Пример #1
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--from_pretrained",
        default="bert-base-uncased",
        type=str,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.",
    )
    parser.add_argument(
        "--output_dir",
        default="save",
        type=str,
        help="The output directory where the model checkpoints will be written.",
    )
    parser.add_argument(
        "--config_file",
        default="config/bert_base_6layer_6conect.json",
        type=str,
        help="The config file which specified the model details.",
    )
    parser.add_argument(
        "--num_train_epochs",
        default=20,
        type=int,
        help="Total number of training epochs to perform.",
    )
    parser.add_argument(
        "--train_iter_multiplier",
        default=1.0,
        type=float,
        help="multiplier for the multi-task training.",
    )
    parser.add_argument(
        "--train_iter_gap",
        default=4,
        type=int,
        help="forward every n iteration is the validation score is not improving over the last 3 epoch, -1 means will stop",
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help="Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.",
    )
    parser.add_argument(
        "--no_cuda", action="store_true", help="Whether not to use CUDA when available"
    )
    parser.add_argument(
        "--do_lower_case",
        default=True,
        type=bool,
        help="Whether to lower case the input text. True for uncased models, False for cased models.",
    )
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help="local_rank for distributed training on gpus",
    )
    parser.add_argument(
        "--seed", type=int, default=0, help="random seed for initialization"
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumualte before performing a backward/update pass.",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit float precision instead of 32-bit",
    )
    parser.add_argument(
        "--loss_scale",
        type=float,
        default=0,
        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n",
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=16,
        help="Number of workers in the dataloader.",
    )
    parser.add_argument(
        "--save_name", default="", type=str, help="save name for training."
    )
    parser.add_argument(
        "--in_memory",
        default=False,
        type=bool,
        help="whether use chunck for parallel training.",
    )
    parser.add_argument(
        "--optim", default="AdamW", type=str, help="what to use for the optimization."
    )
    parser.add_argument(
        "--freeze",
        default=-1,
        type=int,
        help="till which layer of textual stream of vilbert need to fixed.",
    )
    parser.add_argument(
        "--vision_scratch",
        action="store_true",
        help="whether pre-trained the image or not.",
    )
    parser.add_argument(
        "--evaluation_interval", default=1, type=int, help="evaluate very n epoch."
    )
    parser.add_argument(
        "--lr_scheduler",
        default="mannul",
        type=str,
        help="whether use learning rate scheduler.",
    )
    parser.add_argument(
        "--baseline", action="store_true", help="whether use single stream baseline."
    )
    parser.add_argument(
        "--resume_file", default="", type=str, help="Resume from checkpoint"
    )
    parser.add_argument(
        "--dynamic_attention",
        action="store_true",
        help="whether use dynamic attention.",
    )
    parser.add_argument(
        "--clean_train_sets",
        default=True,
        type=bool,
        help="whether clean train sets for multitask data.",
    )
    parser.add_argument(
        "--visual_target",
        default=0,
        type=int,
        help="which target to use for visual branch. \
        0: soft label, \
        1: regress the feature, \
        2: NCE loss.",
    )
    args = parser.parse_args()
    with open("task_config.yml", "r") as f:
        task_cfg = edict(yaml.safe_load(f))

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    if args.baseline:
        from pytorch_transformers.modeling_bert import BertConfig
        from src.models.basebert import BaseBertForVLTasks
    else:
        from src.models.vilbert import BertConfig
        from src.models.vilbert import VILBertForVLTasks

    name = task_cfg["name"]
    task_lr = task_cfg["lr"]

    base_lr = task_lr
    loss_scale = task_lr / base_lr

    if args.save_name:
        prefix = "-" + args.save_name
    else:
        prefix = ""
    timeStamp = (
        args.config_file.split("/")[1].split(".")[0]
        + prefix
    )
    savePath = os.path.join(args.output_dir, timeStamp)

    bert_weight_name = json.load(
        open("config/" + args.bert_model + "_weight_name.json", "r")
    )

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
        )
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        torch.distributed.init_process_group(backend="nccl")

