Пример #1
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--model_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="")
    parser.add_argument("--my_config", default=None, type=str, required=True)
    parser.add_argument("--feature_path",
                        default=None,
                        type=str,
                        required=True)
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model checkpoints and predictions will be written."
    )

    ## Other parameters
    parser.add_argument("--train_pattern",
                        default=None,
                        type=str,
                        help="training data path.")
    parser.add_argument("--valid_pattern",
                        default=None,
                        type=str,
                        help="validation data path.")
    parser.add_argument("--test_pattern",
                        default=None,
                        type=str,
                        help="test data path.")
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--report_steps",
                        default=100,
                        type=int,
                        help="report steps when training.")
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_steps", default=-1, type=int)
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
        "of training.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    args = parser.parse_args()
    print(args)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        n_gpu = 1

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_pattern:
            raise ValueError(
                "If `do_train` is True, then `train_pattern` must be specified."
            )

    if args.do_predict:
        if not args.test_pattern:
            raise ValueError(
                "If `do_predict` is True, then `test_pattern` must be specified."
            )

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Prepare model
    my_config = Config(args.my_config)
    my_config.num_edge_types = sum(EdgePosition.max_edge_types)
    my_config.forward_edges = [
        EdgeType.TOKEN_TO_SENTENCE, EdgeType.SENTENCE_TO_PARAGRAPH,
        EdgeType.PARAGRAPH_TO_DOCUMENT
    ]
    print(my_config)
    if args.do_train:
        pretrained_config_file = os.path.join(args.model_dir, CONFIG_NAME)
        bert_config = BertConfig(pretrained_config_file)
        pretrained_model_file = os.path.join(args.model_dir, WEIGHTS_NAME)

        model = NqModel(bert_config=bert_config, my_config=my_config)
        model_dict = model.state_dict()
        pretrained_model_dict = torch.load(
            pretrained_model_file, map_location=lambda storage, loc: storage)
        pretrained_model_dict = {
            k: v
            for k, v in pretrained_model_dict.items()
            if k in model_dict.keys()
        }
        model_dict.update(pretrained_model_dict)
        model.load_state_dict(model_dict)
    else:
        pretrained_config_file = os.path.join(args.model_dir, CONFIG_NAME)
        bert_config = BertConfig(pretrained_config_file)
        model = NqModel(bert_config=bert_config, my_config=my_config)
        pretrained_model_file = os.path.join(args.model_dir, WEIGHTS_NAME)
        model.load_state_dict(torch.load(pretrained_model_file))

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)
    num_train_features = None
    num_train_optimization_steps = None
    if args.do_train:
        num_train_features = 0
        for data_path in glob(args.train_pattern):
            train_dataset = NqDataset(args, data_path, is_training=True)
            num_train_features += len(train_dataset.features)

        num_train_optimization_steps = int(
            num_train_features / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
    else:
        if args.warmup_steps > 0:
            args.warmup_proportion = min(
                args.warmup_proportion,
                args.warmup_steps / num_train_optimization_steps)
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num split examples = %d", num_train_features)
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        model.train()
        tr_loss, report_loss = 0.0, 0.0
        nb_tr_examples = 0
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            for data_path in glob(args.train_pattern):
                logging.info("Reading data from {}.".format(data_path))
                train_dataset = NqDataset(args, data_path, is_training=True)
                train_features = train_dataset.features

                if args.local_rank == -1:
                    train_sampler = RandomSampler(train_features)
                else:
                    train_sampler = DistributedSampler(train_features)
                train_dataloader = DataLoader(train_features,
                                              sampler=train_sampler,
                                              batch_size=args.train_batch_size,
                                              collate_fn=batcher(
                                                  device, is_training=True),
                                              num_workers=0)

                for step, batch in enumerate(train_dataloader):
                    loss = model(batch.input_ids, batch.input_mask,
                                 batch.segment_ids, batch.st_mask,
                                 batch.st_index,
                                 (batch.edges_src, batch.edges_tgt,
                                  batch.edges_type, batch.edges_pos),
                                 batch.start_positions, batch.end_positions,
                                 batch.answer_type)
                    if n_gpu > 1:
                        loss = loss.mean()  # mean() to average on multi-gpu.
                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps
                    if args.local_rank != -1:
                        loss = loss + 0 * sum(
                            [x.sum() for x in model.parameters()])
                    if args.fp16:
                        optimizer.backward(loss)
                    else:
                        loss.backward()

                    if (step + 1) % args.gradient_accumulation_steps == 0:
                        if args.fp16:
                            # modify learning rate with special warm up BERT uses
                            # if args.fp16 is False, BertAdam is used and handles this automatically
                            lr_this_step = args.learning_rate * warmup_linear(
                                global_step / num_train_optimization_steps,
                                args.warmup_proportion)
                            for param_group in optimizer.param_groups:
                                param_group['lr'] = lr_this_step
                        optimizer.step()
                        optimizer.zero_grad()
                        global_step += 1

                    tr_loss += loss.item()
                    nb_tr_examples += 1

                    if (step + 1) % args.gradient_accumulation_steps == 0 and (
                            global_step + 1) % args.report_steps == 0 and (
                                args.local_rank == -1
                                or torch.distributed.get_rank() == 0):
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        logging.info(
                            "Epoch={} iter={} lr={:.6f} train_ave_loss={:.6f} ."
                            .format(
                                # _, global_step, lr_this_step, tr_loss / nb_tr_examples))
                                _,
                                global_step,
                                lr_this_step,
                                (tr_loss - report_loss) / args.report_steps))
                        report_loss = tr_loss

            if args.valid_pattern and (args.local_rank == -1
                                       or torch.distributed.get_rank() == 0):
                valid_result = eval_model(args, device, model,
                                          args.valid_pattern)
                logging.info("valid_result = {}".format(valid_result))

    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)

        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        bert_config = BertConfig(output_config_file)
        model = NqModel(bert_config=bert_config, my_config=my_config)
        model.load_state_dict(torch.load(output_model_file))
        if args.fp16:
            model.half()
        model.to(device)
        if n_gpu > 1:
            model = torch.nn.DataParallel(model)

    if args.do_predict and (args.local_rank == -1
                            or torch.distributed.get_rank() == 0):
        test_result = eval_model(args, device, model, args.test_pattern)
        logging.info("test_result = {}".format(test_result))
    def train(self,data,no_cache=False,method="sum"):
        model =self.model
        device = self.device
        tokenizer=self.tokenizer
        learning_rate = self.learning_rate
        warmup_proportion = self.warmup_proportion
        num_labels = self.num_labels
        n_gpu = self.n_gpu
        
        # GET TRAIN SAMPLES - CACHE THE TOKENS
        # GET EVAL SAMPLES - CACHE THE TOKENS
        train_examples = self.create_examples(data["train"])
        val_examples = self.create_examples(data["val"],) if "val" in data else None
    
        test_examples_list = []
        for sample in data["test"]:
            test_examples = self.create_examples(sample,) if "test" in data else None
            test_examples_list.append(test_examples)
        
        train_dataloader,train_index = self.get_dataloader(train_examples,"train")
        
        test_dataloader_list = []
        for index,examples in enumerate(test_examples_list):
            test_dataloader,test_index = self.get_dataloader(examples,"test"+str(index))
            test_dataloader_list.append((test_dataloader,test_index))
        val_dataloader,val_index = self.get_dataloader(val_examples,"val")
        
        num_train_steps = int(
            len(train_examples) / self.train_batch_size / self.gradient_accumulation_steps * self.num_of_epochs)
        
        # OPTIMIZERS MODEL INITIALIZATION
        
        # Prepare optimizer
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
        t_total = num_train_steps
#         optimizer = BertAdam(optimizer_grouped_parameters,
#                             lr=learning_rate,
#                             warmup=warmup_proportion,
#                             t_total=t_total)

        if self.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
        
            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=self.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            print("Optimizer: FusedAdam")
            if self.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=self.loss_scale)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=self.learning_rate,
                                 warmup=self.warmup_proportion,
                                 t_total=num_train_steps)
  
        # TRAIN FOR EPOCHS and SAVE EACH MODEL as pytorch_model.bin.{epoch}
        global_step = 0
        nb_tr_steps = 0
        tr_loss = 0     
        ep = 0
        output_model_file = "dummy"
        loss_fct = CrossEntropyLoss()
        for _ in trange(int(self.num_of_epochs), desc="Epoch"):
            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            ep += 1
            tq = tqdm(train_dataloader, desc="Iteration")
            acc = 0
            for step, batch in enumerate(tq):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids,unique_ids = batch
                logits = model(input_ids, segment_ids, input_mask)
                loss = loss_fct(logits, label_ids)                               
                logits = logits.detach().cpu().numpy()                          
                label_ids = label_ids.to('cpu').numpy() 
                tmp_accuracy = accuracy(logits, label_ids)
                acc += tmp_accuracy
                
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if self.gradient_accumulation_steps > 1:
                    loss = loss / self.gradient_accumulation_steps

                if self.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                
                if (step + 1) % self.gradient_accumulation_steps == 0:
                    if self.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = self.learning_rate * warmup_linear(global_step/num_train_steps, self.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
               
                tq.set_description("Loss:"+str(tr_loss/nb_tr_steps)+",Acc:"+str(acc/nb_tr_examples)) 
            model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(self.output_dir, "pytorch_model.bin." + str(ep))
            torch.save(model_to_save.state_dict(), output_model_file)
            
            # EVAL IN EACH EPOCH SAVE BEST MODEL as best_model.bin
            if val_dataloader:
                self.score_qa(val_dataloader,val_index,data["val"],model,"val",ep,method)
            if test_dataloader_list:
                for index,tup in enumerate(test_dataloader_list):
                    self.score_qa(tup[0],tup[1],data["test"][index],model,"test"+str(index),ep,method)            
            
            print("After Current-Epoch:",self.best_metric)
            
        return model,self.best_metric
Пример #3
0
def init_tri_model_optimizer(model, args, data_loader):
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = data_loader.dataset
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    param_optimizer = list(model.named_parameters())
    no_decay1 = [
        'bias', 'LayerNorm.bias', 'LayerNorm.weight', 'classifier2.bias',
        'classifier2.weight', 'classifier3.bias', 'classifier3.weight'
    ]
    no_decay2 = [
        'bias', 'LayerNorm.bias', 'LayerNorm.weight', 'classifier1.bias',
        'classifier1.weight', 'classifier3.bias', 'classifier3.weight'
    ]
    no_decay3 = [
        'bias', 'LayerNorm.bias', 'LayerNorm.weight', 'classifier1.bias',
        'classifier1.weight', 'classifier2.bias', 'classifier2.weight'
    ]
    optimizer_grouped_parameters1 = [{
        'params': [
            p for n, p in param_optimizer
            if not any(nd in n for nd in no_decay1)
        ],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay1)],
        'weight_decay':
        0.0
    }]
    optimizer_grouped_parameters2 = [{
        'params': [
            p for n, p in param_optimizer
            if not any(nd in n for nd in no_decay2)
        ],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay2)],
        'weight_decay':
        0.0
    }]
    optimizer_grouped_parameters3 = [{
        'params': [
            p for n, p in param_optimizer
            if not any(nd in n for nd in no_decay3)
        ],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay3)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer1 = FusedAdam(optimizer_grouped_parameters1,
                               lr=args.learning_rate,
                               bias_correction=False,
                               max_grad_norm=1.0)
        optimizer2 = FusedAdam(optimizer_grouped_parameters2,
                               lr=args.learning_rate,
                               bias_correction=False,
                               max_grad_norm=1.0)
        optimizer3 = FusedAdam(optimizer_grouped_parameters3,
                               lr=args.learning_rate,
                               bias_correction=False,
                               max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer1 = FP16_Optimizer(optimizer1, dynamic_loss_scale=True)
            optimizer2 = FP16_Optimizer(optimizer2, dynamic_loss_scale=True)
            optimizer3 = FP16_Optimizer(optimizer3, dynamic_loss_scale=True)
        else:
            optimizer1 = FP16_Optimizer(optimizer1,
                                        static_loss_scale=args.loss_scale)
            optimizer2 = FP16_Optimizer(optimizer2,
                                        static_loss_scale=args.loss_scale)
            optimizer3 = FP16_Optimizer(optimizer3,
                                        static_loss_scale=args.loss_scale)
    else:
        optimizer1 = BertAdam(optimizer_grouped_parameters1,
                              lr=args.learning_rate,
                              warmup=args.warmup_proportion,
                              t_total=num_train_optimization_steps)
        optimizer2 = BertAdam(optimizer_grouped_parameters2,
                              lr=args.learning_rate,
                              warmup=args.warmup_proportion,
                              t_total=num_train_optimization_steps)
        optimizer3 = BertAdam(optimizer_grouped_parameters3,
                              lr=args.learning_rate,
                              warmup=args.warmup_proportion,
                              t_total=num_train_optimization_steps)
    return optimizer1, optimizer2, optimizer3, num_train_optimization_steps
Пример #4
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .csv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")
    if os.path.exists(args.output_dir) == False:
        os.makedirs(args.output_dir, exist_ok=True)


#     if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
#         raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_path = os.path.join(args.data_dir, 'train_merge.csv')
        train_examples = read_race_examples(train_path)

        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model = BertForMultipleChoice.from_pretrained(
        args.bert_model,
        cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
        'distributed_{}'.format(args.local_rank),
        num_choices=4)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)

    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      tokenizer,
                                                      args.max_seq_length,
                                                      True)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor(select_field(train_features, 'input_ids'),
                                     dtype=torch.long)
        all_input_mask = torch.tensor(select_field(train_features,
                                                   'input_mask'),
                                      dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(train_features,
                                                    'segment_ids'),
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in train_features],
                                 dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for ep in range(int(args.num_train_epochs)):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            logger.info("Training Epoch: {}/{}".format(
                ep + 1, int(args.num_train_epochs)))
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % 100 == 0:
                    logger.info("Training loss: {}, global step: {}".format(
                        tr_loss / nb_tr_steps, global_step))

            dev_set = os.path.join(args.data_dir, 'dev_merge.csv')
            eval_examples = read_race_examples(dev_set)
            eval_features = convert_examples_to_features(
                eval_examples, tokenizer, args.max_seq_length, True)
            logger.info("***** Running evaluation: Dev *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor(select_field(eval_features,
                                                      'input_ids'),
                                         dtype=torch.long)
            all_input_mask = torch.tensor(select_field(eval_features,
                                                       'input_mask'),
                                          dtype=torch.long)
            all_segment_ids = torch.tensor(select_field(
                eval_features, 'segment_ids'),
                                           dtype=torch.long)
            all_label = torch.tensor([f.label for f in eval_features],
                                     dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

            model.eval()
            eval_loss, eval_accuracy = 0, 0
            nb_eval_steps, nb_eval_examples = 0, 0
            for step, batch in enumerate(eval_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                with torch.no_grad():
                    tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                          label_ids)
                    logits = model(input_ids, segment_ids, input_mask)

                logits = logits.detach().cpu().numpy()
                label_ids = label_ids.to('cpu').numpy()
                tmp_eval_accuracy = accuracy(logits, label_ids)

                eval_loss += tmp_eval_loss.mean().item()
                eval_accuracy += tmp_eval_accuracy

                nb_eval_examples += input_ids.size(0)
                nb_eval_steps += 1

            eval_loss = eval_loss / nb_eval_steps
            eval_accuracy = eval_accuracy / nb_eval_examples

            result = {
                'dev_eval_loss': eval_loss,
                'dev_eval_accuracy': eval_accuracy,
                'global_step': global_step,
                'loss': tr_loss / nb_tr_steps
            }

            output_eval_file = os.path.join(args.output_dir,
                                            "eval_results.txt")
            with open(output_eval_file, "a+") as writer:
                logger.info("***** Dev results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))

            # Save a trained model
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(
                args.output_dir, "merge_pytorch_model_" + str(ep) + ".bin")
            torch.save(model_to_save.state_dict(), output_model_file)

    ## Load a trained model that you have fine-tuned
    ## use this part if you want to load the trained model
    # model_state_dict = torch.load(output_model_file)
    # model = BertForMultipleChoice.from_pretrained(args.bert_model,
    #     state_dict=model_state_dict,
    #     num_choices=4)
    # model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        test_dir = os.path.join(args.data_dir, 'test')
        test_high = [test_dir + '/high']
        test_middle = [test_dir + '/middle']

        ## test high
        eval_examples = read_race_examples(test_high)
        eval_features = convert_examples_to_features(eval_examples, tokenizer,
                                                     args.max_seq_length, True)
        logger.info("***** Running evaluation: test high *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'),
                                     dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features,
                                                   'input_mask'),
                                      dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features,
                                                    'segment_ids'),
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features],
                                 dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        high_eval_loss, high_eval_accuracy = 0, 0
        high_nb_eval_steps, high_nb_eval_examples = 0, 0
        for step, batch in enumerate(eval_dataloader):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            high_eval_loss += tmp_eval_loss.mean().item()
            high_eval_accuracy += tmp_eval_accuracy

            high_nb_eval_examples += input_ids.size(0)
            high_nb_eval_steps += 1

        eval_loss = high_eval_loss / high_nb_eval_steps
        eval_accuracy = high_eval_accuracy / high_nb_eval_examples

        result = {
            'high_eval_loss': eval_loss,
            'high_eval_accuracy': eval_accuracy
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "a+") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        ## test middle
        eval_examples = read_race_examples(test_middle)
        eval_features = convert_examples_to_features(eval_examples, tokenizer,
                                                     args.max_seq_length, True)
        logger.info("***** Running evaluation: test middle *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'),
                                     dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features,
                                                   'input_mask'),
                                      dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features,
                                                    'segment_ids'),
                                       dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features],
                                 dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        middle_eval_loss, middle_eval_accuracy = 0, 0
        middle_nb_eval_steps, middle_nb_eval_examples = 0, 0
        for step, batch in enumerate(eval_dataloader):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            middle_eval_loss += tmp_eval_loss.mean().item()
            middle_eval_accuracy += tmp_eval_accuracy

            middle_nb_eval_examples += input_ids.size(0)
            middle_nb_eval_steps += 1

        eval_loss = middle_eval_loss / middle_nb_eval_steps
        eval_accuracy = middle_eval_accuracy / middle_nb_eval_examples

        result = {
            'middle_eval_loss': eval_loss,
            'middle_eval_accuracy': eval_accuracy
        }

        with open(output_eval_file, "a+") as writer:
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        ## all test
        eval_loss = (middle_eval_loss + high_eval_loss) / (
            middle_nb_eval_steps + high_nb_eval_steps)
        eval_accuracy = (middle_eval_accuracy + high_eval_accuracy) / (
            middle_nb_eval_examples + high_nb_eval_examples)

        result = {
            'overall_eval_loss': eval_loss,
            'overall_eval_accuracy': eval_accuracy
        }

        with open(output_eval_file, "a+") as writer:
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
Пример #5
0
def main():
    logger.info("Running %s" % ' '.join(sys.argv))

    parser = argparse.ArgumentParser()
    ## Required parameters
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--scan",
                        default="horizontal",
                        choices=["vertical", "horizontal"],
                        type=str,
                        help="The direction of linearizing table cells.")
    parser.add_argument(
        "--data_dir",
        default="../processed_datasets",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--output_dir",
        default="outputs",
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument(
        "--load_dir",
        type=str,
        help=
        "The output directory where the model checkpoints will be loaded during evaluation"
    )
    parser.add_argument('--load_step',
                        type=int,
                        default=0,
                        help="The checkpoint step to be loaded")
    parser.add_argument("--fact",
                        default="first",
                        choices=["first", "second"],
                        type=str,
                        help="Whether to put fact in front.")
    parser.add_argument(
        "--test_set",
        default="dev",
        choices=["dev", "test", "simple_test", "complex_test", "small_test"],
        help="Which test set is used for evaluation",
        type=str)
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--balance",
                        action='store_true',
                        help="balance between + and - samples for training.")
    ## Other parameters
    parser.add_argument(
        "--bert_model",
        default="bert-base-multilingual-cased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default="QQP",
                        type=str,
                        help="The name of the task to train.")
    parser.add_argument('--period', type=int, default=500)
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=6,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=20.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()
    pprint(vars(args))
    sys.stdout.flush()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "qqp": QqpProcessor,
    }

    output_modes = {
        "qqp": "classification",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    args.output_dir = "{}_fact-{}_{}".format(args.output_dir, args.fact,
                                             args.scan)
    args.data_dir = os.path.join(args.data_dir,
                                 "tsv_data_{}".format(args.scan))
    logger.info(
        "Datasets are loaded from {}\n Outputs will be saved to {}".format(
            args.data_dir, args.output_dir))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    writer = SummaryWriter(os.path.join(args.output_dir, 'events'))

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    if args.load_dir:
        load_dir = args.load_dir
    else:
        load_dir = args.bert_model

    model = BertForSequenceClassification.from_pretrained(
        load_dir, cache_dir=cache_dir, num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer,
                                                      output_mode,
                                                      fact_place=args.fact,
                                                      balance=args.balance)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            logger.info("Training epoch {} ...".format(epoch))
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                writer.add_scalar('train/loss', loss, global_step)
                tr_loss += loss.item()

                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    total_norm = 0.0
                    for n, p in model.named_parameters():
                        if p.grad is not None:
                            param_norm = p.grad.data.norm(2)
                            total_norm += param_norm.item()**2
                    total_norm = total_norm**(1. / 2)
                    preds = torch.argmax(logits, -1) == label_ids
                    acc = torch.sum(preds).float() / preds.size(0)
                    writer.add_scalar('train/gradient_norm', total_norm,
                                      global_step)
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    model.zero_grad()
                    global_step += 1

                if (step + 1) % args.period == 0:
                    # Save a trained model, configuration and tokenizer
                    model_to_save = model.module if hasattr(
                        model,
                        'module') else model  # Only save the model it-self

