def create_and_check_roberta_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): model = RobertaForMaskedLM(config=config) model.eval() loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels) result = { "loss": loss, "prediction_scores": prediction_scores, } self.parent.assertListEqual( list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]) self.check_loss_output(result)
def test_inference_masked_lm(self): model = RobertaForMaskedLM.from_pretrained('roberta-base') input_ids = torch.tensor( [[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.Tensor([[[33.8843, -4.3107, 22.7779], [4.6533, -2.8099, 13.6252], [1.8222, -3.6898, 8.8600]]]) self.assertTrue( torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))
def __init__(self, args): super().__init__() if args.hfroberta_model_dir is not None: # load bert model from file roberta_model_name = str(args.hfroberta_model_dir) + "/" dict_file = roberta_model_name print("loading huggingface RoBERTa model from {}".format(roberta_model_name)) else: # load RoBERTa model from huggingface cache roberta_model_name = args.hfroberta_model_name dict_file = roberta_model_name # When using a cased model, make sure to pass do_lower_case=False directly to BaseTokenizer do_lower_case = False if 'uncased' in roberta_model_name: do_lower_case=True # Load pre-trained model tokenizer (vocabulary) self.tokenizer = RobertaTokenizer.from_pretrained(dict_file) # original vocab # The following process is baded on gpt_connector. # RoBERTa also uses BPE. the bytes_to_unicode function takes all control # and whitespace characters in code points 0-255 and shifts them up # by 256 to make them printable. So space (code point 32) becomes Ġ (code point 288). # (copied from https://github.com/openai/gpt-2/issues/80#issuecomment-487202159). # # Other control characters will be removed during voca_intersection process. def convert_word(word): if word == ROBERTA_UNK: return word if word == ROBERTA_MASK: return word if word == ROBERTA_START_SENTENCE: return word if word == ROBERTA_END_SENTENCE: return word if word == ROBERTA_PAD: return word if word.startswith('Ġ'): # the token starts with a whitespace return word[1:] return f'_{word}_' # the token not start with a white space. # may be not a head of a word, # or may be a head of a sentence. # need duplitation check? _, gpt_vocab = zip(*sorted(self.tokenizer.decoder.items())) self.vocab = [convert_word(word) for word in gpt_vocab] self._init_inverse_vocab() # Get UNK symbol as it's written in the origin RoBERTa vocab. unk_index = self.inverse_vocab[ROBERTA_UNK] # OPENAI_UNK self.unk_symbol = self.tokenizer.decoder[unk_index] # Get MASK symbol as it's written in the origin RoBERTa vocab. mask_index = self.inverse_vocab[ROBERTA_MASK] self.mask_symbol = self.tokenizer.decoder[mask_index] # Load pre-trained model (weights) self.masked_roberta_model = RobertaForMaskedLM.from_pretrained(roberta_model_name) self.masked_roberta_model.eval() #print(self.masked_roberta_model.config) # ... to get hidden states self.roberta_model = self.masked_roberta_model.roberta # Sanity check. #assert len(self.vocab) == self.masked_roberta_model.config.vocab_size #assert 0 == self.masked_roberta_model.config.n_special self.eos_id = self.inverse_vocab[ROBERTA_END_SENTENCE] # OPENAI_EOS self.model_vocab = self.vocab self.pad_id = self.inverse_vocab[ROBERTA_PAD] self.unk_index = self.inverse_vocab[ROBERTA_UNK] self.mask_index = mask_index
new_pronoun_index = pronoun_index + len(tokenized_option) tokenized_text.pop(new_pronoun_index) return tokenized_text # Load pre-trained model tokenizer (vocabulary) tokenizer = RobertaTokenizer.from_pretrained('roberta-large') correct_preds = 0 correct_preds_enhanced = 0 stability_match = 0 all_preds = 0 # Load pre-trained model (weights) model = RobertaForMaskedLM.from_pretrained('roberta-large') model.eval() for q_index, dp_split in wsc_datapoints.iterrows(): if dp_split['text_adverb'].replace( ' ', '') != '-' and dp_split['text_adverb'].replace(' ', ''): # Tokenized input correct_answer = dp_split['correct_answer'] #check for empty text = dp_split['text_original'].strip().lower() text = re.sub(' +', ' ', text) print(text, " text") text_enhanced = dp_split['text_adverb'].lower()
