def inference_v2(self, im): l0 = im l1 = self._conv_layer(l0, 32, (5, 5), (1, 1), (2, 2), (2, 2), name='l1', flag=True) l2 = self._conv_layer(l1, 32, (5, 5), (1, 1), (2, 2), (2, 2), name='l2', flag=True) l3 = self._conv_layer(l2, 64, (3, 3), (1, 1), (2, 2), (2, 2), name='l3', flag=True) l4 = self._conv_layer(l3, 64, (3, 3), (1, 1), (0, 0), (0, 0), name='l4', flag=False) l5 = self._conv_layer(l4, 128, (3, 3), (1, 1), (0, 0), (0, 0), name='l5', flag=False) fc0 = tf.reshape(l5, [self.batch_size, -1]) fc1 = tl.fc(fc0, 64, name='fc1') fc2 = tl.fc(fc1, 32, name='fc2') fc3 = tl.fc(fc2, 4, name='fc3') return fc3
def inference(self, im): l0 = im l1 = self._conv_layer(l0, 32, (5, 5), (1, 1), (2, 2), (2, 2), name='l1') l2 = self._conv_layer(l1, 32, (5, 5), (1, 1), (2, 2), (2, 2), name='l2') l3 = self._conv_layer(l2, 64, (5, 5), (1, 1), (2, 2), (2, 2), name='l3') fc0 = tf.reshape(l3, [self.batch_size, -1]) fc1 = tl.fc(fc0, 64, name='fc1') fc2 = tl.fc(fc1, 101, name='fc2') return fc2