                    # If we save using the predefined names, we can load using `from_pretrained`

                    output_dir = os.path.join(
                        args.output_dir, 'save_step_{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)

                    output_model_file = os.path.join(output_dir, WEIGHTS_NAME)
                    output_config_file = os.path.join(output_dir, CONFIG_NAME)

                    torch.save(model_to_save.state_dict(), output_model_file)
                    model_to_save.config.to_json_file(output_config_file)
                    tokenizer.save_vocabulary(output_dir)

                    model.eval()
                    torch.set_grad_enabled(False)  # turn off gradient tracking
                    evaluate(args,
                             model,
                             device,
                             processor,
                             label_list,
                             num_labels,
                             tokenizer,
                             output_mode,
                             tr_loss,
                             global_step,
                             task_name,
                             tbwriter=writer,
                             save_dir=output_dir)
                    model.train()  # turn on train mode
                    torch.set_grad_enabled(True)  # start gradient tracking
                    tr_loss = 0

    # do eval before exit
    if args.do_eval:
        if not args.do_train:
            global_step = 0
            output_dir = None
        save_dir = output_dir if output_dir is not None else args.load_dir
        tbwriter = SummaryWriter(os.path.join(save_dir, 'eval/events'))
        load_step = args.load_step
        if args.load_dir is not None:
            load_step = int(
                os.path.split(args.load_dir)[1].replace('save_step_', ''))
            print("load_step = {}".format(load_step))
        evaluate(args,
                 model,
                 device,
                 processor,
                 label_list,
                 num_labels,
                 tokenizer,
                 output_mode,
                 tr_loss,
                 global_step,
                 task_name,
                 tbwriter=tbwriter,
                 save_dir=save_dir,
                 load_step=load_step)
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run evaluation.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--on_memory",
                        action='store_true',
                        help="Whether to load train samples into memory or use disk")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumualte before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type = float, default = 0,
                        help = "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                        "0 (default value): dynamic loss scaling.\n"
                        "Positive power of 2: static loss scaling value.\n")

    #args = parser.parse_args()
    args = parser.parse_args(["--train_file","/home/xiongyi/Data/Corpus/small_wiki_sentence_corpus.txt","--do_eval","--bert_model",\
                              "bert-base-uncased","--output_dir","june10"])
    
    
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        #n_gpu = torch.cuda.device_count()
        device = torch.device("cuda", 1)
        n_gpu = 1
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl', rank = 1, world_size=2)
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    #train_examples = None
    num_train_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_file)
        train_dataset = BERTDataset(args.train_file, tokenizer, seq_len=args.max_seq_length,
                                    corpus_lines=None, on_memory=args.on_memory)
        num_train_steps = int(
            len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    model = DisentangleModel(model)
    
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_steps)

    global_step = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:

            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_steps, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        # Save a trained model
        logger.info("** ** * Saving fine - tuned model ** ** * ")
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        if args.do_train:
            torch.save(model_to_save.state_dict(), output_model_file)
            
    model.eval()  
    new_model = next(model.children())
    ##use probing/downstream_tasks to evaluate the model

    # Set params for SentEval
    params_senteval = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5}
    params_senteval['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 32,
                                     'tenacity': 3, 'epoch_size': 2}
    
    params_senteval['DEbert']=new_model
    params_senteval['DEbert'].tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
    params_senteval['DEbert'].device = device
    se = senteval.engine.SE(params_senteval, batcher, prepare)
    transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16',
                  'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'SST5', 'TREC', 'MRPC',
                  'SICKEntailment', 'SICKRelatedness', 'STSBenchmark',
                  'Length', 'WordContent', 'Depth', 'TopConstituents',
                  'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber',
                  'OddManOut', 'CoordinationInversion']
    results = se.eval(transfer_tasks)
    print(results)
Пример #7
0
def main():
    # ArgumentParser对象保存了所有必要的信息,用以将命令行参数解析为相应的python数据类型
    parser = argparse.ArgumentParser()

    # required parameters
    # 调用add_argument()向ArgumentParser对象添加命令行参数信息,这些信息告诉ArgumentParser对象如何处理命令行参数
    parser.add_argument(
        "--data_dir",
        default='/users4/xhu/SMP/similarity_data',
        #default='/home/uniphix/PycharmProjects/SMP/similarity_data',
        type=str,
        # required = True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default='bert-base-chinese',
        type=str,
        # required = True,
        help="choose [bert-base-chinese] mode.")
    parser.add_argument(
        "--task_name",
        default='MyPro',
        type=str,
        # required = True,
        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default='/users4/xhu/SMP/checkpoints/',
        #default='/home/uniphix/PycharmProjects/SMP/checkpoints/',
        type=str,
        # required = True,
        help="The output directory where the model checkpoints will be written"
    )
    parser.add_argument(
        "--model_save_pth",
        default='/users4/xhu/SMP/checkpoints/bert_classification.pth',
        #default='/home/uniphix/PycharmProjects/SMP/checkpoints/bert_classification.pth',
        type=str,
        # required = True,
        help="The output directory where the model checkpoints will be written"
    )
    parser.add_argument(
        "--finetune_save_pth",
        default='/users4/xhu/SMP/checkpoints_finetune/bert_classification.pth',
        # default='/home/uniphix/PycharmProjects/SMP/checkpoints/bert_classification.pth',
        type=str,
        # required = True,
        help="The output directory where the model checkpoints will be written"
    )

    # other parameters
    parser.add_argument("--max_seq_length",
                        default=22,
                        type=int,
                        help="字符串最大长度")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="训练模式")
    parser.add_argument("--do_interact",
                        default=True,
                        action='store_true',
                        help="交互模式")
    parser.add_argument("--do_eval",
                        default=True,
                        action='store_true',
                        help="验证模式")
    parser.add_argument("--do_lower_case",
                        default=False,
                        action='store_true',
                        help="英文字符的大小写转换,对于中文来说没啥用")
    parser.add_argument("--train_batch_size",
                        default=128,
                        type=int,
                        help="训练时batch大小")
    parser.add_argument("--eval_batch_size",
                        default=1,
                        type=int,
                        help="验证时batch大小")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="Adam初始学习步长")
    parser.add_argument("--num_train_epochs",
                        default=3,
                        type=float,
                        help="训练的epochs次数")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help="Proportion of training to perform linear learning rate warmup for."
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="用不用CUDA")
    parser.add_argument("--local_rank",
                        default=-1,
                        type=int,
                        help="local_rank for distributed training on gpus.")
    parser.add_argument("--seed", default=777, type=int, help="初始化时的随机数种子")
    parser.add_argument(
        "--gradient_accumulation_steps",
        default=1,
        type=int,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--optimize_on_cpu",
        default=False,
        action='store_true',
        help=
        "Whether to perform optimization and keep the optimizer averages on CPU."
    )
    parser.add_argument(
        "--fp16",
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit.")
    parser.add_argument(
        "--loss_scale",
        default=128,
        type=float,
        help=
        "Loss scaling, positive power of 2 values can improve fp16 convergence."
    )
    parser.add_argument("--use_pretrained",
                        default=True,
                        action='store_true',
                        help="是否使用预训练模型")
    parser.add_argument("--use_noisy",
                        default=True,
                        action='store_true',
                        help="是否使用负例")
    parser.add_argument("--use_stop_words",
                        default=True,
                        action='store_true',
                        help="是否使用负例")
    parser.add_argument("--self_fine_tune",
                        default=False,
                        action='store_true',
                        help="是否使用self fine tune")  # fixme

    args = parser.parse_args()
    print('*' * 80)
    print(args)
    print('*' * 80)
    # 对模型输入进行处理的processor,git上可能都是针对英文的processor
    processors = {'mypro': MyPro}
    GPUmanager = GPUManager()
    which_gpu = GPUmanager.auto_choice()
    gpu = "cuda:" + str(which_gpu)
    logger.info('GPU%d Seleted!!!!!!!!!!!!!!!!!!!' % which_gpu)
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(
            gpu if torch.cuda.is_available() and not args.no_cuda else "cpu")
        #device = torch.device("cuda:1" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = 1
        #n_gpu = torch.cuda.device_count()
    else:
        device = torch.device(gpu, args.local_rank)
        n_gpu = 1
        torch.distributed.init_process_group(backend='nccl')
        if args.fp16:
            logger.info(
                "16-bits training currently not supported in distributed training"
            )
            args.fp16 = False  # (see https://github.com/pytorch/pytorch/pull/13496)
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(args.local_rank != -1))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    # 删除模型文件
    # if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
    #     shutil.rmtree(args.output_dir)
    #     #raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    # os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    #label_list = label_list
    label_list = [0, 1]  # 31

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model,
        cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
        'distributed_{}'.format(args.local_rank),
        num_labels=len(label_list))

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.fp16:
        param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
                           for n, param in model.named_parameters()]
    elif args.optimize_on_cpu:
        param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
                           for n, param in model.named_parameters()]
    else:
        param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=t_total)

    # train
    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer,
                                                      show_exp=False)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        best_score = 0
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                #label_ids = torch.tensor([f if f<31 else 0 for f in label_ids], dtype=torch.long).to(device)
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                #print ('-------------loss:',loss)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16 or args.optimize_on_cpu:
                        if args.fp16 and args.loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
                                if param.grad is not None:
                                    param.grad.data = param.grad.data / args.loss_scale
                        is_nan = set_optimizer_params_grad(
                            param_optimizer,
                            model.named_parameters(),
                            test_nan=True)
                        if is_nan:
                            logger.info(
                                "FP16 TRAINING: Nan in gradients, reducing loss scaling"
                            )
                            args.loss_scale = args.loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        copy_optimizer_params_to_model(
                            model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
                    model.zero_grad()

            f1 = val(model, processor, args, label_list, tokenizer, device)

            if f1 > best_score:
                best_score = f1
                print('*f1 score = {}'.format(f1))
                checkpoint = {'state_dict': model.state_dict()}
                torch.save(checkpoint, args.model_save_pth)
            else:
                print('f1 score = {}'.format(f1))

    # test
    if args.use_pretrained:
        model.load_state_dict(torch.load(args.model_save_pth)['state_dict'])
    else:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model,
            cache_dir=PYTORCH_PRETRAINED_BERT_CACHE /
            'distributed_{}'.format(args.local_rank),
            num_labels=2)
        model.to(device)
    if not args.do_interact:
        test(model, processor, args, label_list, tokenizer, device)
    else:
        interact(model, processor, args, label_list, tokenizer,
                 device)  # 用于测试dtp语料随机生成小语料时的F值
    print(args)  # fixme
Пример #8
0
    if fp16:
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=lr,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=warmup_proportion, t_total=num_train_optimization_steps)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=lr,
                             warmup=warmup_proportion,
                             t_total=num_train_optimization_steps)

    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Batch size = %d", batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)

    model.train()
    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    for _ in trange(int(num_train_epochs), desc="Epoch"):
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        for step, batch in enumerate(tqdm(
Пример #9
0
def main(config, model_times, label_list):

    if not os.path.exists(config.output_dir + model_times):
        os.makedirs(config.output_dir + model_times)

    if not os.path.exists(config.cache_dir + model_times):
        os.makedirs(config.cache_dir + model_times)

    # Bert 模型输出文件
    output_model_file = os.path.join(config.output_dir, model_times,
                                     WEIGHTS_NAME)
    output_config_file = os.path.join(config.output_dir, model_times,
                                      CONFIG_NAME)

    # 设备准备
    gpu_ids = [int(device_id) for device_id in config.gpu_ids.split()]
    device, n_gpu = get_device(gpu_ids[0])
    if n_gpu > 1:
        n_gpu = len(gpu_ids)

    config.train_batch_size = config.train_batch_size // config.gradient_accumulation_steps

    # 设定随机种子
    random.seed(config.seed)
    np.random.seed(config.seed)
    torch.manual_seed(config.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(config.seed)

    # 数据准备
    tokenizer = BertTokenizer.from_pretrained(
        config.bert_vocab_file, do_lower_case=config.do_lower_case)  # 分词器选择

    num_labels = len(label_list)

    # Train and dev
    if config.do_train:

        train_dataloader, train_examples_len = load_data(
            config.data_dir, tokenizer, config.max_seq_length,
            config.train_batch_size, "train", label_list)
        dev_dataloader, _ = load_data(config.data_dir, tokenizer,
                                      config.max_seq_length,
                                      config.dev_batch_size, "dev", label_list)

        num_train_optimization_steps = int(
            train_examples_len / config.train_batch_size /
            config.gradient_accumulation_steps) * config.num_train_epochs

        # 模型准备
        print("model name is {}".format(config.model_name))
        if config.model_name == "BertOrigin":
            from BertOrigin.BertOrigin import BertOrigin
            model = BertOrigin.from_pretrained(config.bert_model_dir,
                                               cache_dir=config.cache_dir,
                                               num_labels=num_labels)
        elif config.model_name == "BertCNN":
            from BertCNN.BertCNN import BertCNN
            filter_sizes = [int(val) for val in config.filter_sizes.split()]
            model = BertCNN.from_pretrained(config.bert_model_dir,
                                            cache_dir=config.cache_dir,
                                            num_labels=num_labels,
                                            n_filters=config.filter_num,
                                            filter_sizes=filter_sizes)
        elif config.model_name == "BertATT":
            from BertATT.BertATT import BertATT
            model = BertATT.from_pretrained(config.bert_model_dir,
                                            cache_dir=config.cache_dir,
                                            num_labels=num_labels)

        elif config.model_name == "BertRCNN":
            from BertRCNN.BertRCNN import BertRCNN
            model = BertRCNN.from_pretrained(
                config.bert_model_dir,
                cache_dir=config.cache_dir,
                num_labels=num_labels,
                rnn_hidden_size=config.hidden_size,
                num_layers=config.num_layers,
                bidirectional=config.bidirectional,
                dropout=config.dropout)

        elif config.model_name == "BertCNNPlus":
            from BertCNNPlus.BertCNNPlus import BertCNNPlus
            filter_sizes = [int(val) for val in config.filter_sizes.split()]
            model = BertCNNPlus.from_pretrained(config.bert_model_dir,
                                                cache_dir=config.cache_dir,
                                                num_labels=num_labels,
                                                n_filters=config.filter_num,
                                                filter_sizes=filter_sizes)

        model.to(device)

        if n_gpu > 1:
            model = torch.nn.DataParallel(model, device_ids=gpu_ids)
        """ 优化器准备 """
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=config.learning_rate,
                             warmup=config.warmup_proportion,
                             t_total=num_train_optimization_steps)
        """ 损失函数准备 """
        criterion = nn.CrossEntropyLoss()
        criterion = criterion.to(device)

        train(config.num_train_epochs, n_gpu, model, train_dataloader,
              dev_dataloader, optimizer, criterion,
              config.gradient_accumulation_steps, device, label_list,
              output_model_file, output_config_file, config.log_dir,
              config.print_step, config.early_stop)
    """ Test """

    # test 数据
    test_dataloader, _ = load_data(config.data_dir, tokenizer,
                                   config.max_seq_length,
                                   config.test_batch_size, "test", label_list)

    # 加载模型
    bert_config = BertConfig(output_config_file)

    if config.model_name == "BertOrigin":
        from BertOrigin.BertOrigin import BertOrigin
        model = BertOrigin(bert_config, num_labels=num_labels)
    elif config.model_name == "BertCNN":
        from BertCNN.BertCNN import BertCNN
        filter_sizes = [int(val) for val in config.filter_sizes.split()]
        model = BertCNN(bert_config,
                        num_labels=num_labels,
                        n_filters=config.filter_num,
                        filter_sizes=filter_sizes)
    elif config.model_name == "BertATT":
        from BertATT.BertATT import BertATT
        model = BertATT(bert_config, num_labels=num_labels)
    elif config.model_name == "BertRCNN":
        from BertRCNN.BertRCNN import BertRCNN
        model = BertRCNN(bert_config, num_labels, config.hidden_size,
                         config.num_layers, config.bidirectional,
                         config.dropout)
    elif config.model_name == "BertCNNPlus":
        from BertCNNPlus.BertCNNPlus import BertCNNPlus
        filter_sizes = [int(val) for val in config.filter_sizes.split()]
        model = BertCNNPlus(bert_config,
                            num_labels=num_labels,
                            n_filters=config.filter_num,
                            filter_sizes=filter_sizes)

    model.load_state_dict(torch.load(output_model_file))
    model.to(device)

    # 损失函数准备
    criterion = nn.CrossEntropyLoss()
    criterion = criterion.to(device)

    # test the model
    test_loss, test_acc, test_report, test_auc, all_idx, all_labels, all_preds = evaluate_save(
        model, test_dataloader, criterion, device, label_list)
    print("-------------- Test -------------")
    print(
        f'\t  Loss: {test_loss: .3f} | Acc: {test_acc*100: .3f} % | AUC:{test_auc}'
    )

    for label in label_list:
        print('\t {}: Precision: {} | recall: {} | f1 score: {}'.format(
            label, test_report[label]['precision'],
            test_report[label]['recall'], test_report[label]['f1-score']))
    print_list = ['macro avg', 'weighted avg']

    for label in print_list:
        print('\t {}: Precision: {} | recall: {} | f1 score: {}'.format(
            label, test_report[label]['precision'],
            test_report[label]['recall'], test_report[label]['f1-score']))
Пример #10
0
def run_aug(args, save_every_epoch=False):
    # Augment the dataset with your own choice of Processer
    processors = {"toxic": AugProcessor}

    task_name = args.task_name
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))
    args.data_dir = os.path.join(args.data_dir, task_name)
    args.output_dir = os.path.join(args.output_dir, task_name)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    os.makedirs(args.output_dir, exist_ok=True)
    processor = processors[task_name]()
    label_list = processor.get_labels(task_name)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    train_examples = processor.get_train_examples(args.data_dir)
    num_train_steps = int(
        len(train_examples) / args.train_batch_size * args.num_train_epochs)

    model = BertForMaskedLM.from_pretrained(
        args.bert_model, cache_dir=PYTORCH_PRETRAINED_BERT_CACHE)
    model.cuda()

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay_rate':
        0.0
    }]
    t_total = num_train_steps
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=t_total)

    global_step = 0
    train_features = convert_examples_to_features(train_examples, label_list,
                                                  args.max_seq_length,
                                                  tokenizer)

    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_steps)
    all_init_ids = torch.tensor([f.init_ids for f in train_features],
                                dtype=torch.long)
    all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                   dtype=torch.long)
    all_masked_lm_labels = torch.tensor(
        [f.masked_lm_labels for f in train_features], dtype=torch.long)
    train_data = TensorDataset(all_init_ids, all_input_ids, all_input_mask,
                               all_segment_ids, all_masked_lm_labels)
    print(train_data)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    model.train()
    save_model_dir = os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, task_name)
    if not os.path.exists(save_model_dir):
        os.mkdir(save_model_dir)
    for e in trange(int(args.num_train_epochs), desc="Epoch"):
        avg_loss = 0.

        for step, batch in enumerate(train_dataloader):
            batch = tuple(t.cuda() for t in batch)
            _, input_ids, input_mask, segment_ids, masked_ids = batch
            loss = model(input_ids, segment_ids, input_mask, masked_ids)
            loss.backward()
            avg_loss += loss.item()
            optimizer.step()
            model.zero_grad()
            if (step + 1) % 50 == 0:
                print("avg_loss: {}".format(avg_loss / 50))
                avg_loss = 0
        if save_every_epoch:
            save_model_name = "BertForMaskedLM_" + task_name + "_epoch_" + str(
                e + 1)
            save_model_path = os.path.join(save_model_dir, save_model_name)
            torch.save(model, save_model_path)
        else:
            if (e + 1) % 10 == 0:
                save_model_name = "BertForMaskedLM_" + task_name + "_epoch_" + str(
                    e + 1)
                save_model_path = os.path.join(save_model_dir, save_model_name)
                torch.save(model, save_model_path)
Пример #11
0
        from apex.optimizers import FusedAdam
    except ImportError:
        raise ImportError('please install apex')

    optimizer = FusedAdam(optimizer_grouped_parameters,
                          lr=getattr(args, 'lr'),
                          bias_correction=False,
                          max_grad_norm=1.0)
    if args.loss_scale == 0:
        optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
    else:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale)
else:
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_optimization_steps)
loss_fct = CrossEntropyLoss()
# train
global_step = 0
last_val_loss = 100
epochs = getattr(args, 'num_train_epochs')
for i in range(1, epochs + 1):
    training_loss = 0

    model.train()
    for step, batch in enumerate(
            tqdm(train_dataloader, desc='train', total=len(train_dataloader))):
        if torch.cuda.is_available():
            batch = tuple(item.cuda() for item in batch)
        input_ids, input_mask, segment_ids, label_ids = batch
Пример #12
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run test on the test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument(
        "--test_set",
        default='story',
        type=str,
        #choices=['story', 'news', 'chat', 'train'],
        help="Choose the test set.")
    parser.add_argument("--no_logit_mask",
                        action='store_true',
                        help="Whether not to use logit mask")
    parser.add_argument("--eval_every_epoch",
                        action='store_true',
                        help="Whether to evaluate for every epoch")
    parser.add_argument("--use_weight",
                        action='store_true',
                        help="Whether to use class-balancing weight")
    parser.add_argument("--hybrid_attention",
                        action='store_true',
                        help="Whether to use hybrid attention")
    parser.add_argument(
        "--state_dir",
        default="",
        type=str,
        help=
        "Where to load state dict instead of using Google pre-trained model")
    parser.add_argument(
        '--ratio',
        type=float,
        default=0.9,
        help="softmax target for the target label, 1-ratio for the abbreviation"
    )
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval and not args.do_test:
        raise ValueError(
            "At least one of `do_train` or `do_eval` or 'do_test' must be True."
        )

    processor = DataProcessor()
    label_list = processor.get_labels(args.data_dir)
    abex = processor.get_abex(args.data_dir)
    num_labels = len(label_list)
    logger.info("num_labels:" + str(num_labels))
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = len(
            train_examples
        ) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps / torch.distributed.get_world_size(
            )
        num_train_optimization_steps = math.ceil(num_train_optimization_steps)

