
#b = scipy.sparse.vstack(sparse_creator.create_rhs(A, x))
x_hat = np.ones(matrixSize, dtype=np.float32)
b = sp.sparse.vstack(sparse_creator.create_rhs(A, x_hat))

x_primes = []
bench    = []
for i in xrange(runs):
    x_prime, t = spike.spike(A, b, config, False)
    bench.append(t)
    x_primes.append(norm(x_hat - x_prime))
    sys.stdout.write('.')
    sys.stdout.flush()
res = fun(bench)
Пример #2
0
from python_project.utils import sparse_creator
from python_project.solver import LapackBenchmark
import numpy as np
import scipy as sp
from time import time
from numpy.linalg import norm

# set basic values
runs = 20
fun = min

# create Matrices

for bw in [2,16,32,128]:
    for n in [2048,4096,8192]:
        A = sparse_creator.create_banded_matrix(n, bw/2, bw/2)
        x_hat = np.ones(n, dtype=np.float32)
        b = sp.sparse.vstack(sparse_creator.create_rhs(A, x_hat))

        for p in [2,4,8,16,32,64,128,256]:

            if n/p <= bw:
                continue

            config = {
                'matrixSize': n,
                'bandwidth': bw,
                'partitionNumber': p,
            }

            bench    = []