def get_analysis(self, data, bollinger_function): if bollinger_function == 'upper': return bollinger_bands.upper_bollinger_band( data, self.params['period']) if bollinger_function == 'middle': return bollinger_bands.middle_bollinger_band( data, self.params['period']) if bollinger_function == 'lower': return bollinger_bands.lower_bollinger_band( data, self.params['period']) if bollinger_function == 'bandwidth': return bollinger_bands.bandwidth(data, self.params['period']) if bollinger_function == 'range': return bollinger_bands.bb_range(data, self.params['period']) if bollinger_function == 'percent_bandwidth': return bollinger_bands.percent_bandwidth(data, self.params['period']) if bollinger_function == 'percent_b': return bollinger_bands.percent_b(data, self.params['period'])
def _get_ta_features(high, low, close, volume, desc): """ Returns a dict containing the technical analysis indicators calculated on the given high, low, close and volumes. """ ta = {} # Set numpy to ignore division error and invalid values (since not all features are complete) old_settings = np.seterr(divide='ignore', invalid='ignore') record_count = len(close) # Determine relative moving averages for _short, _long in desc['rsma']: if record_count < _short or record_count < _long: logging.error( "get_ta_features: not enough records for rsma (short={}, long={}, records={})" .format(_short, _long, record_count)) continue ta['rsma_{}_{}'.format(_short, _long)] = relative_sma(close, _short, _long) for _short, _long in desc['rema']: if record_count < _short or record_count < _long: logging.error( "get_ta_features: not enough records for rema (short={}, long={}, records={})" .format(_short, _long, record_count)) continue ta['rema_{}_{}'.format(_short, _long)] = relative_ema(close, _short, _long) # MACD Indicator if 'macd' in desc: for _short, _long in desc['macd']: if record_count < _short or record_count < _long: logging.error( "get_ta_features: not enough records for rema (short={}, long={}, records={})" .format(_short, _long, record_count)) continue ta['macd_{}_{}'.format( _short, _long)] = moving_average_convergence_divergence( close, _short, _long) # Aroon Indicator if 'ao' in desc: for _period in desc['ao']: if record_count < _period: logging.error( "get_ta_features: not enough records for ao (period={}, records={})" .format(_period, record_count)) continue ta['ao_{}'.format(_period)] = aroon_oscillator(close, _period) # Average Directional Movement Index (ADX) if 'adx' in desc: for _period in desc['adx']: if record_count < _period: logging.error( "get_ta_features: not enough records for adx (period={}, records={})" .format(_period, record_count)) continue ta['adx_{}'.format(_period)] = average_directional_index( close, high, low, _period) # Difference between Positive Directional Index(DI+) and Negative Directional Index(DI-) if 'wd' in desc: for _period in desc['wd']: if record_count < _period: logging.error( "get_ta_features: not enough records for wd (period={}, records={})" .format(_period, record_count)) continue ta['wd_{}'.format(_period)] = \ positive_directional_index(close, high, low, _period) \ - negative_directional_index(close, high, low, _period) # Percentage Price Oscillator if 'ppo' in desc: for _short, _long in desc['ppo']: if record_count < _short or record_count < _long: logging.error( "get_ta_features: not enough records for ppo (short={}, long={}, records={})" .format(_short, _long, record_count)) continue ta['ppo_{}_{}'.format(_short, _long)] = price_oscillator( close, _short, _long) # Relative Strength Index if 'rsi' in desc: for _period in desc['rsi']: if record_count < _period: logging.error( "get_ta_features: not enough records for rsi (period={}, records={})" .format(_period, record_count)) continue ta['rsi_{}'.format(_period)] = relative_strength_index( close, _period) # Money Flow Index if 'mfi' in desc: for _period in desc['mfi']: if record_count < _period: logging.error( "get_ta_features: not enough records for mfi (period={}, records={})" .format(_period, record_count)) continue ta['mfi_{}'.format(_period)] = money_flow_index( close, high, low, volume, _period) # True Strength Index if 'tsi' in desc and len(close) >= 40: if record_count < 40: logging.error( "get_ta_features: not enough records for tsi (period={}, records={})" .format(40, record_count)) else: ta['tsi'] = true_strength_index(close) if 'boll' in desc: for _period in desc['stoch']: if record_count < _period: logging.error( "get_ta_features: not enough records for boll (period={}, records={})" .format(_period, record_count)) continue ta['boll_{}'.format(_period)] = percent_b(close, _period) # Stochastic Oscillator if 'stoch' in desc: for _period in desc['stoch']: if record_count < _period: logging.error( "get_ta_features: not enough records for stoch (period={}, records={})" .format(_period, record_count)) continue ta['stoch_{}'.format(_period)] = percent_k(close, _period) # ta.py['stoch'] = percent_k(high, low, close, 14) # Chande Momentum Oscillator ## Not available in ta.py if 'cmo' in desc: for _period in desc['cmo']: if record_count < _period: logging.error( "get_ta_features: not enough records for cmo (period={}, records={})" .format(_period, record_count)) continue ta['cmo_{}'.format(_period)] = chande_momentum_oscillator( close, _period) # Average True Range Percentage if 'atrp' in desc: for _period in desc['atrp']: if record_count < _period: logging.error( "get_ta_features: not enough records for atrp (period={}, records={})" .format(_period, record_count)) continue ta['atrp_{}'.format(_period)] = average_true_range_percent( close, _period) # Percentage Volume Oscillator if 'pvo' in desc: for _short, _long in desc['pvo']: if record_count < _short or record_count < _long: logging.error( "get_ta_features: not enough records for pvo (short={}, long={}, records={})" .format(_short, _long, record_count)) continue ta['pvo_{}_{}'.format(_short, _long)] = volume_oscillator( volume, _short, _long) # Force Index if 'fi' in desc: fi = force_index(close, volume) for _period in desc['fi']: if record_count < _period: logging.error( "get_ta_features: not enough records for atrp (period={}, records={})" .format(_period, record_count)) continue ta['fi_{}'.format(_period)] = exponential_moving_average( fi, _period) # Accumulation Distribution Line if 'adi' in desc: ta['adi'] = accumulation_distribution(close, high, low, volume) # On Balance Volume if 'obv' in desc: ta['obv'] = on_balance_volume(close, volume) # Restore numpy error settings np.seterr(**old_settings) return ta
count = 10 # count in days in the past gran = '1h' symbol = 'BTC/USD' price_prom = 0.15 params = {"count": count, "granularity": gran} if __name__ == "__main__": df = hlp.get_bitmex(symbol, gran, count, m15=False) # dfdt = pd.Series(df['close'].values, index=pd.DatetimeIndex( # start='2017-01-1', periods=len(df['close']), freq='1d')) # dfseas = seasonal_decompose(dfdt) # finding BB% dfflist = df['close'].tolist() dfreturns = hlp.returns(df['close']) hlp.plot_histogram(dfreturns, 20) print(df.head()) bbl = bollinger_bands.percent_b(dfflist, 70, 2.0) bbdivs_bear, bbdivs_bull, bpf, pbf = hlp.divergence2(bbl, df, prominence=5, hei=20) # SRSI and its peaks/bottoms K, D = hlp.StochRSI(df, price='close') kdivs_bear, kdivs_bull, kbf, kpf = hlp.divergence2(K, df, prominence=5, hei=20) # peaks of close : resistance and support levels dfflist2 = df['close'].values prom = price_prom * (np.max(dfflist2) - np.min(dfflist2)) print(prom)
def test_percent_b_invalid_period(self): period = 128 with self.assertRaises(Exception) as cm: bollinger_bands.percent_b(self.data, period) expected = "Error: data_len < period" self.assertEqual(str(cm.exception), expected)
def test_percent_b_period_6(self): period = 6 percent_b = bollinger_bands.percent_b(self.data, period) np.testing.assert_array_equal(percent_b, self.percent_b_period_6_expected)
# In[5]: data = socket.get_candles(instrument = 'GBP/USD', period = 'D1', start = dt.datetime(2016,1,1), end = dt.datetime(2018, 6, 10)) # In[6]: #Define useful variables data['upper_band'] = ubb(data['askclose'], period = 20) data['mid_band'] = mbb(data['askclose'], period = 20 ) data['lower_band'] = lbb(data['askclose'], period = 20 ) data['percent_b'] = percent_b(data['askclose'], period =20) data # In[7]: fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(111, xlabel = 'Date',ylabel='Close') data['askclose'].plot(ax=ax1, color='r', lw=1) data['upper_band'].plot(ax=ax1, color = 'b', lw= 1) data['mid_band'].plot(ax=ax1, color = 'g', lw= 1) data['lower_band'].plot(ax=ax1, color = 'y', lw= 1)