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    max_epoch = -1
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        # raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
        files = os.listdir(args.output_dir)
        for fname in files:
            if re.search(WEIGHTS_NAME, fname) and fname != WEIGHTS_NAME:
                max_epoch = max(max_epoch, int(fname.split('_')[-1]))
        if os.path.exists(
                os.path.join(args.output_dir,
                             WEIGHTS_NAME + '_' + str(max_epoch))):
            output_model_file = os.path.join(
                args.output_dir, WEIGHTS_NAME + '_' + str(max_epoch))
            output_config_file = os.path.join(args.output_dir,
                                              CONFIG_NAME + '_0')
            config = BertConfig(output_config_file)
            model = BertForAbbr(config, num_labels=num_labels)
            model.load_state_dict(torch.load(output_model_file))
        else:
            raise ValueError(
                "Output directory ({}) already exists but no model checkpoint was found."
                .format(args.output_dir))
    else:
        os.makedirs(args.output_dir, exist_ok=True)
        if args.state_dir and os.path.exists(args.state_dir):
            state_dict = torch.load(args.state_dir)
            if isinstance(state_dict, dict) or isinstance(
                    state_dict, collections.OrderedDict):
                assert 'model' in state_dict
                state_dict = state_dict['model']
            print("Using my own BERT state dict.")
        elif args.state_dir and not os.path.exists(args.state_dir):
            print(
                "Warning: the state dict does not exist, using the Google pre-trained model instead."
            )
            state_dict = None
        else:
            state_dict = None
        model = BertForAbbr.from_pretrained(args.bert_model,
                                            cache_dir=cache_dir,
                                            state_dict=state_dict,
                                            num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)
    if os.path.exists(
            os.path.join(args.output_dir,
                         OPTIMIZER_NAME + '_' + str(max_epoch))):
        output_optimizer_file = os.path.join(
            args.output_dir, OPTIMIZER_NAME + '_' + str(max_epoch))
        optimizer.load_state_dict(torch.load(output_optimizer_file))

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features, masks, weight = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer, abex,
            args.ratio)
        if args.eval_every_epoch:
            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features, masks, weight = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer,
                abex, args.ratio)

        if args.no_logit_mask:
            print("Remove logit mask")
            masks = None
        if not args.use_weight:
            weight = None
        hybrid_mask = None

        writer = SummaryWriter(log_dir=os.environ['HOME'])
        tag = str(int(time.time()))

        print(weight)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        all_label_poss = torch.tensor([f.label_pos for f in train_features],
                                      dtype=torch.long)
        all_targets = torch.tensor([f.targets for f in train_features],
                                   dtype=torch.float)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_label_ids, all_label_poss, all_targets)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for ep in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, label_ids, label_poss, targets = batch
                # print(masks.size())
                loss = model(input_ids,
                             input_mask,
                             label_ids,
                             logit_masks=masks,
                             weight=weight,
                             hybrid_mask=None,
                             targets=targets)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                writer.add_scalar('data/loss' + tag, loss.item(), global_step)
            logger.info(f'Trainging loss: {tr_loss/nb_tr_steps}')

            if args.eval_every_epoch:
                # evaluate for every epoch
                # save model and load for a single GPU
                model_to_save = model.module if hasattr(
                    model, 'module') else model  # Only save the model it-self
                output_model_file = os.path.join(args.output_dir,
                                                 WEIGHTS_NAME + '_' + str(ep))
                torch.save(model_to_save.state_dict(), output_model_file)
                output_optimizer_file = os.path.join(
                    args.output_dir, OPTIMIZER_NAME + '_' + str(ep))
                torch.save(optimizer.state_dict(), output_optimizer_file)
                output_config_file = os.path.join(args.output_dir,
                                                  CONFIG_NAME + '_' + str(ep))
                with open(output_config_file, 'w') as f:
                    f.write(model_to_save.config.to_json_string())

                # Load a trained model and config that you have fine-tuned
                config = BertConfig(output_config_file)
                model_eval = BertForAbbr(config, num_labels=num_labels)
                model_eval.load_state_dict(torch.load(output_model_file))
                model_eval.to(device)

                if args.hybrid_attention:
                    hybrid_mask = hybrid_mask.to(device)
                else:
                    hybrid_mask = None

                if args.no_logit_mask:
                    print("Remove logit mask")
                    masks = None
                else:
                    masks = masks.to(device)
                chars = [f.char for f in eval_features]
                print(len(set(chars)), sorted(list(set(chars))))
                logger.info("***** Running evaluation *****")
                logger.info("  Num examples = %d", len(eval_examples))
                logger.info("  Batch size = %d", args.eval_batch_size)
                all_input_ids = torch.tensor(
                    [f.input_ids for f in eval_features], dtype=torch.long)
                all_input_mask = torch.tensor(
                    [f.input_mask for f in eval_features], dtype=torch.long)
                all_label_ids = torch.tensor(
                    [f.label_id for f in eval_features], dtype=torch.long)
                all_label_poss = torch.tensor(
                    [f.label_pos for f in eval_features], dtype=torch.long)
                all_targets = torch.tensor([f.targets for f in eval_features],
                                           dtype=torch.float)
                eval_data = TensorDataset(all_input_ids, all_input_mask,
                                          all_label_ids, all_label_poss,
                                          all_targets)
                # Run prediction for full data
                eval_sampler = SequentialSampler(eval_data)
                eval_dataloader = DataLoader(eval_data,
                                             sampler=eval_sampler,
                                             batch_size=args.eval_batch_size)

                model_eval.eval()
                eval_loss, eval_accuracy = 0, 0
                nb_eval_steps, nb_eval_examples = 0, 0

                res_list = []
                for input_ids, input_mask, label_ids, label_poss, targets in tqdm(
                        eval_dataloader, desc="Evaluating"):
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    label_ids = label_ids.to(device)
                    label_poss = label_poss.to(device)
                    targets = targets.to(device)
                    with torch.no_grad():
                        tmp_eval_loss = model_eval(input_ids,
                                                   input_mask,
                                                   label_ids,
                                                   logit_masks=masks,
                                                   hybrid_mask=None,
                                                   targets=targets)
                        logits = model_eval(input_ids,
                                            input_mask,
                                            label_ids,
                                            logit_masks=masks,
                                            cal_loss=False,
                                            hybrid_mask=None,
                                            targets=targets)
                    # print(logits.size())
                    logits = logits.detach().cpu().numpy()
                    label_ids = label_ids.to('cpu').numpy()
                    res_list += accuracy_list(logits, label_ids, label_poss)
                    eval_loss += tmp_eval_loss.mean().item()

                    nb_eval_examples += input_ids.size(0)
                    nb_eval_steps += 1

                eval_loss = eval_loss / nb_eval_steps
                loss = tr_loss / nb_tr_steps if args.do_train else None
                acc = sum(res_list) / len(res_list)
                char_count = {k: [] for k in list(set(chars))}
                for i, c in enumerate(chars):
                    char_count[c].append(res_list[i])
                char_acc = {
                    k: sum(char_count[k]) / len(char_count[k])
                    for k in char_count
                }

                result = {
                    'epoch': ep + 1,
                    'eval_loss': eval_loss,
                    'eval_accuracy': acc,
                    'global_step': global_step,
                    'loss': loss
                }
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                output_eval_file = os.path.join(
                    args.output_dir, "epoch_" + str(ep + 1) + ".txt")
                with open(output_eval_file, 'w') as f:
                    f.write(
                        json.dumps(result, ensure_ascii=False) + '\n' +
                        json.dumps(char_acc, ensure_ascii=False))

                # multi processing
                # if n_gpu > 1:
                #    model = torch.nn.DataParallel(model)

    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_optimizer_file = os.path.join(args.output_dir, OPTIMIZER_NAME)
        torch.save(optimizer.state_dict(), output_optimizer_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForAbbr(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
    else:
        # model = BertForPolyphonyMulti.from_pretrained(args.bert_model, num_labels = num_labels)
        pass
    model.to(device)

    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        config = BertConfig(output_config_file)
        model = BertForAbbr(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
        model.to(device)

        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features, masks, weight = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer, abex,
            args.ratio)

        hybrid_mask = None
        if args.no_logit_mask:
            print("Remove logit mask")
            masks = None
        else:
            masks = masks.to(device)
        chars = [f.char for f in eval_features]
        print(len(set(chars)), sorted(list(set(chars))))
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        all_label_poss = torch.tensor([f.label_pos for f in eval_features],
                                      dtype=torch.long)
        all_targets = torch.tensor([f.targets for f in eval_features],
                                   dtype=torch.float)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_label_ids,
                                  all_label_poss, all_targets)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        res_list = []
        # masks = masks.to(device)
        for input_ids, input_mask, label_ids, label_poss, targets in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            label_ids = label_ids.to(device)
            label_poss = label_poss.to(device)
            targets = targets.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids,
                                      input_mask,
                                      label_ids,
                                      logit_masks=masks,
                                      hybrid_mask=None,
                                      targets=targets)
                logits = model(input_ids,
                               input_mask,
                               label_ids,
                               logit_masks=masks,
                               cal_loss=False,
                               hybrid_mask=None,
                               targets=targets)
            # print(logits.size())
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)
            res_list += accuracy_list(logits, label_ids, label_poss)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None
        acc = sum(res_list) / len(res_list)
        char_count = {k: [] for k in list(set(chars))}
        for i, c in enumerate(chars):
            char_count[c].append(res_list[i])
        char_acc = {
            k: sum(char_count[k]) / len(char_count[k])
            for k in char_count
        }

        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'global_step': global_step,
            'loss': loss,
            'acc': acc
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
            for key in sorted(char_acc.keys()):
                logger.info("  %s = %s", key, str(char_acc[key]))
                writer.write("%s = %s\n" % (key, str(char_acc[key])))
        print("mean accuracy",
              sum(char_acc[c] for c in char_acc) / len(char_acc))

    if args.do_test and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        config = BertConfig(output_config_file)
        model = BertForAbbr(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file))
        model.to(device)

        eval_examples = processor.get_test_examples(args.data_dir)
        eval_features, masks, weight = convert_examples_to_features(
            eval_examples,
            label_list,
            args.max_seq_length,
            tokenizer,
            abex,
            args.ratio,
            is_test=True)

        hybrid_mask = None
        if args.no_logit_mask:
            print("Remove logit mask")
            masks = None
        else:
            masks = masks.to(device)
        chars = [f.char for f in eval_features]
        print(len(set(chars)), sorted(list(set(chars))))
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        all_label_poss = torch.tensor([f.label_pos for f in eval_features],
                                      dtype=torch.long)
        all_targets = torch.tensor([f.targets for f in eval_features],
                                   dtype=torch.float)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_label_ids,
                                  all_label_poss, all_targets)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        res_list = []
        out_list = []
        # masks = masks.to(device)
        for input_ids, input_mask, label_ids, label_poss, targets in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            label_ids = label_ids.to(device)
            label_poss = label_poss.to(device)
            targets = targets.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids,
                                      input_mask,
                                      label_ids,
                                      logit_masks=masks,
                                      hybrid_mask=None,
                                      targets=targets)
                logits = model(input_ids,
                               input_mask,
                               label_ids,
                               logit_masks=masks,
                               cal_loss=False,
                               hybrid_mask=None,
                               targets=targets)
            # print(logits.size())
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)
            tmp_out, tmp_rlist = result_list(logits, label_ids, label_poss,
                                             label_list)
            #res_list += accuracy_list(logits, label_ids, label_poss)
            res_list += tmp_rlist
            out_list += tmp_out

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None
        acc = sum(res_list) / len(res_list)
        char_count = {k: [] for k in list(set(chars))}
        for i, c in enumerate(chars):
            char_count[c].append(res_list[i])
        char_acc = {
            k: sum(char_count[k]) / len(char_count[k])
            for k in char_count
        }

        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'global_step': global_step,
            'loss': loss,
            'acc': acc
        }

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
            for key in sorted(char_acc.keys()):
                logger.info("  %s = %s", key, str(char_acc[key]))
                writer.write("%s = %s\n" % (key, str(char_acc[key])))
        print("mean accuracy",
              sum(char_acc[c] for c in char_acc) / len(char_acc))
        output_acc_file = os.path.join(args.output_dir, "res.json")
        output_reslist_file = os.path.join(args.output_dir, "outlist.json")
        with open(output_acc_file, "w") as f:
            f.write(json.dumps(char_acc, ensure_ascii=False, indent=2))
        with open(output_reslist_file, "w") as f:
            f.write(json.dumps(out_list, ensure_ascii=False, indent=2))
Пример #13
0
def main():
    parser = argparse.ArgumentParser()

    # General
    parser.add_argument(
        "--bert_model",
        default="bert-base-cased",
        type=str,
        help=
        "Bert pre-trained model selected in the list: bert-base-cased, bert-large-cased."
    )
    parser.add_argument("--config_path",
                        default=None,
                        type=str,
                        help="Bert config file path.")
    parser.add_argument(
        "--output_dir",
        default='tmp',
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument(
        "--log_file",
        default="training.log",
        type=str,
        help="The output directory where the log will be written.")
    parser.add_argument("--model_recover_path",
                        default=None,
                        type=str,
                        help="The file of fine-tuned pretraining model.")
    parser.add_argument(
        "--do_train",
        action='store_true',
        help="Whether to run training. This should ALWAYS be set to True.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=64,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--label_smoothing",
                        default=0,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="The weight decay rate for Adam.")
    parser.add_argument("--finetune_decay",
                        action='store_true',
                        help="Weight decay to the original weights.")
    parser.add_argument("--num_train_epochs",
                        default=30,
                        type=int,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--global_rank",
                        type=int,
                        default=-1,
                        help="global_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--fp32_embedding',
        action='store_true',
        help=
        "Whether to use 32-bit float precision instead of 32-bit for embeddings"
    )
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--amp',
                        action='store_true',
                        help="Whether to use amp for fp16")
    parser.add_argument(
        '--from_scratch',
        action='store_true',
        help=
        "Initialize parameters with random values (i.e., training from scratch)."
    )
    parser.add_argument('--new_segment_ids',
                        action='store_true',
                        help="Use new segment ids for bi-uni-directional LM.")
    parser.add_argument('--tokenized_input',
                        action='store_true',
                        help="Whether the input is tokenized.")
    parser.add_argument(
        '--max_len_a',
        type=int,
        default=0,
        help="Truncate_config: maximum length of segment A. 0 means none.")
    parser.add_argument('--max_len_b',
                        type=int,
                        default=20,
                        help="Truncate_config: maximum length of segment B.")
    parser.add_argument(
        '--trunc_seg',
        default='b',
        help="Truncate_config: first truncate segment A/B (option: a, b).")
    parser.add_argument(
        '--always_truncate_tail',
        action='store_true',
        help="Truncate_config: Whether we should always truncate tail.")
    parser.add_argument(
        "--mask_prob",
        default=0.15,
        type=float,
        help=
        "Number of prediction is sometimes less than max_pred when sequence is short."
    )
    parser.add_argument('--max_pred',
                        type=int,
                        default=3,
                        help="Max tokens of prediction.")
    parser.add_argument("--num_workers",
                        default=4,
                        type=int,
                        help="Number of workers for the data loader.")
    parser.add_argument('--max_position_embeddings',
                        type=int,
                        default=None,
                        help="max position embeddings")

    # Others for VLP
    parser.add_argument(
        "--src_file",
        default=['/mnt/dat/COCO/annotations/dataset_coco.json'],
        type=str,
        nargs='+',
        help="The input data file name.")
    parser.add_argument('--len_vis_input', type=int, default=100)
    parser.add_argument('--enable_visdom', action='store_true')
    parser.add_argument('--visdom_port', type=int, default=8888)
    # parser.add_argument('--resnet_model', type=str, default='imagenet_weights/resnet101.pth')
    parser.add_argument('--image_root',
                        type=str,
                        default='/mnt/dat/COCO/images')
    parser.add_argument('--dataset',
                        default='coco',
                        type=str,
                        help='coco | flickr30k | cc')
    parser.add_argument('--split',
                        type=str,
                        nargs='+',
                        default=['train', 'restval'])

    parser.add_argument('--world_size',
                        default=1,
                        type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist_url',
                        default='file://[PT_OUTPUT_DIR]/nonexistent_file',
                        type=str,
                        help='url used to set up distributed training')
    parser.add_argument(
        '--file_valid_jpgs',
        default='/mnt/dat/COCO/annotations/coco_valid_jpgs.json',
        type=str)
    parser.add_argument('--sche_mode',
                        default='warmup_linear',
                        type=str,
                        help="warmup_linear | warmup_constant | warmup_cosine")
    parser.add_argument('--drop_prob', default=0.1, type=float)
    parser.add_argument('--use_num_imgs', default=-1, type=int)
    parser.add_argument('--vis_mask_prob', default=0, type=float)
    parser.add_argument('--max_drop_worst_ratio', default=0, type=float)
    parser.add_argument('--drop_after', default=6, type=int)

    parser.add_argument(
        '--s2s_prob',
        default=1,
        type=float,
        help="Percentage of examples that are bi-uni-directional LM (seq2seq)."
    )
    parser.add_argument(
        '--bi_prob',
        default=0,
        type=float,
        help="Percentage of examples that are bidirectional LM.")
    parser.add_argument(
        '--l2r_prob',
        default=0,
        type=float,
        help=
        "Percentage of examples that are unidirectional (left-to-right) LM.")
    parser.add_argument('--enable_butd',
                        action='store_true',
                        help='set to take in region features')
    parser.add_argument(
        '--region_bbox_file',
        default=
        'coco_detection_vg_thresh0.2_feat_gvd_checkpoint_trainvaltest.h5',
        type=str)
    parser.add_argument(
        '--region_det_file_prefix',
        default=
        'feat_cls_1000/coco_detection_vg_100dets_gvd_checkpoint_trainval',
        type=str)
    parser.add_argument('--tasks', default='img2txt', help='img2txt | vqa2')
    parser.add_argument('--relax_projection',
                        action='store_true',
                        help="Use different projection layers for tasks.")
    parser.add_argument('--scst',
                        action='store_true',
                        help='Self-critical sequence training')

    args = parser.parse_args()

    print('global_rank: {}, local rank: {}'.format(args.global_rank,
                                                   args.local_rank))

    args.max_seq_length = args.max_len_b + args.len_vis_input + 3  # +3 for 2x[SEP] and [CLS]
    args.mask_image_regions = (args.vis_mask_prob > 0
                               )  # whether to mask out image regions
    args.dist_url = args.dist_url.replace('[PT_OUTPUT_DIR]', args.output_dir)

    # arguments inspection
    assert (args.tasks in ('img2txt', 'vqa2'))
    assert args.enable_butd == True, 'only support region attn! featmap attn deprecated'
    assert (
        not args.scst) or args.dataset == 'coco', 'scst support on coco only!'
    if args.scst:
        assert args.dataset == 'coco', 'scst support on coco only!'
        assert args.max_pred == 0 and args.mask_prob == 0, 'no mask for scst!'
        rl_crit = RewardCriterion()

    if args.enable_butd:
        assert (args.len_vis_input == 100)
        args.region_bbox_file = os.path.join(args.image_root,
                                             args.region_bbox_file)
        args.region_det_file_prefix = os.path.join(
            args.image_root, args.region_det_file_prefix) if args.dataset in (
                'cc', 'coco') and args.region_det_file_prefix != '' else ''

    # output config
    os.makedirs(args.output_dir, exist_ok=True)
    json.dump(args.__dict__,
              open(os.path.join(args.output_dir, 'opt.json'), 'w'),
              sort_keys=True,
              indent=2)

    logging.basicConfig(
        filename=os.path.join(args.output_dir, args.log_file),
        filemode='w',
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO)
    logger = logging.getLogger(__name__)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl',
                                             init_method=args.dist_url,
                                             world_size=args.world_size,
                                             rank=args.global_rank)
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    # fix random seed
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # plotting loss, optional
    if args.enable_visdom:
        import visdom
        vis = visdom.Visdom(port=args.visdom_port, env=args.output_dir)
        vis_window = {'iter': None, 'score': None}

    tokenizer = BertTokenizer.from_pretrained(
        args.bert_model,
        do_lower_case=args.do_lower_case,
        cache_dir=args.output_dir +
        '/.pretrained_model_{}'.format(args.global_rank))
    if args.max_position_embeddings:
        tokenizer.max_len = args.max_position_embeddings
    data_tokenizer = WhitespaceTokenizer(
    ) if args.tokenized_input else tokenizer

    if args.do_train:
        bi_uni_pipeline = [
            seq2seq_loader.Preprocess4Seq2seq(
                args.max_pred,
                args.mask_prob,
                list(tokenizer.vocab.keys()),
                tokenizer.convert_tokens_to_ids,
                args.max_seq_length,
                new_segment_ids=args.new_segment_ids,
                truncate_config={
                    'max_len_a': args.max_len_a,
                    'max_len_b': args.max_len_b,
                    'trunc_seg': args.trunc_seg,
                    'always_truncate_tail': args.always_truncate_tail
                },
                mask_image_regions=args.mask_image_regions,
                mode="s2s",
                len_vis_input=args.len_vis_input,
                vis_mask_prob=args.vis_mask_prob,
                enable_butd=args.enable_butd,
                region_bbox_file=args.region_bbox_file,
                region_det_file_prefix=args.region_det_file_prefix,
                local_rank=args.local_rank,
                load_vqa_ann=(args.tasks == 'vqa2'))
        ]
        bi_uni_pipeline.append(
            seq2seq_loader.Preprocess4Seq2seq(
                args.max_pred,
                args.mask_prob,
                list(tokenizer.vocab.keys()),
                tokenizer.convert_tokens_to_ids,
                args.max_seq_length,
                new_segment_ids=args.new_segment_ids,
                truncate_config={
                    'max_len_a': args.max_len_a,
                    'max_len_b': args.max_len_b,
                    'trunc_seg': args.trunc_seg,
                    'always_truncate_tail': args.always_truncate_tail
                },
                mask_image_regions=args.mask_image_regions,
                mode="bi",
                len_vis_input=args.len_vis_input,
                vis_mask_prob=args.vis_mask_prob,
                enable_butd=args.enable_butd,
                region_bbox_file=args.region_bbox_file,
                region_det_file_prefix=args.region_det_file_prefix,
                local_rank=args.local_rank,
                load_vqa_ann=(args.tasks == 'vqa2')))
        bi_uni_pipeline.append(
            seq2seq_loader.Preprocess4Seq2seq(
                args.max_pred,
                args.mask_prob,
                list(tokenizer.vocab.keys()),
                tokenizer.convert_tokens_to_ids,
                args.max_seq_length,
                new_segment_ids=args.new_segment_ids,
                truncate_config={
                    'max_len_a': args.max_len_a,
                    'max_len_b': args.max_len_b,
                    'trunc_seg': args.trunc_seg,
                    'always_truncate_tail': args.always_truncate_tail
                },
                mask_image_regions=args.mask_image_regions,
                mode="l2r",
                len_vis_input=args.len_vis_input,
                vis_mask_prob=args.vis_mask_prob,
                enable_butd=args.enable_butd,
                region_bbox_file=args.region_bbox_file,
                region_det_file_prefix=args.region_det_file_prefix,
                local_rank=args.local_rank,
                load_vqa_ann=(args.tasks == 'vqa2')))

        train_dataset = seq2seq_loader.Img2txtDataset(
            args.src_file,
            args.image_root,
            args.split,
            args.train_batch_size,
            data_tokenizer,
            args.max_seq_length,
            file_valid_jpgs=args.file_valid_jpgs,
            bi_uni_pipeline=bi_uni_pipeline,
            use_num_imgs=args.use_num_imgs,
            s2s_prob=args.s2s_prob,
            bi_prob=args.bi_prob,
            l2r_prob=args.l2r_prob,
            enable_butd=args.enable_butd,
            tasks=args.tasks)

        if args.world_size == 1:
            train_sampler = RandomSampler(train_dataset, replacement=False)
        else:
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=args.train_batch_size,
            sampler=train_sampler,
            num_workers=args.num_workers,
            collate_fn=batch_list_to_batch_tensors,
            pin_memory=True)

