Пример #1
0
    def __init__(self,
                 pretrained=True,
                 layers=[1, 2, 3, 4],
                 act_layer: Union[str, nn.Module] = Swish,
                 no_stride=False):
        from timm.models.efficientnet import tf_efficientnet_b0_ns

        if isinstance(act_layer, str):
            act_layer = get_activation_block(act_layer)
        encoder = tf_efficientnet_b0_ns(pretrained=pretrained,
                                        features_only=True,
                                        act_layer=act_layer,
                                        drop_path_rate=0.05)
        strides = [2, 4, 8, 16, 32]

        if no_stride:
            encoder.blocks[5][0].conv_dw.stride = (1, 1)
            encoder.blocks[5][0].conv_dw.dilation = (2, 2)

            encoder.blocks[3][0].conv_dw.stride = (1, 1)
            encoder.blocks[3][0].conv_dw.dilation = (2, 2)
            strides[3] = 8
            strides[4] = 8

        super().__init__([16, 24, 40, 112, 320], strides, layers)
        self.encoder = encoder
Пример #2
0
    def __init__(self,
                 pretrained=True,
                 layers=[1, 2, 3, 4],
                 act_layer: Union[str, nn.Module] = Swish):
        from timm.models.efficientnet import mixnet_xl

        if isinstance(act_layer, str):
            act_layer = get_activation_block(act_layer)
        encoder = mixnet_xl(pretrained=pretrained,
                            features_only=True,
                            act_layer=act_layer,
                            drop_path_rate=0.2)
        super().__init__([40, 48, 64, 192, 320], [2, 4, 8, 16, 32], layers)
        self.encoder = encoder
Пример #3
0
    def __init__(
        self,
        input_channels: int = 3,
        stack_level: int = 8,
        depth: int = 4,
        features: int = 256,
        activation=ACT_RELU,
        repeats=1,
        pooling_block=nn.MaxPool2d,
    ):
        super().__init__(
            channels=[features] + [features] * stack_level,
            strides=[4] + [4] * stack_level,
            layers=list(range(0, stack_level + 1)),
        )

        self.stack_level = stack_level
        self.depth_level = depth
        self.num_features = features

        act = get_activation_block(activation)
        self.stem = HGStemBlock(input_channels, features, activation=act)

        input_features = features
        modules = []

        for _ in range(stack_level):
            modules.append(
                HGBlock(
                    depth,
                    input_features,
                    features,
                    increase=0,
                    activation=act,
                    repeats=repeats,
                    pooling_block=pooling_block,
                ))
            input_features = features

        self.num_blocks = len(modules)
        self.blocks = nn.ModuleList(modules)
        self.features = nn.ModuleList([
            HGFeaturesBlock(features, blocks=4, activation=act)
            for _ in range(stack_level)
        ])
        self.merge_features = nn.ModuleList([
            nn.Conv2d(features, features, kernel_size=1)
            for _ in range(stack_level - 1)
        ])