parser.add_argument("--model_type", default="bert", choices=["bert", "roberta"]) parser.add_argument("--model_name", default='bert-base-uncased', type=str) parser.add_argument( "--dump_checkpoint", default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument("--vocab_transform", action='store_true') args = parser.parse_args() if args.model_type == 'bert': model = BertForMaskedLM.from_pretrained(args.model_name) prefix = 'bert' elif args.model_type == 'roberta': model = RobertaForMaskedLM.from_pretrained(args.model_name) prefix = 'roberta' state_dict = model.state_dict() compressed_sd = {} for w in ['word_embeddings', 'position_embeddings']: compressed_sd[f'distilbert.embeddings.{w}.weight'] = \ state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ['weight', 'bias']: compressed_sd[f'distilbert.embeddings.LayerNorm.{w}'] = \ state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] std_idx = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ['weight', 'bias']:
def convert_roberta_checkpoint_to_pytorch(roberta_checkpoint_path, pytorch_dump_folder_path, classification_head): """ Copy/paste/tweak roberta's weights to our BERT structure. """ roberta = FairseqRobertaModel.from_pretrained(roberta_checkpoint_path) roberta.eval() # disable dropout config = BertConfig( vocab_size_or_config_json_file=50265, hidden_size=roberta.args.encoder_embed_dim, num_hidden_layers=roberta.args.encoder_layers, num_attention_heads=roberta.args.encoder_attention_heads, intermediate_size=roberta.args.encoder_ffn_embed_dim, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1e-5, # PyTorch default used in fairseq ) if classification_head: config.num_labels = roberta.args.num_classes print("Our BERT config:", config) model = RobertaForSequenceClassification( config) if classification_head else RobertaForMaskedLM(config) model.eval() # Now let's copy all the weights. # Embeddings roberta_sent_encoder = roberta.model.decoder.sentence_encoder model.roberta.embeddings.word_embeddings.weight = roberta_sent_encoder.embed_tokens.weight model.roberta.embeddings.position_embeddings.weight = roberta_sent_encoder.embed_positions.weight model.roberta.embeddings.token_type_embeddings.weight.data = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. model.roberta.embeddings.LayerNorm.weight = roberta_sent_encoder.emb_layer_norm.weight model.roberta.embeddings.LayerNorm.bias = roberta_sent_encoder.emb_layer_norm.bias for i in range(config.num_hidden_layers): # Encoder: start of layer layer: BertLayer = model.roberta.encoder.layer[i] roberta_layer: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[ i] ### self attention self_attn: BertSelfAttention = layer.attention.self assert (roberta_layer.self_attn.in_proj_weight.shape == torch.Size( (3 * config.hidden_size, config.hidden_size))) # we use three distinct linear layers so we split the source layer here. self_attn.query.weight.data = roberta_layer.self_attn.in_proj_weight[: config . hidden_size, :] self_attn.query.bias.data = roberta_layer.self_attn.in_proj_bias[: config . hidden_size] self_attn.key.weight.data = roberta_layer.self_attn.in_proj_weight[ config.hidden_size:2 * config.hidden_size, :] self_attn.key.bias.data = roberta_layer.self_attn.in_proj_bias[ config.hidden_size:2 * config.hidden_size] self_attn.value.weight.data = roberta_layer.self_attn.in_proj_weight[ 2 * config.hidden_size:, :] self_attn.value.bias.data = roberta_layer.self_attn.in_proj_bias[ 2 * config.hidden_size:] ### self-attention output self_output: BertSelfOutput = layer.attention.output assert (self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape) self_output.dense.weight = roberta_layer.self_attn.out_proj.weight self_output.dense.bias = roberta_layer.self_attn.out_proj.bias self_output.LayerNorm.weight = roberta_layer.self_attn_layer_norm.weight self_output.LayerNorm.bias = roberta_layer.self_attn_layer_norm.bias ### intermediate intermediate: BertIntermediate = layer.intermediate assert ( intermediate.dense.weight.shape == roberta_layer.fc1.weight.shape) intermediate.dense.weight = roberta_layer.fc1.weight intermediate.dense.bias = roberta_layer.fc1.bias ### output bert_output: BertOutput = layer.output assert ( bert_output.dense.weight.shape == roberta_layer.fc2.weight.shape) bert_output.dense.weight = roberta_layer.fc2.weight bert_output.dense.bias = roberta_layer.fc2.bias bert_output.LayerNorm.weight = roberta_layer.final_layer_norm.weight bert_output.LayerNorm.bias = roberta_layer.final_layer_norm.bias #### end of layer if classification_head: model.classifier.dense.weight = roberta.model.classification_heads[ 'mnli'].dense.weight model.classifier.dense.bias = roberta.model.classification_heads[ 'mnli'].dense.bias model.classifier.out_proj.weight = roberta.model.classification_heads[ 'mnli'].out_proj.weight model.classifier.out_proj.bias = roberta.model.classification_heads[ 'mnli'].out_proj.bias else: # LM Head model.lm_head.dense.weight = roberta.model.decoder.lm_head.dense.weight model.lm_head.dense.bias = roberta.model.decoder.lm_head.dense.bias model.lm_head.layer_norm.weight = roberta.model.decoder.lm_head.layer_norm.weight model.lm_head.layer_norm.bias = roberta.model.decoder.lm_head.layer_norm.bias model.lm_head.decoder.weight = roberta.model.decoder.lm_head.weight model.lm_head.bias = roberta.model.decoder.lm_head.bias # Let's check that we get the same results. input_ids: torch.Tensor = roberta.encode(SAMPLE_TEXT).unsqueeze( 0) # batch of size 1 our_output = model(input_ids)[0] if classification_head: their_output = roberta.model.classification_heads['mnli']( roberta.extract_features(input_ids)) else: their_output = roberta.model(input_ids)[0] print(our_output.shape, their_output.shape) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 success = torch.allclose(our_output, their_output, atol=1e-3) print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path)
def main(): parser = argparse.ArgumentParser(description="Training") parser.add_argument( "--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)") parser.add_argument( "--data_file", type=str, required=True, help= "The binarized file (tokenized + tokens_to_ids) and grouped by sequence." ) parser.add_argument("--token_counts", type=str, required=True, help="The token counts in the data_file for MLM.") parser.add_argument("--force", action='store_true', help="Overwrite dump_path if it already exists.") parser.add_argument("--vocab_size", default=30522, type=int, help="The vocabulary size.") parser.add_argument( "--max_position_embeddings", default=512, type=int, help="Maximum sequence length we can model (including [CLS] and [SEP])." ) parser.add_argument( "--sinusoidal_pos_embds", action='store_false', help= "If true, the position embeddings are simply fixed with sinusoidal embeddings." ) parser.add_argument("--n_layers", default=6, type=int, help="Number of Transformer blocks.") parser.add_argument("--n_heads", default=12, type=int, help="Number of heads in the self-attention module.") parser.add_argument( "--dim", default=768, type=int, help="Dimension through the network. Must be divisible by n_heads") parser.add_argument("--hidden_dim", default=3072, type=int, help="Intermediate dimension in the FFN.") parser.add_argument("--dropout", default=0.1, type=float, help="Dropout.") parser.add_argument("--attention_dropout", default=0.1, type=float, help="Dropout in self-attention.") parser.add_argument("--activation", default='gelu', type=str, help="Activation to use in self-attention") parser.add_argument( "--tie_weights_", action='store_false', help= "If true, we tie the embeddings matrix with the projection over the vocabulary matrix. Default is true." ) parser.add_argument("--from_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint.") parser.add_argument( "--from_pretrained_config", default=None, type=str, help="Load student initialization architecture config.") parser.add_argument("--teacher_type", default="bert", choices=["bert", "roberta"], help="Teacher type (BERT, RoBERTa).") parser.add_argument("--teacher_name", default="bert-base-uncased", type=str, help="The teacher model.") parser.add_argument("--temperature", default=2., type=float, help="Temperature for the softmax temperature.") parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0.") parser.add_argument("--alpha_mlm", default=0.5, type=float, help="Linear weight for the MLM loss. Must be >=0.") parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.") parser.add_argument( "--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0.") parser.add_argument( "--mlm_mask_prop", default=0.15, type=float, help="Proportion of tokens for which we need to make a prediction.") parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.") parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.") parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.") parser.add_argument( "--mlm_smoothing", default=0.7, type=float, help= "Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." ) parser.add_argument( "--restrict_ce_to_mask", action='store_true', help= "If true, compute the distilation loss only the [MLM] prediction distribution." ) parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.") parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).") parser.add_argument( "--tokens_per_batch", type=int, default=-1, help= "If specified, modify the batches so that they have approximately this number of tokens." ) parser.add_argument( "--shuffle", action='store_false', help="If true, shuffle the sequence order. Default is true.") parser.add_argument( "--group_by_size", action='store_false', help= "If true, group sequences that have similar length into the same batch. Default is true." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=50, help="Gradient accumulation for larger training batches.") parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.") parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.") parser.add_argument( '--fp16', action='store_true', help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ) parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.") parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank") parser.add_argument("--seed", type=int, default=56, help="Random seed") parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.") parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.") args = parser.parse_args() ## ARGS ## init_gpu_params(args) set_seed(args) if args.is_master: if os.path.exists(args.dump_path): if not args.force: raise ValueError( f'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite it' 'Use `--force` if you want to overwrite it') else: shutil.rmtree(args.dump_path) if not os.path.exists(args.dump_path): os.makedirs(args.dump_path) logger.info( f'Experiment will be dumped and logged in {args.dump_path}') ### SAVE PARAMS ### logger.info(f'Param: {args}') with open(os.path.join(args.dump_path, 'parameters.json'), 'w') as f: json.dump(vars(args), f, indent=4) git_log(args.dump_path) assert (args.from_pretrained_weights is None and args.from_pretrained_config is None) or \ (args.from_pretrained_weights is not None and args.from_pretrained_config is not None) ### TOKENIZER ### if args.teacher_type == 'bert': tokenizer = BertTokenizer.from_pretrained(args.teacher_name) elif args.teacher_type == 'roberta': tokenizer = RobertaTokenizer.from_pretrained(args.teacher_name) special_tok_ids = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): idx = tokenizer.all_special_tokens.index(tok_symbol) special_tok_ids[tok_name] = tokenizer.all_special_ids[idx] logger.info(f'Special tokens {special_tok_ids}') args.special_tok_ids = special_tok_ids ## DATA LOADER ## logger.info(f'Loading data from {args.data_file}') with open(args.data_file, 'rb') as fp: data = pickle.load(fp) assert os.path.isfile(args.token_counts) logger.info( f'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts, 'rb') as fp: counts = pickle.load(fp) assert len(counts) == args.vocab_size token_probs = np.maximum(counts, 1)**-args.mlm_smoothing for idx in special_tok_ids.values(): token_probs[idx] = 0. # do not predict special tokens token_probs = torch.from_numpy(token_probs) train_dataloader = Dataset(params=args, data=data) logger.info(f'Data loader created.') ## STUDENT ## if args.from_pretrained_weights is not None: assert os.path.isfile(args.from_pretrained_weights) assert os.path.isfile(args.from_pretrained_config) logger.info( f'Loading pretrained weights from {args.from_pretrained_weights}') logger.info( f'Loading pretrained config from {args.from_pretrained_config}') stu_architecture_config = DistilBertConfig.from_json_file( args.from_pretrained_config) stu_architecture_config.output_hidden_states = True student = DistilBertForMaskedLM.from_pretrained( args.from_pretrained_weights, config=stu_architecture_config) else: args.vocab_size_or_config_json_file = args.vocab_size stu_architecture_config = DistilBertConfig(**vars(args), output_hidden_states=True) student = DistilBertForMaskedLM(stu_architecture_config) if args.n_gpu > 0: student.to(f'cuda:{args.local_rank}') logger.info(f'Student loaded.') ## TEACHER ## if args.teacher_type == 'bert': teacher = BertForMaskedLM.from_pretrained(args.teacher_name, output_hidden_states=True) elif args.teacher_type == 'roberta': teacher = RobertaForMaskedLM.from_pretrained(args.teacher_name, output_hidden_states=True) if args.n_gpu > 0: teacher.to(f'cuda:{args.local_rank}') logger.info(f'Teacher loaded from {args.teacher_name}.') ## DISTILLER ## torch.cuda.empty_cache() distiller = Distiller(params=args, dataloader=train_dataloader, token_probs=token_probs, student=student, teacher=teacher) distiller.train() logger.info("Let's go get some drinks.")
from pytorch_transformers import RobertaModel, RobertaForMaskedLM, RobertaTokenizer if __name__ == '__main__': _ = RobertaForMaskedLM.from_pretrained('roberta-large', cache_dir='./hugfacecache') _ = RobertaModel.from_pretrained('roberta-large', cache_dir='./hugfacecache') _ = RobertaTokenizer.from_pretrained('roberta-large', cache_dir='./hugfacecache') # _ = BertForMaskedLM.from_pretrained('bert-large-cased', cache_dir='./hugfacecache') # _ = BertModel.from_pretrained('bert-large-cased', cache_dir='./hugfacecache') # _ = BertTokenizer.from_pretrained('bert-large-cased', cache_dir='./hugfacecache') # # _ = XLNetLMHeadModel.from_pretrained('xlnet-large-cased', cache_dir='./hugfacecache') # _ = XLNetModel.from_pretrained('xlnet-large-cased', cache_dir='./hugfacecache') # _ = XLNetTokenizer.from_pretrained('xlnet-large-cased', cache_dir='./hugfacecache')