    # note: args.train_batch_size has been changed to (/= args.gradient_accumulation_steps)
    t_total = int(
        len(train_dataloader) * args.num_train_epochs * 1. /
        args.gradient_accumulation_steps)

    amp_handle = None
    if args.fp16 and args.amp:
        from apex import amp
        amp_handle = amp.init(enable_caching=True)
        logger.info("enable fp16 with amp")

    # Prepare model
    recover_step = _get_max_epoch_model(args.output_dir)
    cls_num_labels = 2
    type_vocab_size = 6 if args.new_segment_ids else 2
    relax_projection = 4 if args.relax_projection else 0
    task_idx_proj = 3 if args.tasks == 'img2txt' else 0
    mask_word_id, eos_word_ids, pad_word_ids = tokenizer.convert_tokens_to_ids(
        ["[MASK]", "[SEP]", "[PAD]"])  # index in BERT vocab: 103, 102, 0

    if (recover_step is None) and (args.model_recover_path is None):
        # if _state_dict == {}, the parameters are randomly initialized
        # if _state_dict == None, the parameters are initialized with bert-init
        assert args.scst == False, 'must init from maximum likelihood training'
        _state_dict = {} if args.from_scratch else None
        model = BertForPreTrainingLossMask.from_pretrained(
            args.bert_model,
            state_dict=_state_dict,
            num_labels=cls_num_labels,
            type_vocab_size=type_vocab_size,
            relax_projection=relax_projection,
            config_path=args.config_path,
            task_idx=task_idx_proj,
            max_position_embeddings=args.max_position_embeddings,
            label_smoothing=args.label_smoothing,
            fp32_embedding=args.fp32_embedding,
            cache_dir=args.output_dir +
            '/.pretrained_model_{}'.format(args.global_rank),
            drop_prob=args.drop_prob,
            enable_butd=args.enable_butd,
            len_vis_input=args.len_vis_input,
            tasks=args.tasks)
        global_step = 0
    else:
        if recover_step:
            logger.info("***** Recover model: %d *****", recover_step)
            model_recover = torch.load(
                os.path.join(args.output_dir,
                             "model.{0}.bin".format(recover_step)))
            # recover_step == number of epochs
            global_step = math.floor(recover_step * t_total * 1. /
                                     args.num_train_epochs)
        elif args.model_recover_path:
            logger.info("***** Recover model: %s *****",
                        args.model_recover_path)
            model_recover = torch.load(args.model_recover_path)
            global_step = 0
        if not args.scst:
            model = BertForPreTrainingLossMask.from_pretrained(
                args.bert_model,
                state_dict=model_recover,
                num_labels=cls_num_labels,
                type_vocab_size=type_vocab_size,
                relax_projection=relax_projection,
                config_path=args.config_path,
                task_idx=task_idx_proj,
                max_position_embeddings=args.max_position_embeddings,
                label_smoothing=args.label_smoothing,
                fp32_embedding=args.fp32_embedding,
                cache_dir=args.output_dir +
                '/.pretrained_model_{}'.format(args.global_rank),
                drop_prob=args.drop_prob,
                enable_butd=args.enable_butd,
                len_vis_input=args.len_vis_input,
                tasks=args.tasks)
        else:
            model = BertForSeq2SeqDecoder.from_pretrained(
                args.bert_model,
                max_position_embeddings=args.max_position_embeddings,
                config_path=args.config_path,
                state_dict=model_recover,
                num_labels=cls_num_labels,
                type_vocab_size=type_vocab_size,
                task_idx=task_idx_proj,
                mask_word_id=mask_word_id,
                search_beam_size=1,
                eos_id=eos_word_ids,
                mode='s2s',
                enable_butd=args.enable_butd,
                len_vis_input=args.len_vis_input)

        del model_recover
        torch.cuda.empty_cache()

    # deprecated
    # from vlp.resnet import resnet
    # cnn = resnet(args.resnet_model, _num_layers=101, _fixed_block=4, pretrained=True) # no finetuning

    if args.fp16:
        model.half()
        # cnn.half()
        if args.fp32_embedding:
            model.bert.embeddings.word_embeddings.float()
            model.bert.embeddings.position_embeddings.float()
            model.bert.embeddings.token_type_embeddings.float()
    model.to(device)
    # cnn.to(device)
    if args.local_rank != -1:
        try:
            # from apex.parallel import DistributedDataParallel as DDP
            from torch.nn.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model,
                    device_ids=[args.local_rank],
                    output_device=args.local_rank,
                    find_unused_parameters=True)
        # cnn = DDP(cnn)
    elif n_gpu > 1:
        # model = torch.nn.DataParallel(model)
        model = DataParallelImbalance(model)
        # cnn = DataParallelImbalance(cnn)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            # from apex.optimizers import FP16_Optimizer
            from pytorch_pretrained_bert.optimization_fp16 import FP16_Optimizer_State
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer_State(optimizer,
                                             dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer_State(optimizer,
                                             static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             schedule=args.sche_mode,
                             t_total=t_total)

    if recover_step:
        logger.info("***** Recover optimizer: %d *****", recover_step)
        optim_recover = torch.load(
            os.path.join(args.output_dir,
                         "optim.{0}.bin".format(recover_step)))
        if hasattr(optim_recover, 'state_dict'):
            optim_recover = optim_recover.state_dict()
        optimizer.load_state_dict(optim_recover)
        if args.loss_scale == 0:
            logger.info("***** Recover optimizer: dynamic_loss_scale *****")
            optimizer.dynamic_loss_scale = True

    logger.info("***** CUDA.empty_cache() *****")
    torch.cuda.empty_cache()

    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", t_total)
        logger.info("  Loader length = %d", len(train_dataloader))

        model.train()
        if recover_step:
            start_epoch = recover_step + 1
        else:
            start_epoch = 1
        for i_epoch in trange(start_epoch,
                              args.num_train_epochs + 1,
                              desc="Epoch"):
            if args.local_rank >= 0:
                train_sampler.set_epoch(i_epoch - 1)
            iter_bar = tqdm(train_dataloader, desc='Iter (loss=X.XXX)')
            nbatches = len(train_dataloader)
            train_loss = []
            pretext_loss = []
            vqa2_loss = []
            scst_reward = []
            for step, batch in enumerate(iter_bar):
                batch = [t.to(device) for t in batch]
                input_ids, segment_ids, input_mask, lm_label_ids, masked_pos, masked_weights, is_next, task_idx, img, vis_masked_pos, vis_pe, ans_labels = batch

                if args.fp16:
                    img = img.half()
                    vis_pe = vis_pe.half()

                if args.enable_butd:
                    conv_feats = img.data  # Bx100x2048
                    vis_pe = vis_pe.data
                else:
                    conv_feats, _ = cnn(img.data)  # Bx2048x7x7
                    conv_feats = conv_feats.view(conv_feats.size(0),
                                                 conv_feats.size(1),
                                                 -1).permute(0, 2,
                                                             1).contiguous()

                if not args.scst:
                    loss_tuple = model(
                        conv_feats,
                        vis_pe,
                        input_ids,
                        segment_ids,
                        input_mask,
                        lm_label_ids,
                        ans_labels,
                        is_next,
                        masked_pos=masked_pos,
                        masked_weights=masked_weights,
                        task_idx=task_idx,
                        vis_masked_pos=vis_masked_pos,
                        mask_image_regions=args.mask_image_regions,
                        drop_worst_ratio=args.max_drop_worst_ratio
                        if i_epoch > args.drop_after else 0)
                    mean_reward = loss_tuple[0].new(1).fill_(0)
                else:
                    # scst training
                    model.eval()
                    position_ids = torch.arange(
                        input_ids.size(1),
                        dtype=input_ids.dtype,
                        device=input_ids.device).unsqueeze(0).expand_as(
                            input_ids)
                    input_dummy = input_ids[:, :args.len_vis_input +
                                            2]  # +2 for [CLS] and [SEP]
                    greedy_res = input_ids.new(
                        input_ids.size(0),
                        input_ids.size(1) - args.len_vis_input - 2).fill_(0)
                    gen_result = input_ids.new(
                        input_ids.size(0),
                        input_ids.size(1) - args.len_vis_input - 2).fill_(0)

                    with torch.no_grad():
                        greedy_res_raw, _ = model(conv_feats,
                                                  vis_pe,
                                                  input_dummy,
                                                  segment_ids,
                                                  position_ids,
                                                  input_mask,
                                                  task_idx=task_idx,
                                                  sample_mode='greedy')
                        for b in range(greedy_res_raw.size(0)):
                            for idx in range(greedy_res_raw.size(1)):
                                if greedy_res_raw[b][idx] not in [
                                        eos_word_ids, pad_word_ids
                                ]:
                                    greedy_res[b][idx] = greedy_res_raw[b][idx]
                                else:
                                    if greedy_res_raw[b][idx] == eos_word_ids:
                                        greedy_res[b][idx] = eos_word_ids
                                    break
                    model.train()
                    gen_result_raw, sample_logprobs = model(
                        conv_feats,
                        vis_pe,
                        input_dummy,
                        segment_ids,
                        position_ids,
                        input_mask,
                        task_idx=task_idx,
                        sample_mode='sample')
                    for b in range(gen_result_raw.size(0)):
                        for idx in range(gen_result_raw.size(1)):
                            if gen_result_raw[b][idx] not in [
                                    eos_word_ids, pad_word_ids
                            ]:
                                gen_result[b][idx] = gen_result_raw[b][idx]
                            else:
                                if gen_result_raw[b][idx] == eos_word_ids:
                                    gen_result[b][idx] = eos_word_ids
                                break

                    gt_ids = input_ids[:, args.len_vis_input + 2:]
                    reward = get_self_critical_reward(greedy_res,
                                                      gt_ids, gen_result,
                                                      gt_ids.size(0))
                    reward = torch.from_numpy(reward).float().to(
                        gen_result.device)
                    mean_reward = reward.mean()
                    loss = rl_crit(sample_logprobs, gen_result.data, reward)

                    loss_tuple = [
                        loss,
                        loss.new(1).fill_(0.),
                        loss.new(1).fill_(0.)
                    ]

                # disable pretext_loss_deprecated for now
                masked_lm_loss, pretext_loss_deprecated, ans_loss = loss_tuple
                if n_gpu > 1:  # mean() to average on multi-gpu. For dist, this is done through gradient addition.
                    masked_lm_loss = masked_lm_loss.mean()
                    pretext_loss_deprecated = pretext_loss_deprecated.mean()
                    vqa2_loss = ans_loss.mean()
                loss = masked_lm_loss + pretext_loss_deprecated + ans_loss

                # logging for each step (i.e., before normalization by args.gradient_accumulation_steps)
                iter_bar.set_description('Iter (loss=%5.3f)' % loss.item())
                train_loss.append(loss.item())
                pretext_loss.append(pretext_loss_deprecated.item())
                vqa2_loss.append(ans_loss.item())
                scst_reward.append(mean_reward.item())
                if step % 100 == 0:
                    logger.info(
                        "Epoch {}, Iter {}, Loss {:.2f}, Pretext {:.2f}, VQA2 {:.2f}, Mean R {:.3f}\n"
                        .format(i_epoch, step, np.mean(train_loss),
                                np.mean(pretext_loss), np.mean(vqa2_loss),
                                np.mean(scst_reward)))

                if args.enable_visdom:
                    if vis_window['iter'] is None:
                        vis_window['iter'] = vis.line(
                            X=np.tile(
                                np.arange((i_epoch - 1) * nbatches + step,
                                          (i_epoch - 1) * nbatches + step + 1),
                                (1, 1)).T,
                            Y=np.column_stack(
                                (np.asarray([np.mean(train_loss)]), )),
                            opts=dict(title='Training Loss',
                                      xlabel='Training Iteration',
                                      ylabel='Loss',
                                      legend=['total']))
                    else:
                        vis.line(X=np.tile(
                            np.arange((i_epoch - 1) * nbatches + step,
                                      (i_epoch - 1) * nbatches + step + 1),
                            (1, 1)).T,
                                 Y=np.column_stack(
                                     (np.asarray([np.mean(train_loss)]), )),
                                 opts=dict(title='Training Loss',
                                           xlabel='Training Iteration',
                                           ylabel='Loss',
                                           legend=['total']),
                                 win=vis_window['iter'],
                                 update='append')

                # ensure that accumlated gradients are normalized
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                    if amp_handle:
                        amp_handle._clear_cache()
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    lr_this_step = args.learning_rate * \
                        warmup_linear(global_step/t_total,
                                      args.warmup_proportion)
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            # Save a trained model
            logger.info(
                "** ** * Saving fine-tuned model and optimizer ** ** * ")
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(args.output_dir,
                                             "model.{0}.bin".format(i_epoch))
            output_optim_file = os.path.join(args.output_dir,
                                             "optim.{0}.bin".format(i_epoch))
            if args.global_rank in (
                    -1, 0):  # save model if the first device or no dist
                torch.save(
                    copy.deepcopy(model_to_save).cpu().state_dict(),
                    output_model_file)
                # torch.save(optimizer.state_dict(), output_optim_file) # disable for now, need to sanitize state and ship everthing back to cpu

            logger.info("***** CUDA.empty_cache() *****")
            torch.cuda.empty_cache()

            if args.world_size > 1:
                torch.distributed.barrier()
Пример #14
0
discriminator.to(device, non_blocking=True)
param_optimizer = list(discriminator.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [{
    'params':
    [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
    'weight_decay':
    0.01
}, {
    'params':
    [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
    'weight_decay':
    0.0
}]
opt = BertAdam(optimizer_grouped_parameters,
               lr=Lr,
               warmup=0.1,
               t_total=Epoch * TrainSet.TtrainNum)
bst = 0.0


def test(e, dataset):
    discriminator.eval()
    preds = []
    labels = []

    for words, inMask, maskL, maskR, label in dataset.batchs():
        words, inMask, maskL, maskR, label = words.to(device), inMask.to(
            device), maskL.to(device), maskR.to(device), label.to(device)
        loss, scores, pred = discriminator(words, inMask, maskL, maskR, label)
        preds.append(pred[1].cpu().numpy())
        labels.append(label.cpu().numpy())
Пример #15
0
def main(args):
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    n_gpu = torch.cuda.device_count()

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    if args.do_train:
        logger.addHandler(
            logging.FileHandler(os.path.join(args.output_dir, "train.log"),
                                'w'))
    else:
        logger.addHandler(
            logging.FileHandler(os.path.join(args.output_dir, "eval.log"),
                                'w'))
    logger.info(args)
    logger.info("device: {}, n_gpu: {}, 16-bits training: {}".format(
        device, n_gpu, args.fp16))

    processor = DataProcessor()
    label_list = processor.get_labels(args.data_dir, args.negative_label)
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for i, label in enumerate(label_list)}
    num_labels = len(label_list)
    tokenizer = BertTokenizer.from_pretrained(args.model,
                                              do_lower_case=args.do_lower_case)

    special_tokens = {}
    if args.do_eval:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label2id,
                                                     args.max_seq_length,
                                                     tokenizer, special_tokens,
                                                     args.feature_mode)
        logger.info("***** Dev *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        eval_dataloader = DataLoader(eval_data,
                                     batch_size=args.eval_batch_size)
        eval_label_ids = all_label_ids

    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        train_features = convert_examples_to_features(train_examples, label2id,
                                                      args.max_seq_length,
                                                      tokenizer,
                                                      special_tokens,
                                                      args.feature_mode)

        if args.train_mode == 'sorted' or args.train_mode == 'random_sorted':
            train_features = sorted(train_features,
                                    key=lambda f: np.sum(f.input_mask))
        else:
            random.shuffle(train_features)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        train_dataloader = DataLoader(train_data,
                                      batch_size=args.train_batch_size)
        train_batches = [batch for batch in train_dataloader]

        num_train_optimization_steps = \
            len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

        logger.info("***** Training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        best_result = None
        eval_step = max(1, len(train_batches) // args.eval_per_epoch)
        lrs = [args.learning_rate] if args.learning_rate else \
            [1e-6, 2e-6, 3e-6, 5e-6, 1e-5, 2e-5, 3e-5, 5e-5]
        for lr in lrs:
            model = BertForSequenceClassification.from_pretrained(
                args.model,
                cache_dir=str(PYTORCH_PRETRAINED_BERT_CACHE),
                num_labels=num_labels)
            if args.fp16:
                model.half()
            model.to(device)
            if n_gpu > 1:
                model = torch.nn.DataParallel(model)

            param_optimizer = list(model.named_parameters())
            no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
            optimizer_grouped_parameters = [{
                'params': [
                    p for n, p in param_optimizer
                    if not any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.01
            }, {
                'params': [
                    p for n, p in param_optimizer
                    if any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.0
            }]
            if args.fp16:
                try:
                    from apex.optimizers import FP16_Optimizer
                    from apex.optimizers import FusedAdam
                except ImportError:
                    raise ImportError(
                        "Please install apex from https://www.github.com/nvidia/apex"
                        "to use distributed and fp16 training.")

                optimizer = FusedAdam(optimizer_grouped_parameters,
                                      lr=lr,
                                      bias_correction=False,
                                      max_grad_norm=1.0)
                if args.loss_scale == 0:
                    optimizer = FP16_Optimizer(optimizer,
                                               dynamic_loss_scale=True)
                else:
                    optimizer = FP16_Optimizer(
                        optimizer, static_loss_scale=args.loss_scale)

            else:
                optimizer = BertAdam(optimizer_grouped_parameters,
                                     lr=lr,
                                     warmup=args.warmup_proportion,
                                     t_total=num_train_optimization_steps)

            start_time = time.time()
            global_step = 0
            tr_loss = 0
            nb_tr_examples = 0
            nb_tr_steps = 0
            for epoch in range(int(args.num_train_epochs)):
                model.train()
                logger.info("Start epoch #{} (lr = {})...".format(epoch, lr))
                if args.train_mode == 'random' or args.train_mode == 'random_sorted':
                    random.shuffle(train_batches)
                for step, batch in enumerate(train_batches):
                    batch = tuple(t.to(device) for t in batch)
                    input_ids, input_mask, segment_ids, label_ids = batch
                    loss = model(input_ids, segment_ids, input_mask, label_ids)
                    if n_gpu > 1:
                        loss = loss.mean()
                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps

                    if args.fp16:
                        optimizer.backward(loss)
                    else:
                        loss.backward()

                    tr_loss += loss.item()
                    nb_tr_examples += input_ids.size(0)
                    nb_tr_steps += 1

                    if (step + 1) % args.gradient_accumulation_steps == 0:
                        if args.fp16:
                            lr_this_step = lr * \
                                warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
                            for param_group in optimizer.param_groups:
                                param_group['lr'] = lr_this_step
                        optimizer.step()
                        optimizer.zero_grad()
                        global_step += 1

                    if (step + 1) % eval_step == 0:
                        logger.info(
                            'Epoch: {}, Step: {} / {}, used_time = {:.2f}s, loss = {:.6f}'
                            .format(epoch, step + 1, len(train_batches),
                                    time.time() - start_time,
                                    tr_loss / nb_tr_steps))
                        save_model = False
                        if args.do_eval:
                            preds, result = evaluate(model, device,
                                                     eval_dataloader,
                                                     eval_label_ids,
                                                     num_labels)
                            model.train()
                            result['global_step'] = global_step
                            result['epoch'] = epoch
                            result['learning_rate'] = lr
                            result['batch_size'] = args.train_batch_size
                            logger.info("First 20 predictions:")
                            for pred, label in zip(
                                    preds[:20],
                                    eval_label_ids.numpy()[:20]):
                                sign = u'\u2713' if pred == label else u'\u2718'
                                logger.info(
                                    "pred = %s, label = %s %s" %
                                    (id2label[pred], id2label[label], sign))
                            if (best_result is
                                    None) or (result[args.eval_metric] >
                                              best_result[args.eval_metric]):
                                best_result = result
                                save_model = True
                                logger.info(
                                    "!!! Best dev %s (lr=%s, epoch=%d): %.2f" %
                                    (args.eval_metric, str(lr), epoch,
                                     result[args.eval_metric] * 100.0))
                        else:
                            save_model = True