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
            device, n_gpu, bool(args.local_rank != -1), args.fp16
        )
    )

    default_gpu = False
    if dist.is_available() and args.local_rank != -1:
        rank = dist.get_rank()
        if rank == 0:
            default_gpu = True
    else:
        default_gpu = True

    if default_gpu:
        if not os.path.exists(savePath):
            os.makedirs(savePath)

    config = BertConfig.from_json_file(args.config_file)
    if default_gpu:
        # save all the hidden parameters.
        with open(os.path.join(savePath, "command.txt"), "w") as f:
            print(args, file=f)  # Python 3.x
            print("\n", file=f)
            print(config, file=f)

    # load dataset
    task_batch_size, task_num_iters, task_datasets_train, task_datasets_val, task_dataloader_train, task_dataloader_val = LoadDatasets(
        args, task_cfg
    )

    logdir = os.path.join(savePath, "logs")
    tbLogger = utils.tbLogger(
        logdir,
        savePath,
        task_num_iters,
        args.gradient_accumulation_steps,
    )

    if args.visual_target == 0:
        config.v_target_size = 1601
        config.visual_target = args.visual_target
    else:
        config.v_target_size = 2048
        config.visual_target = args.visual_target

    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_ave_iter = {}
    task_stop_controller = {}
    task_ave_iter = int(
        task_cfg["num_epoch"]
        * task_num_iters
        * args.train_iter_multiplier
        / args.num_train_epochs
    )
    task_stop_controller = utils.TaskStopOnPlateau(
        mode="max",
        patience=1,
        continue_threshold=0.005,
        cooldown=1,
        threshold=0.001,
    )

    median_num_iter = task_ave_iter
    num_train_optimization_steps = (
        median_num_iter * args.num_train_epochs // args.gradient_accumulation_steps
    )
    num_labels = task_datasets_train.num_labels

    if args.dynamic_attention:
        config.dynamic_attention = True

    model = VILBertForVLTasks.from_pretrained(
        args.from_pretrained,
        config=config,
        num_labels=num_labels,
        default_gpu=default_gpu,
    )

    task_losses = LoadLosses(args, task_cfg)

    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]

    if args.freeze != -1:
        bert_weight_name_filtered = []
        for name in bert_weight_name:
            if "embeddings" in name:
                bert_weight_name_filtered.append(name)
            elif "encoder" in name:
                layer_num = name.split(".")[2]
                if int(layer_num) <= args.freeze:
                    bert_weight_name_filtered.append(name)

        optimizer_grouped_parameters = []
        for key, value in dict(model.named_parameters()).items():
            if key[12:] in bert_weight_name_filtered:
                value.requires_grad = False

        if default_gpu:
            print("filtered weight")
            print(bert_weight_name_filtered)

    optimizer_grouped_parameters = []
    for key, value in dict(model.named_parameters()).items():
        if value.requires_grad:
            if "vil_" in key:
                lr = 1e-4
            else:
                if args.vision_scratch:
                    if key[12:] in bert_weight_name:
                        lr = base_lr
                    else:
                        lr = 1e-4
                else:
                    lr = base_lr
            if any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [
                    {"params": [value], "lr": lr, "weight_decay": 0.0}
                ]
            if not any(nd in key for nd in no_decay):
                optimizer_grouped_parameters += [
                    {"params": [value], "lr": lr, "weight_decay": 0.01}
                ]

    if default_gpu:
        print(len(list(model.named_parameters())), len(optimizer_grouped_parameters))

    # choose optimizer
    if args.optim == "AdamW":
        optimizer = AdamW(optimizer_grouped_parameters, lr=base_lr, correct_bias=False)
    elif args.optim == "RAdam":
        optimizer = RAdam(optimizer_grouped_parameters, lr=base_lr)

