def test_buffer_not_c_contiguous(self):
        # source code was lightly adapted from jmborr
        # https://github.com/Amber-MD/pytraj/issues/991
        traj = pt.load('data/issue991/short.dcd',
                       'data/issue991/pdb.gz',
                       mask='(!:1-256)&(@H1,@H2,@H3,@H4,@H5)')

        # Trajectory of the center of mass of the first two residues
        minitraj = np.empty((2, traj.n_frames, 3))
        minitraj[0] = pt.center_of_mass(traj, mask=':1')
        minitraj[1] = pt.center_of_mass(traj, mask=':2')
        minitraj = minitraj.transpose((1, 0, 2))

        # "topology" using the first two atoms
        minitop = traj.top['@1,2']

        # Save trajectory
        # make sure there is no ValueError
        # something is wrong with pdb, crd extension when loading with
        # minitop (poor topology?)
        # make issue in cpptraj too?
        for ext in ['nc', 'dcd', 'mdcrd', 'crd', 'pdb', 'trr']:
            fn = 'output/junk.' + ext
            pt.write_traj(filename=fn,
                          traj=minitraj,
                          top=minitop,
                          overwrite=True)

            # load coord back to make sure we correctly write it
            new_traj = pt.iterload(fn, minitop)
            # mdcrd, crd, pdb has only 3 digits after decimal
            decimal = 5 if ext in ['nc', 'dcd', 'trr'] else 3
            aa_eq(minitraj, new_traj.xyz, decimal=decimal)
Пример #2
0
 def testsuperpose_alias(self):
     '''testsuperpose_alias'''
     t0 = self.traj[:]
     t1 = self.traj[:]
     pt.transform(t0, ['superpose'])
     pt.transform(t1, ['rms'])
     aa_eq(t0.xyz, t1.xyz)
Пример #3
0
    def test_frame_fit(self):
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")
        f0 = traj[0]
        f1 = traj[1]

        arr0 = list(f0[0])
        arr1 = list(f1[0])

        f0.rmsd(f1)
        aa_eq(arr0, f0[0])
        aa_eq(arr1, f1[0])

        f1.rmsfit(ref=f0)

        # expect reference `f0` xyz are not changed
        aa_eq(arr0, f0[0])

        trajsaved = pt.iterload("./data/fit_to_1stframe.Tc5b.x",
                                "./data/Tc5b.top")
        f1saved = trajsaved[1]

        # make sure we reproduce cpptraj output
        aa_eq(f1.xyz, f1saved.xyz, decimal=3)

        farray = traj[:]
        farray.rmsfit(ref=traj[0])
        aa_eq(farray[1].xyz, f1saved.xyz, decimal=3)
Пример #4
0
    def test_frame_indices(self):
        traj = pt.iterload("data/tz2.truncoct.nc", "data/tz2.truncoct.parm7")
        traj2 = pt.iterload("data/tz2.truncoct.nc",
                            "data/tz2.truncoct.parm7",
                            frame_slice=(2, 8))

        txt = '''
        reference ./data/tz2.truncoct.nc 2 2
        rmsd :2-11 refindex 0 perres perresout center.agr range 1 perrescenter
        '''

        state = pt.load_batch(traj2, txt)
        state.run()

        frame_indices = range(2, 8)
        rmsd0 = pt.rmsd(traj, ref=1, mask=':2-11', frame_indices=frame_indices)
        rmsdperres = pt.rmsd_perres(traj,
                                    ref=1,
                                    mask=':2-11',
                                    perres_mask='*',
                                    resrange='1',
                                    perres_center=True,
                                    frame_indices=frame_indices)
        aa_eq(rmsd0, state.data[2])
        aa_eq(rmsdperres[1], state.data[3].values)
Пример #5
0
    def test_split_and_write_traj(self):
        fn = "data/Tc5b.x"
        traj = pt.iterload([fn, fn], "./data/Tc5b.top")
        # duplcate
        assert traj.n_frames == 20
        top = traj.top