                        if save_model:
                            model_to_save = model.module if hasattr(
                                model, 'module') else model
                            output_model_file = os.path.join(
                                args.output_dir, WEIGHTS_NAME)
                            output_config_file = os.path.join(
                                args.output_dir, CONFIG_NAME)
                            torch.save(model_to_save.state_dict(),
                                       output_model_file)
                            model_to_save.config.to_json_file(
                                output_config_file)
                            tokenizer.save_vocabulary(args.output_dir)
                            if best_result:
                                output_eval_file = os.path.join(
                                    args.output_dir, "eval_results.txt")
                                with open(output_eval_file, "w") as writer:
                                    for key in sorted(result.keys()):
                                        writer.write("%s = %s\n" %
                                                     (key, str(result[key])))

    if args.do_eval:
        if args.eval_test:
            eval_examples = processor.get_test_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label2id, args.max_seq_length, tokenizer,
                special_tokens, args.feature_mode)
            logger.info("***** Test *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label_ids)
            eval_dataloader = DataLoader(eval_data,
                                         batch_size=args.eval_batch_size)
            eval_label_ids = all_label_ids
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
        if args.fp16:
            model.half()
        model.to(device)
        preds, result = evaluate(model, device, eval_dataloader,
                                 eval_label_ids, num_labels)
        with open(os.path.join(args.output_dir, "predictions.txt"), "w") as f:
            for ex, pred in zip(eval_examples, preds):
                f.write("%s\t%s\n" % (ex.guid, id2label[pred]))
        with open(os.path.join(args.output_dir, "test_results.txt"), "w") as f:
            for key in sorted(result.keys()):
                f.write("%s = %s\n" % (key, str(result[key])))
def main():
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer(vocab_file=args.vocab_file)

    train_examples = None
    num_train_optimization_steps = None
    vocab_list = []
    with open(args.vocab_file, 'r') as fr:
        for line in fr:
            vocab_list.append(line.strip("\n"))

    if args.do_train:
        train_examples = create_examples(
            data_path=args.pretrain_train_path,
            max_seq_length=args.max_seq_length,
            masked_lm_prob=args.masked_lm_prob,
            max_predictions_per_seq=args.max_predictions_per_seq,
            vocab_list=vocab_list)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    model = BertForMaskedLM(
        config=BertConfig.from_json_file(args.bert_config_json))
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    best_loss = 100000

    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      args.max_seq_length,
                                                      tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for e in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                # masked_lm_loss
                loss = model(input_ids, segment_ids, input_mask, label_ids)

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                if nb_tr_steps > 0 and nb_tr_steps % 100 == 0:
                    logger.info(
                        "===================== -epoch %d -train_step %d -train_loss %.4f\n"
                        % (e, nb_tr_steps, tr_loss / nb_tr_steps))

            if nb_tr_steps > 0 and nb_tr_steps % 2000 == 0:
                eval_examples = create_examples(
                    data_path=args.pretrain_dev_path,
                    max_seq_length=args.max_seq_length,
                    masked_lm_prob=args.masked_lm_prob,
                    max_predictions_per_seq=args.max_predictions_per_seq,
                    vocab_list=vocab_list)
                eval_features = convert_examples_to_features(
                    eval_examples, args.max_seq_length, tokenizer)
                all_input_ids = torch.tensor(
                    [f.input_ids for f in eval_features], dtype=torch.long)
                all_input_mask = torch.tensor(
                    [f.input_mask for f in eval_features], dtype=torch.long)
                all_segment_ids = torch.tensor(
                    [f.segment_ids for f in eval_features], dtype=torch.long)
                all_label_ids = torch.tensor(
                    [f.label_id for f in eval_features], dtype=torch.long)
                eval_data = TensorDataset(all_input_ids, all_input_mask,
                                          all_segment_ids, all_label_ids)
                # Run prediction for full data
                eval_sampler = SequentialSampler(eval_data)
                eval_dataloader = DataLoader(eval_data,
                                             sampler=eval_sampler,
                                             batch_size=args.eval_batch_size)

                model.eval()
                eval_loss = 0
                nb_eval_steps = 0
                for input_ids, input_mask, segment_ids, label_ids in tqdm(
                        eval_dataloader, desc="Evaluating"):
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        loss = model(input_ids, segment_ids, input_mask,
                                     label_ids)

                    eval_loss += loss.item()
                    nb_eval_steps += 1

                eval_loss = eval_loss / nb_eval_steps
                if eval_loss < best_loss:
                    # Save a trained model, configuration and tokenizer
                    model_to_save = model.module if hasattr(
                        model,
                        'module') else model  # Only save the model it-self

                    # If we save using the predefined names, we can load using `from_pretrained`
                    output_model_file = os.path.join(args.output_dir,
                                                     WEIGHTS_NAME)
                    torch.save(model_to_save.state_dict(), output_model_file)
                    best_loss = eval_loss
                logger.info(
                    "============================ -epoch %d -train_loss %.4f -eval_loss %.4f\n"
                    % (e, tr_loss / nb_tr_steps, eval_loss))
Пример #17
0
def main():
    parser = argparse.ArgumentParser()

    # arguments
    parser.add_argument("--input_dir",
                        default="./data/",
                        type=str,
                        help="The input data dir."
    )
    parser.add_argument("--output_dir",
                        default="./ss/tmp/",
                        type=str,
                        help="The output dir where the model predictions will be stored."
    )
    parser.add_argument("--checkpoints_dir",
                        default="./ss/checkpoints/",
                        type=str,
                        help="Where checkpoints will be stored."
    )
    parser.add_argument("--cache_dir",
                        default="./data/models/",
                        type=str,
                        help="Where do you want to store the pre-trained models"
                        "downloaded from pytorch pretrained model."
    )
    parser.add_argument("--batchsize",
                        default=4,
                        type=int,
                        help="Batch size for (positive) training examples."
    )
    parser.add_argument("--negative_batchsize",
                        default=4,
                        type=int,
                        help="Batch size for (negative) training examples."
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate."
    )
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--num_train_epochs",
                        default=5,
                        type=int,
                        help="Total number of training epochs."
    )
    parser.add_argument("--seed",
                        default=42,
                        type=int,
                        help="random seed."
    )
    parser.add_argument("--max_length",
                        default=512,
                        type=int,
                        help="The maximum total input sequence length after tokenized."
                        "If longer than this, it will be truncated, else will be padded."
    )
    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    n_gpu = torch.cuda.device_count()

    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.DEBUG)

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    if not os.path.exists(args.checkpoints_dir):
        os.makedirs(args.checkpoints_dir)
    if not os.path.exists(args.cache_dir):
        os.makedirs(args.cache_dir)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    num_labels = 2
    criterion = CrossEntropyLoss()

    # Make sure to pass do_lower_case=False when use multilingual-cased model.
    # See https://github.com/google-research/bert/blob/master/multilingual.md
    tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased',
                                              do_lower_case=False)
    model = build_ss_model(args.cache_dir, num_labels)

    # prepare the dataset
    train_dataset = get_dataset(args.input_dir, 'train')
    val_dataset = get_dataset(args.input_dir, 'test')
    
    # convert dataset into BERT's input formats
    train_examples_pos, train_examples_neg = split_pos_neg_examples(train_dataset)
    train_features = convert_train_dataset(
        train_examples_pos, 
        tokenizer, 
        args.max_length
    )
    train_features_neg = convert_train_dataset(
        train_examples_neg, 
        tokenizer, 
        args.max_length
    )
    val_features = convert_valid_dataset(
        val_dataset,
        tokenizer,
        args.max_length
    )
    
    # prepare optimizer
    num_train_optimization_steps = int(len(train_examples_pos) / args.batchsize) * args.num_train_epochs
    optimizer = BertAdam(model.parameters(), 
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_optimization_steps)

    model.to(device)

    global_step = 0

    # TRAINING !!
    logger.info("=== Running training ===")
    logger.info("===== Num (pos) examples : %d", len(train_examples_pos))
    logger.info("===== Batch size : %d", args.batchsize)
    logger.info("===== Num steps : %d", num_train_optimization_steps)
    
    # prepare positive/negative train dataset
    all_input_ids = torch.LongTensor([x['input_ids'] for x in train_features])
    all_segment_ids = torch.LongTensor([x['segment_ids'] for x in train_features])
    all_input_mask = torch.LongTensor([x['input_mask'] for x in train_features])
    all_label = torch.LongTensor([x['label'] for x in train_features])
    train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)

    all_input_ids_neg = torch.LongTensor([x['input_ids'] for x in train_features_neg])
    all_segment_ids_neg = torch.LongTensor([x['segment_ids'] for x in train_features_neg])
    all_input_mask_neg = torch.LongTensor([x['input_mask'] for x in train_features_neg])
    all_label_neg = torch.LongTensor([x['label'] for x in train_features_neg])
    train_data_neg = TensorDataset(all_input_ids_neg, all_input_mask_neg, all_segment_ids_neg, all_label_neg)

    train_sampler = RandomSampler(train_data)
    train_sampler_neg = RandomSampler(train_data_neg)

    train_dataloader = DataLoader(
        train_data, 
        sampler=train_sampler, 
        batch_size=args.batchsize, 
        drop_last=True
    )
    negative_dataloader = DataLoader(
        train_data_neg, 
        sampler=train_sampler_neg, 
        batch_size=args.negative_batchsize, 
        drop_last=True
    )
    # training
    max_acc = 0
    for epoch in range(int(args.num_train_epochs)):
        model.train()
        tr_loss, num_tr_examples, num_tr_steps = 0, 0, 0
        temp_tr_loss, temp_num_tr_exs, temp_num_tr_steps = 0, 0, 0
        it = iter(negative_dataloader)
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
            batch = tuple(t.to(device) for t in batch)
            batch_neg = tuple(t.to(device) for t in next(it))

            input_ids, input_mask, segment_ids, labels = batch
            input_ids_neg, input_mask_neg, segment_ids_neg, labels_neg = batch_neg

            # batchify
            input_ids_cat=torch.cat([input_ids, input_ids_neg],dim=0)
            segment_ids_cat=torch.cat([segment_ids, segment_ids_neg],dim=0)
            input_mask_cat=torch.cat([input_mask,input_mask_neg],dim=0)
            label_ids_cat=torch.cat([labels.view(-1), labels_neg.view(-1)], dim = 0)

            model.zero_grad()
            # compute loss and backpropagate
            loss, logits = model(
                input_ids_cat, 
                token_type_ids=segment_ids_cat, 
                attention_mask=input_mask_cat, 
                labels=label_ids_cat
            )
            loss.backward()
            clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()

            global_step += 1
            tr_loss += loss.item()
            num_tr_examples += input_ids.size(0)
            num_tr_steps += 1

            # logging every 0.05 epoch
            temp_tr_loss += loss.item()
            temp_num_tr_exs += input_ids.size(0)
            temp_num_tr_steps += 1
            if (step + 1) % (len(train_dataloader) // 20) == 0:
                logger.info("Epoch %d/%d - step %d/%d" % ((epoch+1), args.num_train_epochs, step, len(train_dataloader)))
                logger.info("# of examples %d" % temp_num_tr_exs)
                logger.info("temp loss %f" % (temp_tr_loss / temp_num_tr_steps))
                temp_tr_loss, temp_num_tr_exs, temp_num_tr_steps = 0, 0, 0
        
        # logging every 1 epoch
        print('===== Epoch %d done.' % (epoch+1))
        print('===== Average training loss', tr_loss / num_tr_steps)

        # validate every 1 epoch
        logger.info("=== Running validation ===")
        model.eval()
        eval_loss, eval_acc, eval_r5 = 0, 0, 0
        for example in tqdm(val_features, desc="Iteration"):
            input_ids = torch.LongTensor(example['input_ids']).to(device)
            segment_ids = torch.LongTensor(example['segment_ids']).to(device)
            input_mask = torch.LongTensor(example['input_mask']).to(device)
            label = torch.LongTensor(example['label']).to(device)

            with torch.no_grad():
                loss, logits = model(
                    input_ids, 
                    token_type_ids=segment_ids, 
                    attention_mask=input_mask, 
                    labels=label
                )
                
            eval_loss += loss.item()
            temp_acc, temp_r5 = calculate_metric(logits, label)
            eval_acc += temp_acc
            eval_r5 += temp_r5
        eval_acc_ =  eval_acc / len(val_features)
        if max_acc < eval_acc_ :
            max_acc = eval_acc_
            torch.save({'epoch': epoch + 1,
                        'model_state': model.state_dict(),
                        'optimizer_state' : optimizer.state_dict()},
                        os.path.join(args.checkpoints_dir, 'best_ckpt.pth'))

        # logging validation results
        print('===== Validation loss', eval_loss / len(val_features))
        print('===== Validation accuracy', eval_acc / len(val_features))
        print('===== Validation R@5', eval_r5 / len(val_features))
Пример #18
0
def main(args):
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    n_gpu = torch.cuda.device_count()
    logger.info("device: {}, n_gpu: {}, 16-bits training: {}".format(
        device, n_gpu, args.fp16))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    args.train_batch_size = \
        args.train_batch_size // args.gradient_accumulation_steps

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if args.do_train:
        assert (args.train_file is not None) and (args.dev_file is not None)

    if args.eval_test:
        assert args.test_file is not None
    else:
        assert args.dev_file is not None

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    if args.do_train:
        logger.addHandler(
            logging.FileHandler(os.path.join(args.output_dir, "train.log"),
                                'w'))
    else:
        logger.addHandler(
            logging.FileHandler(os.path.join(args.output_dir, "eval.log"),
                                'w'))
    logger.info(args)

    tokenizer = BertTokenizer.from_pretrained(args.model,
                                              do_lower_case=args.do_lower_case)

    if args.do_train or (not args.eval_test):
        # with gzip.GzipFile(args.test_file, 'r') as reader:
        with open(args.dev_file, 'r', encoding='utf-8') as f:
            # skip header
            # content = reader.read().decode('utf-8').strip().split('\n')[1:]
            # input_data = [json.loads(line) for line in content]
            content = f.read().strip().split('\n')
            eval_dataset = [json.loads(line) for line in content]
        eval_examples = read_mrqa_examples(input_file=args.dev_file,
                                           is_training=False)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)
        logger.info("***** Dev *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0),
                                         dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_example_index)
        eval_dataloader = DataLoader(eval_data,
                                     batch_size=args.eval_batch_size)

    if args.do_train:
        train_examples = read_mrqa_examples(input_file=args.train_file,
                                            is_training=True)

        train_features = convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=True)

        if args.train_mode == 'sorted' or args.train_mode == 'random_sorted':
            train_features = sorted(train_features,
                                    key=lambda f: np.sum(f.input_mask))
        else:
            random.shuffle(train_features)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_start_positions = torch.tensor(
            [f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor(
            [f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_start_positions,
                                   all_end_positions)
        train_dataloader = DataLoader(train_data,
                                      batch_size=args.train_batch_size)
        train_batches = [batch for batch in train_dataloader]

        num_train_optimization_steps = \
            len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
        logger.info("***** Train *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        eval_step = max(1, len(train_batches) // args.eval_per_epoch)
        best_result = None
        lrs = [args.learning_rate] if args.learning_rate else [
            1e-6, 2e-6, 3e-6, 5e-6, 1e-5, 2e-5, 3e-5, 5e-5
        ]
        for lr in lrs:
            model = None
            if not args.finetuning_dir is None:
                # load model
                model = BertForQuestionAnswering.from_pretrained(
                    args.finetuning_dir)
                if args.fp16:
                    model.half()
                model.to(device)
            else:
                model = BertForQuestionAnswering.from_pretrained(
                    args.model, cache_dir=PYTORCH_PRETRAINED_BERT_CACHE)
                if args.fp16:
                    model.half()
                model.to(device)

            if n_gpu > 1:
                model = torch.nn.DataParallel(model)

            param_optimizer = list(model.named_parameters())
            param_optimizer = [
                n for n in param_optimizer if 'pooler' not in n[0]
            ]
            no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
            optimizer_grouped_parameters = [{
                'params': [
                    p for n, p in param_optimizer
                    if not any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.01
            }, {
                'params': [
                    p for n, p in param_optimizer
                    if any(nd in n for nd in no_decay)
                ],
                'weight_decay':
                0.0
            }]

            if args.fp16:
                try:
                    from apex.optimizers import FP16_Optimizer
                    from apex.optimizers import FusedAdam
                except ImportError:
                    raise ImportError(
                        "Please install apex from https://www.github.com/nvidia/apex"
                        "to use distributed and fp16 training.")
                optimizer = FusedAdam(optimizer_grouped_parameters,
                                      lr=lr,
                                      bias_correction=False,
                                      max_grad_norm=1.0)
                if args.loss_scale == 0:
                    optimizer = FP16_Optimizer(optimizer,
                                               dynamic_loss_scale=True)
                else:
                    optimizer = FP16_Optimizer(
                        optimizer, static_loss_scale=args.loss_scale)
            else:
                optimizer = BertAdam(optimizer_grouped_parameters,
                                     lr=lr,
                                     warmup=args.warmup_proportion,
                                     t_total=num_train_optimization_steps)
            tr_loss = 0
            nb_tr_examples = 0
            nb_tr_steps = 0
            global_step = 0
            start_time = time.time()
            for epoch in range(int(args.num_train_epochs)):
                model.train()
                logger.info("Start epoch #{} (lr = {})...".format(epoch, lr))
                for step, batch in enumerate(train_batches):
                    if n_gpu == 1:
                        batch = tuple(t.to(device) for t in batch)
                    input_ids, input_mask, segment_ids, start_positions, end_positions = batch
                    loss = model(input_ids, segment_ids, input_mask,
                                 start_positions, end_positions)
                    if n_gpu > 1:
                        loss = loss.mean()
                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps

                    tr_loss += loss.item()
                    nb_tr_examples += input_ids.size(0)
                    nb_tr_steps += 1

                    if args.fp16:
                        optimizer.backward(loss)
                    else:
                        loss.backward()
                    if (step + 1) % args.gradient_accumulation_steps == 0:
                        if args.fp16:
                            lr_this_step = lr * \
                                warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
                            for param_group in optimizer.param_groups:
                                param_group['lr'] = lr_this_step
                        optimizer.step()
                        optimizer.zero_grad()
                        global_step += 1

                    if (step + 1) % eval_step == 0:
                        logger.info(
                            'Epoch: {}, Step: {} / {}, used_time = {:.2f}s, loss = {:.6f}'
                            .format(epoch, step + 1, len(train_dataloader),
                                    time.time() - start_time,
                                    tr_loss / nb_tr_steps))

                        save_model = False
                        if args.do_eval:
                            result, _, _ = \
                                evaluate(args, model, device, eval_dataset,
                                         eval_dataloader, eval_examples, eval_features)
                            model.train()
                            result['global_step'] = global_step
                            result['epoch'] = epoch
                            result['learning_rate'] = lr
                            result['batch_size'] = args.train_batch_size
                            if (best_result is
                                    None) or (result[args.eval_metric] >
                                              best_result[args.eval_metric]):
                                best_result = result
                                save_model = True
                                logger.info(
                                    "!!! Best dev %s (lr=%s, epoch=%d): %.2f" %
                                    (args.eval_metric, str(lr), epoch,
                                     result[args.eval_metric]))
                        else:
                            save_model = True
                        if save_model:
                            model_to_save = model.module if hasattr(
                                model, 'module') else model
                            output_model_file = os.path.join(
                                args.output_dir, WEIGHTS_NAME)
                            output_config_file = os.path.join(
                                args.output_dir, CONFIG_NAME)
                            torch.save(model_to_save.state_dict(),
                                       output_model_file)
                            model_to_save.config.to_json_file(
                                output_config_file)
                            tokenizer.save_vocabulary(args.output_dir)
                            if best_result:
                                with open(
                                        os.path.join(args.output_dir,
                                                     EVAL_FILE),
                                        "w") as writer:
                                    for key in sorted(best_result.keys()):
                                        writer.write(
                                            "%s = %s\n" %
                                            (key, str(best_result[key])))

    if args.do_eval:
        if args.eval_test:
            # load model
            model = BertForQuestionAnswering.from_pretrained(args.output_dir)
            if args.fp16:
                model.half()
            model.to(device)

            f_result = open(os.path.join(args.output_dir, 'test_results.txt'),
                            "w")

            # list of test files
            # testing_files = ['dev.human', 'dev.human.bridge', 'dev.human.comparison']
            # for testing_file in testing_files:
            test_path = args.test_file
            with open(test_path, 'r', encoding='utf-8') as f:
                content = f.read().strip().split('\n')
                eval_dataset = [json.loads(line) for line in content]
            eval_examples = read_mrqa_examples(input_file=test_path,
                                               is_training=False)
            eval_features = convert_examples_to_features(
                examples=eval_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=False)
            logger.info("***** Test *****")
            logger.info("  Num orig examples = %d", len(eval_examples))
            logger.info("  Num split examples = %d", len(eval_features))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_example_index = torch.arange(all_input_ids.size(0),
                                             dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_example_index)
            eval_dataloader = DataLoader(eval_data,
                                         batch_size=args.eval_batch_size)

            result, preds, nbest_preds = \
                evaluate(args, model, device, eval_dataset,
                        eval_dataloader, eval_examples, eval_features)

            with open(os.path.join(args.output_dir, 'predictions.txt'),
                      "w") as writer:
                writer.write(json.dumps(preds, indent=4) + "\n")

            f_result.write('Evaluation for {}\n'.format(test_path))
            for key in sorted(result.keys()):
                f_result.write("%s = %s\n" % (key, str(result[key])))
            f_result.write('\n')
            f_result.close()
Пример #19
0
def interact(model,
             processor,
             args,
             label_list,
             tokenizer,
             device,
             fine_tune=True):
    # TODO
    '''
    使用topic进行self fine tune
    Args:
        model: 模型
	processor: 数据读取方法
	args: 参数表
	label_list: 所有可能类别
	tokenizer: 分词方法
	device