    # choose scheduler
    warmpu_steps = args.warmup_proportion * num_train_optimization_steps

    if args.lr_scheduler == "warmup_linear":
        warmup_scheduler = WarmupLinearSchedule(
            optimizer, warmup_steps=warmpu_steps, t_total=num_train_optimization_steps
        )
    else:
        warmup_scheduler = WarmupConstantSchedule(optimizer, warmup_steps=warmpu_steps)

    lr_reduce_list = np.array([5, 7])
    if args.lr_scheduler == "automatic":
        lr_scheduler = ReduceLROnPlateau(
            optimizer, mode="max", factor=0.2, patience=1, cooldown=1, threshold=0.001
        )
    elif args.lr_scheduler == "cosine":
        lr_scheduler = CosineAnnealingLR(
            optimizer, T_max=median_num_iter * args.num_train_epochs
        )
    elif args.lr_scheduler == "cosine_warm":
        lr_scheduler = CosineAnnealingWarmRestarts(
            optimizer, T_0=median_num_iter * args.num_train_epochs
        )
    elif args.lr_scheduler == "mannul":

        def lr_lambda_fun(epoch):
            return pow(0.2, np.sum(lr_reduce_list <= epoch))

        lr_scheduler = LambdaLR(optimizer, lr_lambda=lr_lambda_fun)

    startIterID = 0
    global_step = 0
    start_epoch = 0

    if args.resume_file != "" and os.path.exists(args.resume_file):
        checkpoint = torch.load(args.resume_file, map_location="cpu")
        new_dict = {}
        for attr in checkpoint["model_state_dict"]:
            if attr.startswith("module."):
                new_dict[attr.replace("module.", "", 1)] = checkpoint[
                    "model_state_dict"
                ][attr]
            else:
                new_dict[attr] = checkpoint["model_state_dict"][attr]
        model.load_state_dict(new_dict)
        warmup_scheduler.load_state_dict(checkpoint["warmup_scheduler_state_dict"])
        # lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        global_step = checkpoint["global_step"]
        start_epoch = int(checkpoint["epoch_id"]) + 1
        task_stop_controller = checkpoint["task_stop_controller"]
        tbLogger = checkpoint["tb_logger"]
        del checkpoint

    model.to(device)

    print("`==============`MODEL=============")
    print(next(model.parameters()).is_cuda)#False

    for state in optimizer.state.values():
        for k, v in state.items():
            if torch.is_tensor(v):
                state[k] = v.cuda()

    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model, delay_allreduce=True)

    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if default_gpu:
        print("***** Running training *****")
        print("  Num Iters: ", task_num_iters)
        print("  Batch size: ", task_batch_size)
        print("  Num steps: %d" % num_train_optimization_steps)

    task_iter_train = None
    task_count = 0
    for epochId in tqdm(range(start_epoch, args.num_train_epochs), desc="Epoch", ncols=100):
        model.train()
        for step in range(median_num_iter):
            iterId = startIterID + step + (epochId * median_num_iter)
            first_task = True

            is_forward = False
            if (not task_stop_controller.in_stop) or (
                iterId % args.train_iter_gap == 0
            ):
                is_forward = True

            if is_forward:
                loss, score = ForwardModelsTrain(
                    args,
                    task_cfg,
                    device,
                    task_count,
                    task_iter_train,
                    task_dataloader_train,
                    model,
                    task_losses,
                )

                loss = loss * loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion,
                        )
                        for param_group in optimizer.param_groups:
                            param_group["lr"] = lr_this_step

                    if first_task and (
                        global_step < warmpu_steps
                        or args.lr_scheduler == "warmup_linear"
                    ):
                        warmup_scheduler.step()

                    optimizer.step()
                    model.zero_grad()
                    if first_task:
                        global_step += 1
                        first_task = False

                    if default_gpu:
                        tbLogger.step_train(
                            epochId,
                            iterId,
                            float(loss),
                            float(score),
                            optimizer.param_groups[0]["lr"],
                            "train",
                        )

            if "cosine" in args.lr_scheduler and global_step > warmpu_steps:
                lr_scheduler.step()

            if (
                step % (20 * args.gradient_accumulation_steps) == 0
                and step != 0
                and default_gpu
            ):
                tbLogger.showLossTrain()