        # test TrajectoryIterator object
        pt.tools.split_and_write_traj(traj,
                                      n_chunks=4,
                                      root_name='./output/trajiterx',
                                      overwrite=True)
        flist = sorted(glob("./output/trajiterx*"))
        traj4 = pt.iterload(flist, top)
        aa_eq(traj4.xyz, traj.xyz)

        # dcd ext
        pt.tools.split_and_write_traj(traj,
                                      4,
                                      root_name='./output/ts',
                                      ext='dcd',
                                      overwrite=True)
        flist = sorted(glob("./output/ts.*.dcd"))
        traj4 = pt.iterload(flist, top)
        aa_eq(traj4.xyz, traj.xyz)
Пример #6
0
 def test_fit_and_then_nofit(self):
     traj = pt.iterload("data/Tc5b.x", "data/Tc5b.top")
     t0 = traj[:]
     pt.superpose(t0, ref=traj[3], mask='@CA')
     rmsd_0 = pt.rmsd_nofit(traj, ref=traj[3], mask='@CB')
     rmsd_1 = pt.rmsd(traj, ref=traj[3], mask='@CB', nofit=True)
     aa_eq(rmsd_1, rmsd_0)
def main():
    # require 'sanderapi' and 'parmed' packages in AmberTools15
    # http://ambermd.org/#AmberTools
    # more info about `sanderapi` in Amber15 manual
    # http://ambermd.org/doc12/Amber15.pdf (page 341)
    traj = io.iterload("../tests/data/Tc5b.x",
                       "../tests/data/Tc5b.top")
    print(traj)
    edict0 = pyca.energy_decomposition(parm="../tests/data/Tc5b.top",
                                       traj=traj,
                                       igb=8,
                                       input_options=None)
    print(edict0)

    # edict1: use default igb=8
    edict1 = pyca.energy_decomposition(traj=traj)
    print(edict1)

    aa_eq(edict0['tot'], edict1['tot'])

    # update `input` and get minimal output
    import sander
    inp = sander.gas_input(6)
    edict2 = pyca.energy_decomposition(traj, input_options=inp, mode='minimal')
    print(edict2)
Пример #8
0
 def testsuperpose_vs_rmsd(self):
     # load frames to immutable traj
     traj = pt.iterload("data/tz2.nc", "data/tz2.parm7")
     t0 = traj[:]
     t1 = traj[:]
     pt.rmsd(t0, ref=traj[0], mask='@CA')
     pt.superpose(t1, ref=traj[0], mask='@CA')
     aa_eq(t0.xyz, t1.xyz)
Пример #9
0
    def test_autoimage(self):
        traj = pt.iterload("data/tz2.ortho.nc", "data/tz2.ortho.parm7")
        t0 = traj[:]

        t0.autoimage()
        avg_0 = pt.mean_structure(t0, '@CA')
        avg_1 = pt.mean_structure(traj(autoimage=True), '@CA')
        aa_eq(avg_0.xyz, avg_1.xyz)
Пример #10
0
 def test_vs_cpptraj(self):
     data = pt.dssp(self.traj, "*", dtype='cpptraj_dataset')
     data_int = np.array(
         [d0.values for d0 in data if d0.dtype == 'integer'],
         dtype='i4')
     # load cpptraj output
     cpp_data = np.loadtxt("./data/dssp.Tc5b.dat", skiprows=1)[:, 1:].T
     aa_eq(data_int.flatten(), cpp_data.flatten())
 def test_1(self):
     traj = pt.iterload("./data/tz2.truncoct.nc",
                        "./data/tz2.truncoct.parm7")
     f0 = traj[0]
     f0cp = f0.copy()
     adict['autoimage']("", f0, traj.top)
     fsaved = pt.iterload("./data/tz2.truncoct.autoiamge.save.r",
                          "./data/tz2.truncoct.parm7")[0]
     aa_eq(fsaved.xyz, f0.xyz, decimal=3)
Пример #12
0
        def order_(modes):
            data = _ired(state_vecs, modes=modes)
            order_s2_v0 = data['IRED_00127[S2]']
            # make sure the S2 values is 1st array