    Returns:
        f1: F1值
    '''
    # 修改label_list
    #
    topic_dict, query_dict = processor.get_interact_examples(
        args.data_dir, args.use_noisy)  # 得到两个词典

    predicts, raw_predicts, truths = [], [], []
    A, B, C = 0, 0, 0  # 分别对应错误分类, 阈值过高和阈值过低
    yes = 0.0

    if args.self_fine_tune:
        logger.info('*************fine-tune!*************')
        ## self fine-tune  ##
        label_list = [0, 1]

        if args.local_rank == -1 or args.no_cuda:
            device = torch.device("cuda" if torch.cuda.is_available()
                                  and not args.no_cuda else "cpu")
            n_gpu = torch.cuda.device_count()
        else:
            device = torch.device("cuda", args.local_rank)
            n_gpu = 1
            torch.distributed.init_process_group(backend='nccl')
            if args.fp16:
                logger.info(
                    "16-bits training currently not supported in distributed training"
                )
                args.fp16 = False  # (see https://github.com/pytorch/pytorch/pull/13496)
        logger.info("device %s n_gpu %d distributed training %r", device,
                    n_gpu, bool(args.local_rank != -1))

        # Prepare optimizer
        if args.fp16:
            param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
                               for n, param in model.named_parameters()]
        elif args.optimize_on_cpu:
            param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
                               for n, param in model.named_parameters()]
        else:
            param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'gamma', 'beta']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay_rate':
            0.0
        }]

        # prepare data
        examples, reverse_topic_dict = processor._create_finetune_examples(
            topic_dict, args.use_stop_words)
        train_features = convert_examples_to_features(examples,
                                                      label_list,
                                                      args.max_seq_length,
                                                      tokenizer,
                                                      show_exp=False)
        num_train_steps = int(
            len(examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)
        t_total = num_train_steps
        if args.local_rank != -1:
            t_total = t_total // torch.distributed.get_world_size()
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
        logger.info("***** Running training *****", len(examples))
        logger.info("len of examples = %d", len(examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        best_score = 0
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                # label_ids = torch.tensor([f if f<31 else 0 for f in label_ids], dtype=torch.long).to(device)
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                # print ('-------------loss:',loss)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16 or args.optimize_on_cpu:
                        if args.fp16 and args.loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
                                if param.grad is not None:
                                    param.grad.data = param.grad.data / args.loss_scale
                        is_nan = set_optimizer_params_grad(
                            param_optimizer,
                            model.named_parameters(),
                            test_nan=True)
                        if is_nan:
                            logger.info(
                                "FP16 TRAINING: Nan in gradients, reducing loss scaling"
                            )
                            args.loss_scale = args.loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        copy_optimizer_params_to_model(
                            model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
                    model.zero_grad()
        checkpoint = {'state_dict': model.state_dict()}
        torch.save(checkpoint, args.finetune_save_pth)
    else:
        logger.info('*************not fine-tune!*************')

    ## interaction ##
    label_list = range(len(topic_dict) + 1)
    for item in query_dict.items():  # 一句query
        truths.append(item[1])  # 获得正确的label
        examples, query, reverse_topic_dict = processor._create_interact_examples(
            item, topic_dict,
            args.use_stop_words)  # 得到len(topic)个数个InputExample构成list
        interact_features = convert_examples_to_features(
            examples, label_list, args.max_seq_length, tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in interact_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor(
            [f.input_mask for f in interact_features], dtype=torch.long)
        all_segment_ids = torch.tensor(
            [f.segment_ids for f in interact_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in interact_features],
                                     dtype=torch.long)
        interact_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label_ids)
        # Run prediction for full data
        interact_sampler = SequentialSampler(interact_data)
        interact_dataloader = DataLoader(interact_data,
                                         sampler=interact_sampler,
                                         batch_size=args.eval_batch_size)

        model.eval()
        predict = np.zeros((0, ), dtype=np.int32)
        #gt = np.zeros((0,), dtype=np.int32)
        for input_ids, input_mask, segment_ids, label_ids in interact_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask)  # (1, 2)
                #pred = logits[1][1]  # 得到匹配分数 TODO
                pred = np.array(torch.nn.functional.softmax(torch.tensor(logits, \
                                             dtype=torch.float).to(device)[0])[1].cpu())  # 得到预测分数
                predict = np.hstack((predict, pred))
                #gt = np.hstack((gt, label_ids.cpu().numpy()))  # gold target/ query label

        p_value = np.max(predict)  # 最大的数的数值
        #print (type(np.where(predict==p_value)))
        p_label = int(list(
            np.where(predict == p_value)[0])[0])  # 预测的label,如果发生重复,只取序数最小的
        #print (p_value, p_label)
        if args.use_noisy:
            raw_predicts.append(p_label + 1)  # 保存初始预测
            predicts.append(p_label +
                            1 if p_value > 0.83 else 0)  # 注意这里为了序号对应需要+1
        else:
            predicts.append(p_label + 1)
            raw_predicts.append(p_label + 1)
        if (predicts[-1] != truths[-1]):
            if truths[-1] != 0:
                if raw_predicts[-1] != truths[-1]:  # 错误分类
                    A += 1
                    print('\nerror type A:错误分类 when encourting:{} while the real topic is :{} \
                    置信概率:{:.3f},(g, p)=({},{})\n'                                                 .format(query, reverse_topic_dict[truths[-1]],\
                                                                                   p_value, p_label + 1,
                    truths[-1]))  # 阈值过高
                else:
                    B += 1
                    print('\nerror type B:阈值过高 when encourting:{} while the real topic is :{} \
                                        置信概率:{:.3f},(g, p)=({},{})\n'                                                                     .format(query, reverse_topic_dict[truths[-1]], \
                                                                         p_value, p_label + 1, truths[-1]))
            else:  # 误分负例,阈值过低
                C += 1
                print(
                    '\nerror type C:误分负例,阈值过低 when encourting:{} while real tag is negative \
                                置信概率:{:.3f},(g, p)=({},{})\n'.format(
                        query, p_value, p_label + 1, truths[-1]))  # 误分
        else:
            yes += 1
        #logits = logits.detach().cpu().numpy()
        #label_ids = label_ids.to('cpu').numpy()

        confuse_mat = [
            1 if p == t and p != 0 else 0 for p, t in zip(predicts, truths)
        ]  # TP
        pp = 1.0 * sum(confuse_mat) / (
            (sum([1 if p > 0 else 0 for p in predicts])) + 1e-10)
        r = 1.0 * sum(confuse_mat) / (sum([1 if p > 0 else 0
                                           for p in truths]) + 1e-10)
        f = 2 * pp * r / (pp + r + 1e-10)
        acc = yes / len(predicts)
        #f1 = np.mean(metrics.f1_score(predict, gt, average=None))
        print(
            '\rF1 score in text set is {:.3f}; acc is {:.3f}; A,B,C={},{},{} '.
            format(f, acc, A, B, C),
            end=''),
        sys.stdout.flush()

    return
Пример #20
0
def train_and_test(data_dir,
                   bert_model="bert-base-uncased",
                   task_name=None,
                   output_dir=None,
                   max_seq_length=80,
                   do_train=False,
                   do_eval=False,
                   do_lower_case=False,
                   train_batch_size=24,
                   eval_batch_size=8,
                   learning_rate=2e-5,
                   num_train_epochs=50,
                   warmup_proportion=0.1,
                   no_cuda=False,
                   local_rank=-1,
                   seed=42,
                   gradient_accumulation_steps=1,
                   optimize_on_cpu=False,
                   fp16=False,
                   loss_scale=128,
                   saved_model=""):

    # ## Required parameters
    # parser.add_argument("--data_dir",
    #                     default=None,
    #                     type=str,
    #                     required=True,
    #                     help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    # parser.add_argument("--bert_model", default=None, type=str, required=True,
    #                     help="Bert pre-trained model selected in the list: bert-base-uncased, "
    #                          "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
    # parser.add_argument("--task_name",
    #                     default=None,
    #                     type=str,
    #                     required=True,
    #                     help="The name of the task to train.")
    # parser.add_argument("--output_dir",
    #                     default=None,
    #                     type=str,
    #                     required=True,
    #                     help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    # parser.add_argument("--max_seq_length",
    #                     default=128,
    #                     type=int,
    #                     help="The maximum total input sequence length after WordPiece tokenization. \n"
    #                          "Sequences longer than this will be truncated, and sequences shorter \n"
    #                          "than this will be padded.")
    # parser.add_argument("--do_train",
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether to run training.")
    # parser.add_argument("--do_eval",
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether to run eval on the dev set.")
    # parser.add_argument("--do_lower_case",
    #                     default=False,
    #                     action='store_true',
    #                     help="Set this flag if you are using an uncased model.")
    # parser.add_argument("--train_batch_size",
    #                     default=32,
    #                     type=int,
    #                     help="Total batch size for training.")
    # parser.add_argument("--eval_batch_size",
    #                     default=8,
    #                     type=int,
    #                     help="Total batch size for eval.")
    # parser.add_argument("--learning_rate",
    #                     default=5e-5,
    #                     type=float,
    #                     help="The initial learning rate for Adam.")
    # parser.add_argument("--num_train_epochs",
    #                     default=3.0,
    #                     type=float,
    #                     help="Total number of training epochs to perform.")
    # parser.add_argument("--warmup_proportion",
    #                     default=0.1,
    #                     type=float,
    #                     help="Proportion of training to perform linear learning rate warmup for. "
    #                          "E.g., 0.1 = 10%% of training.")
    # parser.add_argument("--no_cuda",
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether not to use CUDA when available")
    # parser.add_argument("--local_rank",
    #                     type=int,
    #                     default=-1,
    #                     help="local_rank for distributed training on gpus")
    # parser.add_argument('--seed',
    #                     type=int,
    #                     default=42,
    #                     help="random seed for initialization")
    # parser.add_argument('--gradient_accumulation_steps',
    #                     type=int,
    #                     default=1,
    #                     help="Number of updates steps to accumulate before performing a backward/update pass.")
    # parser.add_argument('--optimize_on_cpu',
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether to perform optimization and keep the optimizer averages on CPU")
    # parser.add_argument('--fp16',
    #                     default=False,
    #                     action='store_true',
    #                     help="Whether to use 16-bit float precision instead of 32-bit")
    # parser.add_argument('--loss_scale',
    #                     type=float, default=128,
    #                     help='Loss scaling, positive power of 2 values can improve fp16 convergence.')

    # args = parser.parse_args()

    processors = {
        #         "cola": ColaProcessor,
        #         "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "stance": StanceProcessor,
        "neg": NegProcessor
    }

    if local_rank == -1 or no_cuda:
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
        if fp16:
            logger.info(
                "16-bits training currently not supported in distributed training"
            )
            fp16 = False  # (see https://github.com/pytorch/pytorch/pull/13496)
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(local_rank != -1))

    if gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(gradient_accumulation_steps))

    train_batch_size = int(train_batch_size / gradient_accumulation_steps)

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(seed)

    if not do_train and not do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if do_train:
        #         if os.path.exists(output_dir) and os.listdir(output_dir):
        if os.path.exists(output_dir):
            pass
#             raise ValueError("Output directory ({}) already exists and is not empty.".format(output_dir))
        else:
            os.makedirs(output_dir, exist_ok=True)

    task_name = task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()

    #     tokenizer = BertTokenizer.from_pretrained(bert_model, do_lower_case=do_lower_case)
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

    train_examples = None
    num_train_steps = None
    if do_train:

        train_df = processor.get_train_df(data_dir)

        new_train_df = generate_opp_dataset(train_df)

        new_train_df.to_csv(os.path.join(data_dir, "new_train.tsv"),
                            sep='\t',
                            index=False)

        train_examples = processor.get_train_examples(data_dir)

        num_train_steps = int(
            len(train_examples) / train_batch_size /
            gradient_accumulation_steps * num_train_epochs)

        # Prepare model
        #     model = BertForSequenceClassification.from_pretrained(bert_model,
        #                 cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(local_rank), num_labels = 2)

        model = BertForConsistencyCueClassification.from_pretrained(
            'bert-base-uncased', num_labels=2)
        model.to(device)

        if fp16:
            model.half()

        if local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[local_rank], output_device=local_rank)
        elif n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Prepare optimizer
        if fp16:
            param_optimizer = [
                (n, param.clone().detach().to('cpu').float().requires_grad_())
                for n, param in model.named_parameters()
            ]
        elif optimize_on_cpu:
            param_optimizer = [
                (n, param.clone().detach().to('cpu').requires_grad_())
                for n, param in model.named_parameters()
            ]
        else:
            param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'gamma', 'beta']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay_rate':
            0.0
        }]
        t_total = num_train_steps
#     print(t_total)
    if local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if do_train:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=learning_rate,
                             warmup=warmup_proportion,
                             t_total=t_total)

    global_step = 0
    if do_train:

        claim_features = convert_claims_to_features(train_examples, label_list,
                                                    max_seq_length, tokenizer)
        train_features = convert_pers_to_features(train_examples, label_list,
                                                  max_seq_length, tokenizer)
        logger.info("perspective features done")
        opposite_claim_features = convert_opp_claims_to_features(
            train_examples, label_list, max_seq_length, tokenizer)
        logger.info("opposite claim features done")
        opposite_perspective_features = convert_opp_pers_to_features(
            train_examples, label_list, max_seq_length, tokenizer)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        pers_input_ids = torch.tensor([f.input_ids for f in train_features],
                                      dtype=torch.long)
        pers_input_mask = torch.tensor([f.input_mask for f in train_features],
                                       dtype=torch.long)
        pers_segment_ids = torch.tensor(
            [f.segment_ids for f in train_features], dtype=torch.long)
        pers_label_ids = torch.tensor([f.label_id for f in train_features],
                                      dtype=torch.long)

        claims_input_ids = torch.tensor([f.input_ids for f in claim_features],
                                        dtype=torch.long)
        claims_input_mask = torch.tensor(
            [f.input_mask for f in claim_features], dtype=torch.long)
        claims_segment_ids = torch.tensor(
            [f.segment_ids for f in claim_features], dtype=torch.long)
        claims_label_ids = torch.tensor([f.label_id for f in claim_features],
                                        dtype=torch.long)

        opp_pers_input_ids = torch.tensor(
            [f.input_ids for f in opposite_perspective_features],
            dtype=torch.long)
        opp_pers_input_mask = torch.tensor(
            [f.input_mask for f in opposite_perspective_features],
            dtype=torch.long)
        opp_pers_segment_ids = torch.tensor(
            [f.segment_ids for f in opposite_perspective_features],
            dtype=torch.long)
        opp_pers_label_ids = torch.tensor(
            [f.label_id for f in opposite_perspective_features],
            dtype=torch.long)

        #         opp_pers_input_ids = torch.tensor([f.input_ids for f in opposite_perspective_features if f.input_ids], dtype=torch.long)
        #         opp_pers_input_mask = torch.tensor([f.input_mask for f in opposite_perspective_features if f.input_mask], dtype=torch.long)
        #         opp_pers_segment_ids = torch.tensor([f.segment_ids for f in opposite_perspective_features if f.segment_ids], dtype=torch.long)
        #         opp_pers_label_ids = torch.tensor([f.label_id for f in opposite_perspective_features if f.label_id], dtype=torch.long)

        opp_claims_input_ids = torch.tensor(
            [f.input_ids for f in opposite_claim_features], dtype=torch.long)
        opp_claims_input_mask = torch.tensor(
            [f.input_mask for f in opposite_claim_features], dtype=torch.long)
        opp_claims_segment_ids = torch.tensor(
            [f.segment_ids for f in opposite_claim_features], dtype=torch.long)
        opp_claims_label_ids = torch.tensor(
            [f.label_id for f in opposite_claim_features], dtype=torch.long)

        #         logger.info("  opp pers id: %d, opp pers mask: %d, opp pers seg: %d, opp pers label: %d, opp calims label: %d, calims label: %d ", len(opp_pers_input_ids),len(opp_pers_input_mask),len(opp_pers_segment_ids),len(opp_pers_label_ids),len(opp_claims_label_ids),len(claims_label_ids))

        train_data = TensorDataset(
            pers_input_ids, pers_input_mask, pers_segment_ids, pers_label_ids,
            claims_input_ids, claims_input_mask, claims_segment_ids,
            claims_label_ids, opp_pers_input_ids, opp_pers_input_mask,
            opp_pers_segment_ids, opp_pers_label_ids, opp_claims_input_ids,
            opp_claims_input_mask, opp_claims_segment_ids,
            opp_claims_label_ids)

        if local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=train_batch_size)

        model.train()

        for _ in trange(int(num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            process_bar = tqdm(train_dataloader)
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids, claim_input_ids, claim_input_mask, claim_segment_ids, claim_label_ids, opp_input_ids, opp_input_mask, opp_segment_ids, opp_label_ids, opp_claim_input_ids, opp_claim_input_mask, opp_claim_segment_ids, opp_claim_label_ids = batch

                out_results = model(input_ids=input_ids,
                                    token_type_ids=segment_ids,
                                    attention_mask=input_mask,
                                    labels=label_ids,
                                    input_ids2=claim_input_ids,
                                    token_type_ids2=claim_segment_ids,
                                    attention_mask2=claim_input_mask,
                                    labels2=claim_label_ids,
                                    input_ids3=opp_input_ids,
                                    token_type_ids3=opp_segment_ids,
                                    attention_mask3=opp_input_mask,
                                    labels3=opp_label_ids,
                                    input_ids4=opp_claim_input_ids,
                                    token_type_ids4=opp_claim_segment_ids,
                                    attention_mask4=opp_claim_input_mask,
                                    labels4=opp_claim_label_ids)
                #                 loss = model(input_ids, segment_ids, input_mask, label_ids)
                #                 print("out_results:")
                #                 print(out_results)
                loss = out_results

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if fp16 and loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * loss_scale
                if gradient_accumulation_steps > 1:
                    loss = loss / gradient_accumulation_steps
                process_bar.set_description("Loss: %0.8f" %
                                            (loss.sum().item()))
                loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % gradient_accumulation_steps == 0:
                    if fp16 or optimize_on_cpu:
                        if fp16 and loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
                                if param.grad is not None:
                                    param.grad.data = param.grad.data / loss_scale
                        is_nan = set_optimizer_params_grad(
                            param_optimizer,
                            model.named_parameters(),
                            test_nan=True)
                        if is_nan:
                            logger.info(
                                "FP16 TRAINING: Nan in gradients, reducing loss scaling"
                            )
                            loss_scale = loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        copy_optimizer_params_to_model(
                            model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
                    model.zero_grad()
                    global_step += 1
            print("\nLoss: {}\n".format(tr_loss / nb_tr_steps))
        torch.save(
            model.state_dict(),
            output_dir + "fuse_cosloss_1111_2e5_neg_siamese_bert_epoch30.pth")

    if do_eval and (local_rank == -1 or torch.distributed.get_rank() == 0):

        test_df = processor.get_test_df(data_dir)

        #         new_test_df = generate_opp_dataset(test_df)

        #         new_test_df.to_csv(os.path.join(data_dir, "new_test.tsv"),sep='\t',index=False)

        train_df = processor.get_train_df(data_dir)

        #         new_train_df = generate_opp_dataset(train_df)

        #         new_train_df.to_csv(os.path.join(data_dir, "new_train.tsv"),sep='\t',index=False)

        dev_df = processor.get_dev_df(data_dir)

        #         new_dev_df = generate_opp_dataset(dev_df)

        #         new_dev_df.to_csv(os.path.join(data_dir, "new_dev.tsv"),sep='\t',index=False)

        eval_examples = processor.get_test_examples(data_dir)
        #         eval_examples = processor.get_dev_examples(data_dir)
        claim_features = convert_claims_to_features(eval_examples, label_list,
                                                    max_seq_length, tokenizer)
        eval_features = convert_pers_to_features(eval_examples, label_list,
                                                 max_seq_length, tokenizer)

        opposite_claim_features = convert_opp_claims_to_features(
            eval_examples, label_list, max_seq_length, tokenizer)
        opposite_eval_features = convert_opp_pers_to_features(
            eval_examples, label_list, max_seq_length, tokenizer)

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", eval_batch_size)

        pers_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                      dtype=torch.long)
        pers_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                       dtype=torch.long)
        pers_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                        dtype=torch.long)
        pers_label_ids = torch.tensor([f.label_id for f in eval_features],
                                      dtype=torch.long)

        claims_input_ids = torch.tensor([f.input_ids for f in claim_features],
                                        dtype=torch.long)
        claims_input_mask = torch.tensor(
            [f.input_mask for f in claim_features], dtype=torch.long)
        claims_segment_ids = torch.tensor(
            [f.segment_ids for f in claim_features], dtype=torch.long)
        claims_label_ids = torch.tensor([f.label_id for f in claim_features],
                                        dtype=torch.long)

        opp_pers_input_ids = torch.tensor(
            [f.input_ids for f in opposite_eval_features], dtype=torch.long)
        opp_pers_input_mask = torch.tensor(
            [f.input_mask for f in opposite_eval_features], dtype=torch.long)
        opp_pers_segment_ids = torch.tensor(
            [f.segment_ids for f in opposite_eval_features], dtype=torch.long)
        opp_pers_label_ids = torch.tensor(
            [f.label_id for f in opposite_eval_features], dtype=torch.long)

        opp_claims_input_ids = torch.tensor(
            [f.input_ids for f in opposite_claim_features], dtype=torch.long)
        opp_claims_input_mask = torch.tensor(
            [f.input_mask for f in opposite_claim_features], dtype=torch.long)
        opp_claims_segment_ids = torch.tensor(
            [f.segment_ids for f in opposite_claim_features], dtype=torch.long)
        opp_claims_label_ids = torch.tensor(
            [f.label_id for f in opposite_claim_features], dtype=torch.long)

