Пример #1
0
 def run(self,
         circuit: Circuit,
         shots: int,
         fit_to_constraints=True,
         seed: int = None) -> np.ndarray:
     """Run a circuit on Qiskit Aer Qasm simulator.
     
     :param circuit: The circuit to run
     :type circuit: Circuit
     :param shots: Number of shots (repeats) to run
     :type shots: int
     :param fit_to_constraints: Compile the circuit to meet the constraints of the backend, defaults to True
     :type fit_to_constraints: bool, optional
     :param seed: random seed to for simulator
     :type seed: int
     :return: Table of shot results, each row is a shot, columns are ordered by qubit ordering. Values are 0 or 1, corresponding to qubit basis states.
     :rtype: numpy.ndarray
     """
     c = circuit.copy()
     if fit_to_constraints:
         Transform.RebaseToQiskit().apply(c)
     dag = tk_to_dagcircuit(c)
     qc = dag_to_circuit(dag)
     qobj = assemble(qc, shots=shots, seed_simulator=seed, memory=True)
     job = self._backend.run(qobj, noise_model=self.noise_model)
     shot_list = job.result().get_memory(qc)
     return np.asarray([_convert_bin_str(shot) for shot in shot_list])
Пример #2
0
def _routed_ibmq_circuit(circuit: Circuit,
                         arc: Architecture) -> QuantumCircuit:
    c = circuit.copy()
    Transform.RebaseToQiskit().apply(c)
    physical_c = route(c, arc)
    physical_c.decompose_SWAP_to_CX()
    physical_c.redirect_CX_gates(arc)
    Transform.OptimisePostRouting().apply(physical_c)
    qc = tk_to_qiskit(physical_c)

    return qc
Пример #3
0
    def get_state(self, circuit, fit_to_constraints=True) :
        """
        Calculate the statevector for a circuit.


        :param circuit: circuit to calculate
        :return: complex numpy array of statevector
        """
        c = circuit.copy()
        if fit_to_constraints :
            Transform.RebaseToQiskit().apply(c)
        qc = tk_to_qiskit(c)
        qobj = assemble(qc)
        job = self._backend.run(qobj)
        return np.asarray(job.result().get_statevector(qc, decimals=16))
Пример #4
0
 def get_unitary(self, circuit, fit_to_constraints=True) :
     """
     Obtains the unitary for a given quantum circuit
     
     :param circuit: The circuit to inspect
     :type circuit: Circuit
     :param fit_to_constraints: Forces the circuit to be decomposed into the correct gate set, defaults to True
     :type fit_to_constraints: bool, optional
     :return: The unitary of the circuit. Qubits are ordered with qubit 0 as the least significant qubit
     """
     c = circuit.copy()
     if fit_to_constraints :
         Transform.RebaseToQiskit().apply(c)
     qc = tk_to_qiskit(c)
     qobj = assemble(qc)
     job = self._backend.run(qobj)
     return job.result().get_unitary(qc)
Пример #5
0
    def get_counts(self, circuit, shots, fit_to_constraints=True, seed=None) :
        """
        Run the circuit on the backend and accumulate the results into a summary of counts

        :param circuit: The circuit to run
        :param shots: Number of shots (repeats) to run
        :param fit_to_constraints: Compile the circuit to meet the constraints of the backend, defaults to True
        :param seed: Random seed to for simulator
        :return: Dictionary mapping bitvectors of results to number of times that result was observed (zero counts are omitted)
        """
        c = circuit.copy()
        if fit_to_constraints :
            Transform.RebaseToQiskit().apply(c)
        qc = tk_to_qiskit(c)
        qobj = assemble(qc, shots=shots, seed_simulator=seed)
        job = self._backend.run(qobj, noise_model=self.noise_model)
        counts = job.result().get_counts(qc)
        return {tuple(_convert_bin_str(b)) : c for b, c in counts.items()}