            # decided whether to evaluate on SNLI tasks.
            if (iterId != 0 and iterId % task_num_iters == 0) or (
                epochId == args.num_train_epochs - 1 and step == median_num_iter - 1
            ):
                evaluate(
                    args,
                    task_dataloader_val,
                    task_stop_controller,
                    task_cfg,
                    device,
                    model,
                    task_losses,
                    epochId,
                    default_gpu,
                    tbLogger,
                )

        if args.lr_scheduler == "automatic":
            lr_scheduler.step(sum(val_scores.values()))
            logger.info("best average score is %3f" % lr_scheduler.best)
        elif args.lr_scheduler == "mannul":
            lr_scheduler.step()

        if epochId in lr_reduce_list:
            # reset the task_stop_controller once the lr drop
            task_stop_controller._reset()

        if default_gpu:
            # Save a trained model
            logger.info("** ** * Saving fine - tuned model ** ** * ")
            model_to_save = (
                model.module if hasattr(model, "module") else model
            )  # Only save the model it-self
            output_model_file = os.path.join(
                savePath, "pytorch_model_" + str(epochId) + ".bin"
            )
            output_checkpoint = os.path.join(savePath, "pytorch_ckpt_latest.tar")
            torch.save(model_to_save.state_dict(), output_model_file)
            torch.save(
                {
                    "model_state_dict": model_to_save.state_dict(),
                    "optimizer_state_dict": optimizer.state_dict(),
                    "warmup_scheduler_state_dict": warmup_scheduler.state_dict(),
                    # 'lr_scheduler_state_dict': lr_scheduler.state_dict(),
                    "global_step": global_step,
                    "epoch_id": epochId,
                    "task_stop_controller": task_stop_controller,
                    "tb_logger": tbLogger,
                },
                output_checkpoint,
            )
    tbLogger.txt_close()
Пример #2
0
                pretrained_dict = pretrained_dict['model_state_dict']

            model_dict = dialog_encoder.state_dict()
            pretrained_dict = {
                k: v
                for k, v in pretrained_dict.items() if k in model_dict
            }
            print("number of keys transferred", len(pretrained_dict))
            assert len(pretrained_dict.keys()) > 0
            model_dict.update(pretrained_dict)
            dialog_encoder.load_state_dict(model_dict)
            del pretrained_dict, model_dict \

        else:
            model_dict = dialog_encoder.state_dict()
            optimizer_dict = optimizer.state_dict()
            pretrained_dict_model = pretrained_dict['model_state_dict']
            pretrained_dict_optimizer = pretrained_dict['optimizer_state_dict']
            pretrained_dict_scheduler = pretrained_dict['scheduler_state_dict']
            pretrained_dict_model = {
                k: v
                for k, v in pretrained_dict_model.items() if k in model_dict
            }
            pretrained_dict_optimizer = {
                k: v
                for k, v in pretrained_dict_optimizer.items()
                if k in optimizer_dict
            }
            model_dict.update(pretrained_dict_model)
            optimizer_dict.update(pretrained_dict_optimizer)
            dialog_encoder.load_state_dict(model_dict)
Пример #3
0
            best = True
        else:
            patience += 1

        if patience > 5:
            print("Patience reached...")
            break
        
        print("Saving model...")

        torch.save({
            'epoch': epoch,
            'val_loss': val_loss,
            'train_loss': train_loss,
            'state_dict': discriminator.state_dict(),
            'optimizer': optimizer.state_dict(),
            'scheduler': scheduler.state_dict(),
            'patience': patience,
        }, os.path.join(config.model_path, 'last_model_discriminator.pth'))

        if best:
            copyfile(os.path.join(config.model_path, 'last_model_discriminator.pth') , os.path.join(config.model_path, 'best_model_discriminator.pth'))


    # for idx, (captions, image_features, image_name, label) in enumerate(train_data_loader):
        
    #     captions = captions.to(device)  # (N, L), long
    #     image_features = image_features.to(device)  # (N, L), long