            # load cpptraj's output and compare to pytraj' values for S2 order paramters
            cpp_order_s2 = np.loadtxt(os.path.join(
                cpptraj_test_dir, 'Test_IRED', 'orderparam.save')).T[-1]
            aa_eq(order_s2_v0.values, cpp_order_s2, decimal=4)
Пример #13
0
    def test_not_update_coordinates(self):
        traj = self.traj[:]
        data = pt.rmsd(traj, ref=3, update_coordinate=False)

        # make sure coordinates are not updated
        aa_eq(traj.xyz, self.traj.xyz)

        # make sure give the same rmsd values
        aa_eq(pt.rmsd(traj, ref=3), data)
Пример #14
0
    def test_0(self):
        traj = pt.iterload("./data/tz2.ortho.nc", "./data/tz2.ortho.parm7")

        cout = pt.datafiles.load_cpptraj_output("""
        parm ./data/tz2.ortho.parm7
        trajin ./data/tz2.ortho.nc
        rms first nofit
        rms first mass
        """)
        aa_eq(pt.rmsd(traj, nofit=True), cout[1])
        aa_eq(pt.rmsd(traj, mass=True), cout[2])
Пример #15
0
    def test_0(self):
        trajcpp = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")
        farray = trajcpp[:]

        # bugs: trajcpp[0, 0, 0] != farray[0, 0, 0] (must be equal)
        assert farray[0][0, 0] == trajcpp[0][0, 0]

        farray[0, 0, 0] = 100.10
        assert farray[0, 0, 0] == 100.10
        farray[0, 0, :] = [100.10, 101.1, 102.1]
        aa_eq(farray[0, 0, :], [100.10, 101.1, 102.1])
Пример #16
0
    def test_load_samples(self):
        traj = pt.load_sample_data()[:]
        assert isinstance(traj, pt.Trajectory) == True
        assert traj.top.n_atoms == 34
        assert traj.shape == (1, 34, 3)

        traj2 = pt.load_sample_data()
        assert isinstance(traj2, pt.TrajectoryIterator) == True
        assert traj2.top.n_atoms == 34
        assert traj2.shape == (1, 34, 3)
        aa_eq(traj.xyz, traj2.xyz)
Пример #17
0
    def test_1(self):
        # status: OK
        from pytraj.compat import zip
        # note: use `load` instead of `iterload`
        traj = pt.load("./data/tz2.ortho.nc", "./data/tz2.ortho.parm7")
        traj.autoimage()
        traj.rmsfit(mask='@CA,C,N')
        saved_traj = pt.load('data/tz2.autoimage_with_rmsfit.nc', traj.top)

        # PASSED
        aa_eq(saved_traj.xyz, traj.xyz)
Пример #18
0
 def test_noreference(self):
     from pytraj.datafiles import load_cpptraj_output, tz2_ortho_trajin
     traj = pt.iterload("./data/tz2.ortho.nc", "./data/tz2.ortho.parm7")
     cout = load_cpptraj_output(tz2_ortho_trajin + """
     rmsd first @CA perres range 2-7""")
     d = pt.rmsd_perres(traj,
                        ref=0,
                        mask='@CA',
                        resrange='2-7',
                        dtype='ndarray')
     aa_eq(cout[1:].values, d)
Пример #19
0
    def test_watershell(self):
        traj = pt.iterload("data/tz2.truncoct.nc", "data/tz2.truncoct.parm7")
        state = pt.load_batch(traj, '''
        watershell :1-7
        ''')

        d0 = pt.watershell(traj, solute_mask=':1-7')
        state.run()
        aa_eq(d0.values, state.data[[1, 2]].values)