        #         logger.info("%d%d%d%d", len(pers_input_ids),len(claims_input_ids),len(opp_pers_input_ids),len(opp_claims_input_ids))

        eval_data = TensorDataset(pers_input_ids, pers_input_mask,
                                  pers_segment_ids, pers_label_ids,
                                  claims_input_ids, claims_input_mask,
                                  claims_segment_ids, claims_label_ids,
                                  opp_pers_input_ids, opp_pers_input_mask,
                                  opp_pers_segment_ids, opp_pers_label_ids,
                                  opp_claims_input_ids, opp_claims_input_mask,
                                  opp_claims_segment_ids, opp_claims_label_ids)

        #         logger.info(eval_data)
        # Run prediction for full data
        #         eval_sampler = SequentialSampler(eval_data)
        eval_sampler = SequentialSampler(eval_data)
        #         logger.info("1")
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=eval_batch_size)
        #         print('all_input_ids:')
        #         print(all_input_ids)
        #         logger.info("2")

        #         model.load_state_dict(torch.load(saved_model))
        model_state_dict = torch.load(saved_model)
        #         logger.info("3")
        model = BertForConsistencyCueClassification.from_pretrained(
            'bert-base-uncased', num_labels=2, state_dict=model_state_dict)
        #         logger.info("4")
        model.to(device)
        #         logger.info("5")

        model.eval()
        #         logger.info("6")
        # eval_loss, eval_accuracy = 0, 0

        eval_tp, eval_pred_c, eval_gold_c = 0, 0, 0
        eval_loss, eval_accuracy, eval_macro_p, eval_macro_r = 0, 0, 0, 0

        raw_score = []
        predicted_labels = []
        predicted_prob = []
        gold_labels = []

        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, label_ids, claim_input_ids, claim_input_mask, claim_segment_ids, claim_label_ids, opp_input_ids, opp_input_mask, opp_segment_ids, opp_label_ids, opp_claim_input_ids, opp_claim_input_mask, opp_claim_segment_ids, opp_claim_label_ids in eval_dataloader:

            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            claim_input_ids = claim_input_ids.to(device)
            claim_input_mask = claim_input_mask.to(device)
            claim_segment_ids = claim_segment_ids.to(device)
            claim_label_ids = claim_label_ids.to(device)

            opp_input_ids = opp_input_ids.to(device)
            opp_input_mask = opp_input_mask.to(device)
            opp_segment_ids = opp_segment_ids.to(device)
            opp_label_ids = opp_label_ids.to(device)

            opp_claim_input_ids = opp_claim_input_ids.to(device)
            opp_claim_input_mask = opp_claim_input_mask.to(device)
            opp_claim_segment_ids = opp_claim_segment_ids.to(device)
            opp_claim_label_ids = opp_claim_label_ids.to(device)

            #             print("start")
            #             print(input_ids)
            #             print(input_mask)
            #             print(segment_ids)
            #             print(label_ids)
            #             print(claim_input_ids)
            #             print(claim_input_mask)
            #             print(claim_segment_ids)
            #             print(claim_label_ids)
            #             print("end")
            with torch.no_grad():
                tmp_eval_loss = model(input_ids=input_ids,
                                      token_type_ids=segment_ids,
                                      attention_mask=input_mask,
                                      labels=label_ids,
                                      input_ids2=claim_input_ids,
                                      token_type_ids2=claim_segment_ids,
                                      attention_mask2=claim_input_mask,
                                      labels2=claim_label_ids,
                                      input_ids3=opp_input_ids,
                                      token_type_ids3=opp_segment_ids,
                                      attention_mask3=opp_input_mask,
                                      labels3=opp_label_ids,
                                      input_ids4=opp_claim_input_ids,
                                      token_type_ids4=opp_claim_segment_ids,
                                      attention_mask4=opp_claim_input_mask,
                                      labels4=opp_claim_label_ids)

                logits = model(input_ids=input_ids,
                               token_type_ids=segment_ids,
                               attention_mask=input_mask,
                               input_ids2=claim_input_ids,
                               token_type_ids2=claim_segment_ids,
                               attention_mask2=claim_input_mask,
                               input_ids3=opp_input_ids,
                               token_type_ids3=opp_segment_ids,
                               attention_mask3=opp_input_mask,
                               input_ids4=opp_claim_input_ids,
                               token_type_ids4=opp_claim_segment_ids,
                               attention_mask4=opp_claim_input_mask)

                predicted_prob.extend(
                    torch.nn.functional.softmax(logits, dim=1))
#                 logits_grid = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, input_ids2=claim_input_ids, token_type_ids2=claim_segment_ids, attention_mask2=claim_input_mask, input_ids3=opp_input_ids, token_type_ids3=opp_segment_ids, attention_mask3=opp_input_mask, input_ids4=opp_claim_input_ids, token_type_ids4=opp_claim_segment_ids, attention_mask4=opp_claim_input_mask)

#             print(logits)
#             print(logits[0])
            logits = logits.detach().cpu().numpy()
            #             print(logits)
            label_ids = label_ids.to('cpu').numpy()
            #             print(label_ids)

            tmp_eval_accuracy = accuracy(logits, label_ids)

            tmp_predicted = np.argmax(logits, axis=1)
            predicted_labels.extend(tmp_predicted.tolist())
            gold_labels.extend(label_ids.tolist())

            # Micro F1 (aggregated tp, fp, fn counts across all examples)
            tmp_tp, tmp_pred_c, tmp_gold_c = tp_pcount_gcount(
                logits, label_ids)
            eval_tp += tmp_tp
            eval_pred_c += tmp_pred_c
            eval_gold_c += tmp_gold_c

            pred_label = np.argmax(logits, axis=1)

            raw_score += zip(logits, pred_label, label_ids)

            # Macro F1 (averaged P, R across mini batches)
            tmp_eval_p, tmp_eval_r, tmp_eval_f1 = p_r_f1(logits, label_ids)

            eval_macro_p += tmp_eval_p
            eval_macro_r += tmp_eval_r

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        # Micro F1 (aggregated tp, fp, fn counts across all examples)
        eval_micro_p = eval_tp / eval_pred_c
        eval_micro_r = eval_tp / eval_gold_c
        eval_micro_f1 = 2 * eval_micro_p * eval_micro_r / (eval_micro_p +
                                                           eval_micro_r)

        # Macro F1 (averaged P, R across mini batches)
        eval_macro_p = eval_macro_p / nb_eval_steps
        eval_macro_r = eval_macro_r / nb_eval_steps
        eval_macro_f1 = 2 * eval_macro_p * eval_macro_r / (eval_macro_p +
                                                           eval_macro_r)

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'eval_micro_p': eval_micro_p,
            'eval_micro_r': eval_micro_r,
            'eval_micro_f1': eval_micro_f1,
            'eval_macro_p': eval_macro_p,
            'eval_macro_r': eval_macro_r,
            'eval_macro_f1': eval_macro_f1,
            #                   'global_step': global_step,
            #                   'loss': tr_loss/nb_tr_steps
        }

        output_eval_file = os.path.join(
            output_dir,
            "fuse_cosloss_1033033033_2e5_neg_siamese_bert_epoch50_eval_results.txt"
        )
        output_raw_score = os.path.join(
            output_dir,
            "fuse_cosloss_1033033033_2e5_neg_siamese_bert_epoch50_raw_score.csv"
        )

        #         logger.info(classification_report(gold_labels, predicted_labels, target_names=label_list, digits=4))
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
            writer.write(
                classification_report(gold_labels,
                                      predicted_labels,
                                      target_names=label_list,
                                      digits=4))

        with open(output_raw_score, 'w') as fout:
            fields = [
                "undermine_score", "support_score", "predict_label", "gold"
            ]
            writer = csv.DictWriter(fout, fieldnames=fields)
            writer.writeheader()
            for score, pred, gold in raw_score:
                writer.writerow({
                    "undermine_score": str(score[0]),
                    "support_score": str(score[1]),
                    "predict_label": str(pred),
                    "gold": str(gold)
                })
Пример #21
0
def main():
    parser = train_opts()
    args, _ = parser.parse_known_args()

    label_list = [
        "O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC",
        "I-LOC", "X", "[CLS]", "[SEP]"
    ]
    num_labels = len(label_list) + 1
    # Load features
    train_features = pd.read_parquet(os.path.join(args.train_feature_dir,
                                                  "feature.parquet"),
                                     engine='pyarrow')
    input_ids_list = train_features['input_ids'].tolist()
    input_mask_list = train_features['input_mask'].tolist()
    segment_ids_list = train_features['segment_ids'].tolist()
    label_ids_list = train_features['label_ids'].tolist()

    all_input_ids = torch.tensor(input_ids_list, dtype=torch.long)
    all_input_mask = torch.tensor(input_mask_list, dtype=torch.long)
    all_segment_ids = torch.tensor(segment_ids_list, dtype=torch.long)
    all_label_ids = torch.tensor(label_ids_list, dtype=torch.long)
    train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                               all_label_ids)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if not os.path.exists(args.output_model_dir):
        os.makedirs(args.output_model_dir)

    num_train_optimization_steps = int(
        len(train_features) / args.train_batch_size /
        args.gradient_accumulation_steps) * args.num_train_epochs

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    model = BertForTokenClassification.from_pretrained(args.bert_model,
                                                       cache_dir=cache_dir,
                                                       num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_features))
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_optimization_steps)
    model.train()
    for _ in trange(int(args.num_train_epochs), desc="Epoch"):
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch
            loss = model(input_ids, segment_ids, input_mask, label_ids)
            if n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                optimizer.backward(loss)
            else:
                loss.backward()

            tr_loss += loss.item()
            nb_tr_examples += input_ids.size(0)
            nb_tr_steps += 1
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    # modify learning rate with special warm up BERT uses
                    # if args.fp16 is False, BertAdam is used that handles this automatically
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / num_train_optimization_steps,
                        args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                optimizer.step()
                optimizer.zero_grad()
                global_step += 1

    # Save a trained model and the associated configuration
    model_to_save = model.module if hasattr(
        model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_model_dir, WEIGHTS_NAME)
    torch.save(model_to_save.state_dict(), output_model_file)
    output_config_file = os.path.join(args.output_model_dir, CONFIG_NAME)
    with open(output_config_file, 'w') as f:
        f.write(model_to_save.config.to_json_string())
    label_map = {i: label for i, label in enumerate(label_list, 1)}
    model_config = {
        "bert_model": args.bert_model,
        "do_lower": args.do_lower_case,
        "max_seq_length": args.max_seq_length,
        "num_labels": len(label_list) + 1,
        "label_map": label_map
    }
    json.dump(
        model_config,
        open(os.path.join(args.output_model_dir, "model_config.json"), "w"))

    # Dump data_type.json as a work around until SMT deploys
    dct = {
        "Id": "ILearnerDotNet",
        "Name": "ILearner .NET file",
        "ShortName": "Model",
        "Description": "A .NET serialized ILearner",
        "IsDirectory": False,
        "Owner": "Microsoft Corporation",
        "FileExtension": "ilearner",
        "ContentType": "application/octet-stream",
        "AllowUpload": False,
        "AllowPromotion": False,
        "AllowModelPromotion": True,
        "AuxiliaryFileExtension": None,
        "AuxiliaryContentType": None
    }
    with open(os.path.join(args.output_model_dir, 'data_type.json'), 'w') as f:
        json.dump(dct, f)
    # Dump data.ilearner as a work around until data type design
    visualization = os.path.join(args.output_model_dir, "data.ilearner")
    with open(visualization, 'w') as file:
        file.writelines('{}')
Пример #22
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()
    
    processors = {"ner":NerProcessor}

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
    
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    
    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    label_list = processor.get_labels()
    num_labels = len(label_list) + 1

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        print(train_examples)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
    
    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank))
    model = BertForTokenClassification.from_pretrained(args.bert_model,
              cache_dir=cache_dir,
              num_labels = num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())
        label_map = {i : label for i, label in enumerate(label_list,1)}    
        model_config = {"bert_model":args.bert_model,"do_lower":args.do_lower_case,"max_seq_length":args.max_seq_length,"num_labels":len(label_list)+1,"label_map":label_map}
        json.dump(model_config,open(os.path.join(args.output_dir,"model_config.json"),"w"))
        # Load a trained model and config that you have fine-tuned
    else:
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        config = BertConfig(output_config_file)
        model = BertForTokenClassification(config, num_labels=num_labels)
        model.load_state_dict(torch.load(output_model_file, map_location='cpu'))
    
    model.to(device)

    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        y_true = []
        y_pred = []
        label_map = {i : label for i, label in enumerate(label_list,1)}
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask)
            
            logits = torch.argmax(F.log_softmax(logits,dim=2),dim=2)
            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            input_mask = input_mask.to('cpu').numpy()
            for i,mask in enumerate(input_mask):
                temp_1 =  []
                temp_2 = []
                for j, m in enumerate(mask):
                    if j == 0:
                        continue
                    if m:
                        if label_map[label_ids[i][j]] != "X":
                            temp_1.append(label_map[label_ids[i][j]])
                            temp_2.append(label_map[logits[i][j]])
                    else:
                        temp_1.pop()
                        temp_2.pop()
                        break
                y_true.append(temp_1)
                y_pred.append(temp_2)
        report = classification_report(y_true, y_pred,digits=4)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            logger.info("\n%s", report)
            writer.write(report)
Пример #23
0
def main():
    logger = logger_factory(log_name=config['model']['arch'],
                            log_dir=config['output']['log_dir'])
    logger.info(f"seed is {config['train']['seed']}")
    n_gpu = torch.cuda.device_count()
    logger.info(f"Cuda device count:{n_gpu}")
    device = f"cuda: {config['train']['n_gpu'][0] if len(config['train']['n_gpu']) else 'cpu'}"
    seed_everything(seed=config['train']['seed'], device=device)
    logger.info('starting to load data from disk')
    torch.cuda.empty_cache()

    model_state_dict = None

    processor = MultiLabelTextProcessor(config['data']['data_path'])

    label_list, num_labels = load_labels(processor)
    logger.info(f"Labels loaded. Count: {num_labels}")
    print(label_list)

    tokenizer = BertTokenizer.from_pretrained(
        config['bert']['path'], do_lower_case=config['train']['do_lower_case'])

    train_examples = None
    num_train_steps = None
    if config['train']['do_train']:
        train_examples = processor.get_train_examples(
            config['data']['data_path'],
            logger=logger,
            size=config['train']['train_size'])
        num_train_steps = int(
            len(train_examples) / config['train']['train_batch_size'] /
            config['train']['gradient_accumulation_steps'] *
            config['train']['num_train_epochs'])

    logger.info(f"Training examples:{len(train_examples)}")
    logger.info(f"Training steps:{num_train_steps}")

    model = get_model(model_state_dict, num_labels)

    logger.info(f"fp16: {config['train']['fp16']}")
    if config['train']['fp16']:
        model.half()

    model.to(device)

    logger.info(f"Model loaded: {config['bert']['path']}")

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    t_total = num_train_steps

    if config['train']['fp16']:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=config['train']['learning_rate'],
                              bias_correction=False,
                              max_grad_norm=1.0)
        if config['train']['loss_scale'] == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(
                optimizer, static_loss_scale=config['train']['loss_scale'])

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=config['train']['learning_rate'],
                             warmup=config['train']['warmup_proportion'],
                             t_total=t_total)

    scheduler = CyclicLR(optimizer,
                         base_lr=2e-5,
                         max_lr=5e-5,
                         step_size=2500,
                         last_batch_iteration=0)

    eval_examples = processor.get_dev_examples(
        config['data']['data_path'],
        filename='training.csv',
        size=config['train']['val_size'])
    logger.info(f"Evaluation data loaded. Len: {len(eval_examples)}")
    train_features = convert_examples_to_features(
        train_examples, label_list, config['train']['max_seq_length'],
        tokenizer, logger)
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Batch size = %d", config['train']['train_batch_size'])
    logger.info("  Num steps = %d", num_train_steps)
    all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                   dtype=torch.long)
    all_label_ids = torch.tensor([f.label_ids for f in train_features],
                                 dtype=torch.float)
    train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                               all_label_ids)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(
        train_data,
        sampler=train_sampler,
        batch_size=config['train']['train_batch_size'])

    # Freeze BERT layers for 1 epoch
    # model.module.freeze_bert_encoder()
    # fit(1)
    model.unfreeze_bert_encoder()

    fit(model, device, n_gpu, optimizer, train_dataloader, logger, t_total,
        eval_examples, label_list, num_labels, tokenizer)

    # Save a trained model
    model_to_save = model.module if hasattr(
        model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(config['bert']['cache'],
                                     "finetuned_pytorch_model.bin")
    torch.save(model_to_save.state_dict(), output_model_file)
    logger.info(f"Model saved! Location: {output_model_file}")

    if None:
        # Load a trained model that you have fine-tuned
        model_state_dict = torch.load(output_model_file)
        model = BertForMultiLabelSequenceClassification.from_pretrained(
            config['bert']['path'],
            num_labels=num_labels,
            state_dict=model_state_dict)
        model.to(device)

        eval(model, device, logger, eval_examples, label_list, num_labels,
             config['train']['max_seq_length'], tokenizer)

        result = predict(model, device, config['data']['data_path'], logger,
                         label_list, tokenizer)
        print(result.shape)
        result.to_csv(config['data']['data_path'] / 'prediction.csv',
                      index=None)
Пример #24
0
def train(config, model, train_iter, dev_iter):
    start_time = time.time()

    if os.path.exists(config.save_path):
        model.load_state_dict(torch.load(config.save_path)['model_state_dict'])

    model.train()

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    # optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=config.learning_rate,
                         warmup=0.05,
                         t_total=len(train_iter) * config.num_epochs)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, 0.5)

    if os.path.exists(config.save_path):
        optimizer.load_state_dict(
            torch.load(config.save_path)['optimizer_state_dict'])

    total_batch = 0
    dev_best_loss = float('inf')
    dev_last_loss = float('inf')
    no_improve = 0
    flag = False

    model.train()
    # plot_model(model, to_file= config.save_dic+'.png')
    for epoch in range(config.num_epochs):
        print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
        for i, (trains, labels) in enumerate(train_iter):
            outputs = model(trains)
            model.zero_grad()
            loss = F.cross_entropy(outputs, labels)
            loss.backward()
            optimizer.step()
            if total_batch % 100 == 0:
                true = labels.data.cpu()
                predic = torch.max(outputs.data, 1)[1].cpu()
                train_acc = metrics.accuracy_score(true, predic)
                train_loss = loss.item()
                dev_acc, dev_loss = evaluate(config, model, dev_iter)
                if dev_loss < dev_best_loss:
                    state = {
                        'model_state_dict': model.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                    }
                    dev_best_loss = dev_loss

                    torch.save(state,
                               config.save_dic + str(total_batch) + '.pth')
                    improve = '*'
                    del state
                else:
                    improve = ''

                if dev_last_loss > dev_loss:
                    no_improve = 0
                elif no_improve % 2 == 0:
                    no_improve += 1
                    scheduler.step()
                else:
                    no_improve += 1

                dev_last_loss = dev_loss

                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6},  Train Loss: {1:>5.2},  Train Acc: {2:>6.2%},  Val Loss: {3:>5.2},  Val Acc: {4:>6.2%},  Time: {5} {6}'
                print(
                    msg.format(total_batch, train_loss, train_acc, dev_loss,
                               dev_acc, time_dif, improve))
                model.train()
            total_batch += 1
            if no_improve > config.require_improvement:
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break
        if flag:
            break
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--train_file",
        default=None,
        type=str,
        # required=True,
        help="The input train corpus.")
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,  # required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        # required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--on_memory",
        action='store_true',
        help="Whether to load train samples into memory or use disk")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    # configuration
    args.do_train = True
    args.train_file = "../glue_data/RITS/corpus.txt"
    args.fp16 = False
    args.bert_model = "../model/"
    args.do_lower_case = False
    args.max_seq_length = 128
    args.train_batch_size = 32
    args.learning_rate = 3e-5
    args.num_train_epochs = 2000.0
    args.output_dir = "../model/"

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train:
        raise ValueError(
            "Training is currently the only implemented execution option. Please set `do_train`."
        )

    if not (os.path.exists(args.output_dir) and os.listdir(args.output_dir)):
        # raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
        os.makedirs(args.output_dir)

    model_file = os.path.join(args.bert_model, "wiki-ja.model")
    vocab_file = os.path.join(args.bert_model, "wiki-ja.vocab")
    if os.path.exists(model_file) and os.path.exists(vocab_file):
        import tokenization_sentencepiece as tokenization

        tokenizer = tokenization.FullTokenizer(
            model_file=model_file,
            vocab_file=vocab_file,
            do_lower_case=args.do_lower_case)
    else:
        tokenizer = BertTokenizer.from_pretrained(
            args.bert_model, do_lower_case=args.do_lower_case)

    # train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_file)
        train_dataset = BERTDataset(args.train_file,
                                    tokenizer,
                                    seq_len=args.max_seq_length,
                                    corpus_lines=None,
                                    on_memory=args.on_memory)
        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    if os.path.exists(os.path.join(args.bert_model, "pytorch_model.bin")):
        logger.info("Loading pretrained model from {}".format(
            os.path.join(args.bert_model, "pytorch_model.bin")))
        model = BertForPreTraining.from_pretrained(args.bert_model)
    else:
        logger.info(
            "Create pretrained model from scratch with config {}".format(
                os.path.join(args.bert_model, "bert_config.json")))
        bert_config = BertConfig(vocab_size_or_config_json_file=os.path.join(
            args.bert_model, "bert_config.json"))
        model = BertForPreTraining(config=bert_config)