    #     num_img_tokens = image_features.size(1)
    #     seq_length = captions.size(1)
 optimizer = AdamW(optimizer_grouped_parameters, lr=params['lr'])
 scheduler = WarmupLinearScheduleNonZero(optimizer, warmup_steps=10000, t_total=200000)
 start_iter_id = 0
 
 if params['start_path']:
     pretrained_dict = torch.load(params['start_path'])
     if not params['continue']:
         model_dict = dialog_encoder.state_dict()
         pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
         print("pretrained dict", pretrained_dict)
         assert len(pretrained_dict.keys()) > 0
         model_dict.update(pretrained_dict)
         dialog_encoder.load_state_dict(model_dict)
     else:
         model_dict = dialog_encoder.state_dict()
         optimizer_dict = optimizer.state_dict()
         pretrained_dict_model = pretrained_dict['model_state_dict']
         pretrained_dict_optimizer = pretrained_dict['optimizer_state_dict']
         pretrained_dict_scheduler = pretrained_dict['scheduler_state_dict']
         pretrained_dict_model = {k: v for k, v in pretrained_dict_model.items() if k in model_dict}
         pretrained_dict_optimizer = {k: v for k, v in pretrained_dict_optimizer.items() if k in optimizer_dict}
         model_dict.update(pretrained_dict_model)
         optimizer_dict.update(pretrained_dict_optimizer)
         dialog_encoder.load_state_dict(model_dict)
         optimizer.load_state_dict(optimizer_dict)
         for state in optimizer.state.values():
             for k, v in state.items():
                 if isinstance(v, torch.Tensor):
                     state[k] = v.cuda()
         scheduler = WarmupLinearScheduleNonZero(optimizer, warmup_steps=10000, \
                                                 t_total=200000, last_epoch=pretrained_dict["iterId"])
def train(args):
    save_path = join(args.save_path, 'ckpt')
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    args.train_batch_size = args.bs * max(1, args.n_gpu)
    train_loader, val_loader = batcher(args.path, args.train_batch_size)
    t_total = len(train_loader) // args.gradient_accumulation_steps * args.num_train_epochs
    print(t_total / args.num_train_epochs)
    tb_writer = SummaryWriter(log_dir=join(args.save_path, 'tensorboard'))
    model = Bert_choice()
    if args.cuda:
        model = model.cuda()
    model.train()
    optimizer = AdamW(model.parameters(), lr=1e-5)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=0, t_total=t_total)
    if args.fp16:
        from apex import amp
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1')

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)



    train_iterator = trange(int(args.num_train_epochs), desc="Epoch")
    global_ccr = 0
    global_step = 0
    for _ in train_iterator:
        epoch_iterator = tqdm(train_loader, desc="Iteration")
        tr_loss, logging_loss = 0, 0
        tr_ccr = 0
        for step, batch in enumerate(epoch_iterator):
            #questions, contexts, choicess = batch
            _inputs = batch.to(args.device)
            bs, cn, length = _inputs.size()
            labels = torch.tensor([0 for _ in range(bs)]).to(args.device)

            loss, _ids = model(_inputs, labels)
            ccr = sum([1 if _id == 0 else 0 for _id in _ids]) / len(_ids)

            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel training

            tr_loss += loss.item()
            tr_ccr += ccr / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 2)
                optimizer.step()
                scheduler.step()
                model.zero_grad()

                global_ccr = global_ccr * 0.01 + tr_ccr
                tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                tb_writer.add_scalar('loss', (tr_loss - logging_loss), global_step)
                tb_writer.add_scalar('ccr', global_ccr, global_step)
                global_step += 1
                #print('loss: {:.4f} ccr {:.4f}\r'.format(tr_loss, ccr), end='')
                logging_loss = tr_loss
                tr_ccr = 0
                if global_step % args.ckpt == 0:
                    total_ccr, total_loss = evaluate(model, val_loader, args)
                    name = 'ckpt-{:4f}-{:4f}-{}'.format(total_loss, total_ccr, global_step)
                    save_dict = {}
                    save_dict['state_dict'] = model.state_dict()
                    save_dict['optimizer'] = optimizer.state_dict()
                    torch.save(save_dict, join(save_path, name))