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
            # TODO: check if this works with current data generator from disk that relies on next(file)
            # (it doesn't return item back by index)
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            masked_lm_accuracy, next_sentence_accuracy = 0, 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
                             is_next)

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                masked_lm_log_probs, next_sentence_log_probs = model(
                    input_ids, segment_ids, input_mask)
                lm_label_ids = lm_label_ids.detach().cpu().numpy()
                is_next = is_next.to('cpu').numpy()
                masked_lm_log_probs = masked_lm_log_probs.detach().cpu().numpy(
                )
                next_sentence_log_probs = next_sentence_log_probs.detach().cpu(
                ).numpy()

                tmp_masked_lm_accuracy = masked_lm_accuracy_fn(
                    masked_lm_log_probs, lm_label_ids)
                tmp_next_sentence_accuracy = next_sentence_accuracy_fn(
                    next_sentence_log_probs, is_next)
                masked_lm_accuracy += tmp_masked_lm_accuracy
                next_sentence_accuracy += tmp_next_sentence_accuracy

            result = {
                'epoch': epoch,
                'global_step': global_step,
                'loss': tr_loss / nb_tr_steps,
                'masked_lm_accuracy': masked_lm_accuracy / nb_tr_steps,
                'next_sentence_accuracy':
                next_sentence_accuracy / nb_tr_examples
            }

            logger.info("***** Train results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))

            # Save a trained model
            logger.info("** ** * Saving fine - tuned model ** ** * ")
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            num_saved = epoch % 3
            output_model_file = os.path.join(args.output_dir,
                                             f"pytorch_model-{num_saved}.bin")
            if args.do_train:
                torch.save(model_to_save.state_dict(), output_model_file)

        # Save the final trained model
        logger.info("** ** * Saving fine - tuned model ** ** * ")
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        if args.do_train:
            torch.save(model_to_save.state_dict(), output_model_file)
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory () already exists and is not empty.")
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = read_squad_examples(
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    PYTORCH_PRETRAINED_BERT_CACHE = str(Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', Path.home() / '.pytorch_pretrained_bert')))
    model = BertForQuestionAnsweringNew.from_pretrained(args.bert_model,
                cache_dir=os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank)))

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    if args.do_train:
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
        train_features = None
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
        # indices = torch.randperm(len(train_data))
        # train_indices = indices[:1000]
        # train_dataloader = DataLoader(train_data, sampler=SubsetRandomSampler(train_indices), batch_size=args.train_batch_size)
        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used and handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForQuestionAnsweringNew(config)
        model.load_state_dict(torch.load(output_model_file))

    else:
        model = BertForQuestionAnsweringNew.from_pretrained(args.bert_model)

    model.to(device)

    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = read_squad_examples(
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start evaluating")
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating"):
            if len(all_results) % 1000 == 0:
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
        write_predictions(eval_examples, eval_features, all_results,
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                          args.version_2_with_negative, args.null_score_diff_threshold)
Пример #27
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    args.device = device

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)
    model = BertForSequenceClassification.from_pretrained(
        args.bert_model, num_labels=num_labels)
    if args.local_rank == 0:
        torch.distributed.barrier()

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0

    if args.do_train:
        if args.local_rank in [-1, 0]:
            tb_writer = SummaryWriter()

        # Prepare data loader
        train_examples = processor.get_train_examples(args.data_dir)
        cached_train_features_file = os.path.join(
            args.data_dir, 'train_{0}_{1}_{2}'.format(
                list(filter(None, args.bert_model.split('/'))).pop(),
                str(args.max_seq_length), str(task_name)))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                train_examples, label_list, args.max_seq_length, tokenizer,
                output_mode)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s",
                            cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features],
                                         dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        num_train_optimization_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

        # Prepare optimizer

        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        model.train()
        for _ in trange(int(args.num_train_epochs),
                        desc="Epoch",
                        disable=args.local_rank not in [-1, 0]):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader,
                         desc="Iteration",
                         disable=args.local_rank not in [-1, 0])):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids,
                               token_type_ids=segment_ids,
                               attention_mask=input_mask)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, num_labels),
                                    label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                    if args.local_rank in [-1, 0]:
                        tb_writer.add_scalar('lr',
                                             optimizer.get_lr()[0],
                                             global_step)
                        tb_writer.add_scalar('loss', loss.item(), global_step)

    ### Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    ### Example:
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(
            args.output_dir, num_labels=num_labels)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)

        # Good practice: save your training arguments together with the trained model
        output_args_file = os.path.join(args.output_dir, 'training_args.bin')
        torch.save(args, output_args_file)
    else:
        model = BertForSequenceClassification.from_pretrained(
            args.bert_model, num_labels=num_labels)

    model.to(device)

    ### Evaluation
    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        cached_eval_features_file = os.path.join(
            args.data_dir, 'dev_{0}_{1}_{2}'.format(
                list(filter(None, args.bert_model.split('/'))).pop(),
                str(args.max_seq_length), str(task_name)))
        try:
            with open(cached_eval_features_file, "rb") as reader:
                eval_features = pickle.load(reader)
        except:
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer,
                output_mode)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving eval features into cached file %s",
                            cached_eval_features_file)
                with open(cached_eval_features_file, "wb") as writer:
                    pickle.dump(eval_features, writer)

        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.float)

        eval_data: TensorDataset = TensorDataset(all_input_ids, all_input_mask,
                                                 all_segment_ids,
                                                 all_label_ids)
        # Run prediction for full data
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(
                eval_data)  # Note that this sampler samples randomly
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []
        out_label_ids = None

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids,
                               token_type_ids=segment_ids,
                               attention_mask=input_mask)

            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))

            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
                out_label_ids = label_ids.detach().cpu().numpy()
            else:
                preds[0] = np.append(preds[0],
                                     logits.detach().cpu().numpy(),
                                     axis=0)
                out_label_ids = np.append(out_label_ids,
                                          label_ids.detach().cpu().numpy(),
                                          axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(task_name, preds, out_label_ids)

        loss = tr_loss / global_step if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        # hack for MNLI-MM
        if task_name == "mnli":
            task_name = "mnli-mm"
            processor = processors[task_name]()

            if os.path.exists(args.output_dir +
                              '-MM') and os.listdir(args.output_dir +
                                                    '-MM') and args.do_train:
                raise ValueError(
                    "Output directory ({}) already exists and is not empty.".
                    format(args.output_dir))
            if not os.path.exists(args.output_dir + '-MM'):
                os.makedirs(args.output_dir + '-MM')

            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer,
                output_mode)
            logger.info("***** Running evaluation *****")
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)

            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

            model.eval()
            eval_loss = 0
            nb_eval_steps = 0
            preds = []
            out_label_ids = None

            for input_ids, input_mask, segment_ids, label_ids in tqdm(
                    eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    logits = model(input_ids,
                                   token_type_ids=segment_ids,
                                   attention_mask=input_mask,
                                   labels=None)

                loss_fct = CrossEntropyLoss()
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels),
                                         label_ids.view(-1))

                eval_loss += tmp_eval_loss.mean().item()
                nb_eval_steps += 1
                if len(preds) == 0:
                    preds.append(logits.detach().cpu().numpy())
                    out_label_ids = label_ids.detach().cpu().numpy()
                else:
                    preds[0] = np.append(preds[0],
                                         logits.detach().cpu().numpy(),
                                         axis=0)
                    out_label_ids = np.append(out_label_ids,
                                              label_ids.detach().cpu().numpy(),
                                              axis=0)

            eval_loss = eval_loss / nb_eval_steps
            preds = preds[0]
            preds = np.argmax(preds, axis=1)
            result = compute_metrics(task_name, preds, out_label_ids)

            loss = tr_loss / global_step if args.do_train else None

            result['eval_loss'] = eval_loss
            result['global_step'] = global_step
            result['loss'] = loss

            output_eval_file = os.path.join(args.output_dir + '-MM',
                                            "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
Пример #28
0
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [{
    'params':
    [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
    'weight_decay':
    0.01
}, {
    'params':
    [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
    'weight_decay':
    0.0
}]

optimizer = BertAdam(optimizer_grouped_parameters,
                     lr=LEARNING_RATE,
                     warmup=WARMUP_PROPORTION,
                     t_total=num_train_optimization_steps)

global_step = 0
nb_tr_steps = 0
tr_loss = 0

logger.info("***** Running training *****")
logger.info("  Num examples = %d", train_examples_len)
logger.info("  Batch size = %d", TRAIN_BATCH_SIZE)
logger.info("  Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features],
                             dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features],
                              dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
Пример #29
0
def main():
    parser = argparse.ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )

    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")

    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")

    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    parser.add_argument("--model_type",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the model type, gru or transformer.")

    ## Other parameters
    parser.add_argument(
        "--max_src_length",
        default=400,
        type=int,
        help=
        "The maximum total src sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")

    parser.add_argument(
        "--max_tgt_length",
        default=100,
        type=int,
        help=
        "The maximum total tgt sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")

    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run train.")

    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval.")

    parser.add_argument("--do_infer",
                        action='store_true',
                        help="Whether to run eval.")

    parser.add_argument("--checkpoint",
                        action='store_true',
                        help="Whether to save checkpoint every epoch.")

    parser.add_argument("--checkpoint_id",
                        default=-1,
                        type=int,
                        help="the checkpoint to eval or infer")

    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")

    parser.add_argument("--eval_batch_size",
                        default=20,
                        type=int,
                        help="Total batch size for evaling.")

    parser.add_argument("--infer_batch_size",
                        default=20,
                        type=int,
                        help="Total batch size for infering.")

    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")

    parser.add_argument("--num_train_epochs",
                        default=1.0,
                        type=float,
                        help="Total number of training epochs to perform.")

    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")

    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")

    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")

    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )

    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")

    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    parser.add_argument("--infer_max_steps",
                        default=20,
                        type=int,
                        help="max step for inference.")

    parser.add_argument("--infer_min_steps",
                        default=0,
                        type=int,
                        help="min step for inference.")

    args = parser.parse_args()

    # data processor
    processors = {
        "giga": GigaProcessor,
        "cnndm": CNNDMProcessor,
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval and not args.do_infer:
        raise ValueError(
            "At least one of `do_train` or `do_eval` or 'do_infer' must be True."
        )

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    # 实例化processor类
    processor = processors[task_name]()

    # 实例化tokenizer
    src_tokenizer = BertTokenizer.from_pretrained(
        args.bert_model, do_lower_case=args.do_lower_case)
    tgt_tokenizer = BertTokenizer.from_pretrained(
        args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model = Seq2Seq.from_pretrained(args.bert_model,
                                    model_type=args.model_type)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)

    ## do train
    global_step = 0
    nb_tf_steps = 0
    tf_loss = 0
    if args.do_train:
        train_features = covert_examples_to_features(
            examples=train_examples,
            max_src_length=args.max_src_length,
            max_tgt_length=args.max_tgt_length,
            src_tokenizer=src_tokenizer,
            tgt_tokenizer=tgt_tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_src_ids = torch.tensor([f.src_ids for f in train_features],
                                   dtype=torch.long)
        all_src_mask = torch.tensor([f.src_mask for f in train_features],
                                    dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_tgt_ids = torch.tensor([f.tgt_ids for f in train_features],
                                   dtype=torch.long)
        all_tgt_mask = torch.tensor([f.tgt_mask for f in train_features],
                                    dtype=torch.long)
        train_data = TensorDataset(all_src_ids, all_src_mask, all_segment_ids,
                                   all_tgt_ids, all_tgt_mask)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                batch = batch_sort(batch)
                src_ids, src_mask, segment_ids, tgt_ids, tgt_mask = batch
                loss, _, _ = model(src_ids, src_mask, segment_ids, tgt_ids,
                                   tgt_mask)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += src_ids.size(0)
                nb_tr_steps += 1

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(
                        global_step / t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            if args.checkpoint:
                model_to_save = model.module if hasattr(model,
                                                        'module') else model
                output_model_file = os.path.join(
                    args.output_dir, args.task_name + "_" + args.model_type +
                    "_" + str(epoch) + "_pytorch_model.bin")
                if args.do_train:
                    torch.save(model_to_save.state_dict(), output_model_file)

    # Save a trained model
    if args.do_train:
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(
            args.output_dir,
            args.task_name + "_" + args.model_type + "_pytorch_model.bin")
        torch.save(model_to_save.state_dict(), output_model_file)

    if args.checkpoint_id == -1:
        output_model_file = os.path.join(
            args.output_dir,
            args.task_name + "_" + args.model_type + "_pytorch_model.bin")
    else:
        output_model_file = os.path.join(
            args.output_dir, args.task_name + "_" + args.model_type + "_" +
            str(args.checkpoint_id) + "_pytorch_model.bin")

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
    model = Seq2Seq.from_pretrained(args.bert_model,
                                    state_dict=model_state_dict,
                                    model_type=args.model_type)
    model.to(device)

    ## do eval
    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = covert_examples_to_features(
            examples=eval_examples,
            max_src_length=args.max_src_length,
            max_tgt_length=args.max_tgt_length,
            src_tokenizer=src_tokenizer,
            tgt_tokenizer=tgt_tokenizer)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_src_ids = torch.tensor([f.src_ids for f in eval_features],
                                   dtype=torch.long)
        all_src_mask = torch.tensor([f.src_mask for f in eval_features],
                                    dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_tgt_ids = torch.tensor([f.tgt_ids for f in eval_features],
                                   dtype=torch.long)
        all_tgt_mask = torch.tensor([f.tgt_mask for f in eval_features],
                                    dtype=torch.long)
        eval_data = TensorDataset(all_src_ids, all_src_mask, all_segment_ids,
                                  all_tgt_ids, all_tgt_mask)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_rouge = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for batch in tqdm(eval_dataloader, desc="Evaluating"):
            batch = tuple(t.to(device) for t in batch)
            batch = batch_sort(batch)
            src_ids, src_mask, segment_ids, tgt_ids, tgt_mask = batch

            with torch.no_grad():
                tmp_eval_loss, _, _ = model(src_ids, src_mask, segment_ids,
                                            tgt_ids, tgt_mask)
                # print(tmp_eval_loss)

            tgt_ids = tgt_ids.to('cpu').numpy()
            tmp_eval_rouge = rouge()

            eval_loss += tmp_eval_loss.mean().item()
            eval_rouge += tmp_eval_rouge

            nb_eval_examples += src_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_rouge = eval_rouge / nb_eval_examples
        result = {
            'eval_loss': eval_loss,
            'eval_rouge': eval_rouge,
            'global_step': global_step,
        }

        output_eval_file = os.path.join(
            args.output_dir,
            str(args.checkpoint_id) + "_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info(" %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    ## do infer
    if args.do_infer and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        final_output = []
        infer_examples = processor.get_test_examples(args.data_dir)
        infer_features = covert_examples_to_features(
            examples=infer_examples,
            max_src_length=args.max_src_length,
            max_tgt_length=args.max_tgt_length,
            src_tokenizer=src_tokenizer,
            tgt_tokenizer=tgt_tokenizer)
        logger.info("***** Running inference *****")
        logger.info("  Num examples = %d", len(infer_examples))
        logger.info("  Batch size = %d", args.infer_batch_size)
        all_src_ids = torch.tensor([f.src_ids for f in infer_features],
                                   dtype=torch.long)
        all_src_mask = torch.tensor([f.src_mask for f in infer_features],
                                    dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in infer_features],
                                       dtype=torch.long)
        all_tgt_ids = torch.tensor([f.tgt_ids for f in infer_features],
                                   dtype=torch.long)
        all_tgt_mask = torch.tensor([f.tgt_mask for f in infer_features],
                                    dtype=torch.long)
        infer_data = TensorDataset(all_src_ids, all_src_mask, all_segment_ids,
                                   all_tgt_ids, all_tgt_mask)

        infer_sampler = SequentialSampler(infer_data)
        infer_dataloader = DataLoader(infer_data,
                                      sampler=infer_sampler,
                                      batch_size=args.infer_batch_size)

        model.eval()
        eval_loss, eval_rouge = 0, 0
        eval_loss, eval_rouge = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for batch in tqdm(infer_dataloader, desc="infering"):
            batch = tuple(t.to(device) for t in batch)
            batch = batch_sort(batch)
            src_ids, src_mask, segment_ids, tgt_ids, tgt_mask = batch

            with torch.no_grad():
                src_ids = src_ids.transpose(0, 1).unsqueeze(2)
                tgt_ids = tgt_ids.transpose(0, 1).unsqueeze(2)

                lengths = src_mask.sum(1)

                max_src_length = src_ids.size(0)
                max_tgt_length = tgt_ids.size(0)

                enc_state, memory_bank, lengths = model.encoder(
                    src_ids, lengths)

                all_decoder_outputs = torch.zeros(args.infer_batch_size,
                                                  args.infer_max_steps)
                all_attention_outputs = torch.zeros(args.infer_max_steps,
                                                    args.infer_batch_size,
                                                    max_src_length)

                all_decoder_outputs = all_decoder_outputs.to(device)
                all_attention_outputs = all_attention_outputs.to(device)

                model.decoder.init_state(src_ids, memory_bank, enc_state)

                decoder_input = torch.LongTensor([101] * args.infer_batch_size)
                decoder_input = decoder_input.to(device)
                decoder_input = decoder_input.unsqueeze(0)
                decoder_input = decoder_input.unsqueeze(2)

                for step in range(args.infer_max_steps):
                    dec_out, dec_attn = model.decoder(decoder_input,
                                                      memory_bank,
                                                      memory_lengths=lengths,
                                                      step=step)
                    logits = model.generator(dec_out)

                    if step + 1 < args.infer_min_steps:
                        for i in range(logits.size(1)):
                            logits[0][i][102] = -1e20

                    prob, idx = torch.max(logits, 2)
                    decoder_input = idx.unsqueeze(2)

                    all_decoder_outputs[:, step] = idx.squeeze(0)
                    # all_attention_outputs[step, :, :] = dec_attn.squeeze(0)

                src_ids = src_ids.squeeze(2).transpose(0, 1)
                tgt_ids = tgt_ids.squeeze(2).transpose(0, 1)
                src_ids = src_ids.cpu().int().detach().numpy()
                tgt_ids = tgt_ids.cpu().int().detach().numpy()
                all_decoder_outputs = all_decoder_outputs.cpu().int().detach(
                ).numpy()

                for i in range(args.infer_batch_size):
                    src_text = src_tokenizer.convert_ids_to_tokens(src_ids[i])
                    tgt_text = tgt_tokenizer.convert_ids_to_tokens(
                        all_decoder_outputs[i])
                    ref_text = tgt_tokenizer.convert_ids_to_tokens(tgt_ids[i])
                    final_output.append((tgt_text, ref_text))

        # out put infer file
        output_infer_file = os.path.join(
            args.output_dir,
            str(args.checkpoint_id) + "_infer_results.txt")
        with open(output_infer_file, 'w', encoding='utf8') as wtf:
            for line1, line2 in final_output:
                wtf.write(' '.join(line1) + '\t' + ' '.join(line2) + '\n')
        print('infering end')
Пример #30
0
def main(bert_model='bert-base-chinese', cache_dir='/tmp/data/', \
         max_seq=128, batch_size=32, num_epochs=10, lr=2e-5):
    processor = Processor()
    train_examples = processor.get_train_examples('data/hotel')
    label_list = processor.get_labels()
    tokenizer = BertTokenizer.from_pretrained(bert_model, do_lower_case=True)
    model = BertClassification.from_pretrained(bert_model, \
                                               cache_dir=cache_dir,num_labels=len(label_list))
    # model = BertTextCNN.from_pretrained(bert_model,\
    # 	cache_dir=cache_dir,num_labels=len(label_list))
    model.to(device)
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
      {'params':[p for n,p in param_optimizer if not \
        any(nd in n for nd in no_decay)],'weight_decay':0.01},
      {'params':[p for n,p in param_optimizer if \
                 any(nd in n for nd in no_decay)],'weight_decay':0.00}]
    print('train...')
    num_train_steps = int(len(train_examples) / batch_size * num_epochs)
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=lr,
                         warmup=0.1,
                         t_total=num_train_steps)
    train_features = convert_examples_to_features(train_examples, label_list,
                                                  max_seq, tokenizer)
    all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                  dtype=torch.long)
    all_label_ids = torch.tensor([f.label_id for f in train_features],
                                 dtype=torch.long)
    train_data = TensorDataset(all_input_ids, all_input_mask, all_label_ids)
    train_sampler = RandomSampler(train_data)
    train_dataloader = DataLoader(train_data,
                                  sampler=train_sampler,
                                  batch_size=batch_size)
    model.train()
    for _ in trange(num_epochs, desc='Epoch'):
        tr_loss = 0
        for step, batch in enumerate(tqdm(train_dataloader, desc='Iteration')):
            input_ids, input_mask, label_ids = tuple(
                t.to(device) for t in batch)
            loss = model(input_ids, input_mask, label_ids)
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()
            tr_loss += loss.item()
        print('tr_loss', tr_loss)
    print('eval...')
    eval_examples = processor.get_dev_examples('data/hotel')
    eval_features = convert_examples_to_features(eval_examples, label_list,
                                                 max_seq, tokenizer)
    eval_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                  dtype=torch.long)
    eval_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                   dtype=torch.long)
    eval_label_ids = torch.tensor([f.label_id for f in eval_features],
                                  dtype=torch.long)
    eval_data = TensorDataset(eval_input_ids, eval_input_mask, eval_label_ids)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data,
                                 sampler=eval_sampler,
                                 batch_size=batch_size)
    model.eval()
    preds = []
    for batch in tqdm(eval_dataloader, desc='Evaluating'):
        input_ids, input_mask, label_ids = tuple(t.to(device) for t in batch)
        with torch.no_grad():
            logits = model(input_ids, input_mask, None)
            preds.append(logits.detach().cpu().numpy())
    preds = np.argmax(np.vstack(preds), axis=1)
    print(compute_metrics(preds, eval_label_ids.numpy()))
    torch.save(model, 'data/cache/model')