        # need to provide solute_mask
        self.assertRaises(ValueError, lambda: pt.watershell(traj))
Пример #20
0
    def test_2(self):
        from pytraj.all_actions import do_autoimage
        # test do_autoimage
        traj = pt.iterload("./data/tz2.truncoct.nc",
                           "./data/tz2.truncoct.parm7")
        f0 = traj[0]
        f0cp = f0.copy()
        do_autoimage(traj=f0, top=traj.top)

        fsaved = pt.iterload("./data/tz2.truncoct.autoiamge.save.r",
                             "./data/tz2.truncoct.parm7")[0]
        aa_eq(fsaved.xyz, f0.xyz, decimal=3)
Пример #21
0
    def test_2(self):
        import numpy as np
        box = Box()
        arr0 = np.arange(6).astype(np.float64)
        box.data[:] = arr0

        for idx, x in enumerate(arr0):
            assert box.data[idx] == x

        # set Box for Frame
        f1 = Frame()
        f1.box = box
        aa_eq(f1.box.values, box.values, decimal=7)
Пример #22
0
    def test_0(self):
        traj = mdio.iterload("./data/Tc5b.x", "./data/Tc5b.top")
        if has_("numpy"):
            import numpy as np
            from numpy.testing import assert_almost_equal
            arr0 = traj.xyz
            aa_eq(arr0, traj[:, :, :].xyz)

            # create Trajectory
            farray = traj[:]
            aa_eq(arr0, farray[:, :, :].xyz)
        else:
            pass
Пример #23
0
    def test_combine_nofit_mass_nomod(self):
        cm = '''
        parm data/tz2.parm7
        trajin data/tz2.nc
        rms @CA nofit mass nomod
        '''
        state = pt.load_cpptraj_state(cm)
        state.run()

        unmut_traj = pt.iterload('data/tz2.nc', 'data/tz2.parm7')
        mut_traj = unmut_traj[:]

        data = pt.rmsd(mut_traj, mask='@CA', mass=True, nofit=True, update_coordinate=False)
        aa_eq(data, state.data[-1])
Пример #24
0
    def test_slice(self):

        traj1 = TrajectoryIterator(filename="data/Tc5b.x",
                                   top="./data/Tc5b.top")
        frame_indices = slice(9, 6, -1)

        traj0 = pt.load(filename="./data/Tc5b.x",
                        top=pt.load_topology("./data/Tc5b.top"),
                        frame_indices=frame_indices)

        aa_eq(traj0[0].xyz, traj1[9].xyz)
        aa_eq(traj0[1].xyz, traj1[8].xyz)
        aa_eq(traj0[2].xyz, traj1[7].xyz)

        assert traj0[0].rmsd(traj1[9]) < 1E-4

        rmsdlist = []
        ref = traj1[0].copy()
        for frame in traj1:
            rmsdlist.append(frame.rmsd(ref))

        nparr = np.array(rmsdlist)

        # make sure we don't suport other frame_indices
        traj2 = Trajectory()
        traj2 = pt.load(
            filename="./data/Tc5b.x",
            top=pt.load_topology("./data/Tc5b.top"),
            frame_indices=list(range(4)) + list(range(9, 5, -1)) + [4, ])
        aa_eq(traj2[-1].xyz, traj1[4].xyz)
Пример #25
0
    def test_frame_indices(self):
        # load frames to immutable traj
        traj = pt.iterload("data/tz2.nc", "data/tz2.parm7")
        # convert to numpy traj

        frame_indices = [0, 3, 5]

        t00 = traj[:]
        t01 = traj[:]
        t10 = traj[frame_indices]
        t11 = traj[frame_indices]
        aa_eq(t00[frame_indices].xyz, t11.xyz)

        ref = traj[-1]
        t00.superpose(ref=ref, frame_indices=frame_indices)

        ref = traj[-1]
        pt.superpose(t01, ref=ref, frame_indices=frame_indices)

        ref = traj[-1]
        t10.superpose(ref=ref)

        ref = traj[-1]
        pt.superpose(t11, ref=ref, frame_indices=frame_indices)

        aa_eq(t00.xyz, t01.xyz)
        aa_eq(t10.xyz, t11.xyz)
        aa_eq(t00[frame_indices].xyz, t10.xyz)
    def test_radgyr(self):
        traj = pt.iterload(top="./data/Tc5b.top",
                           filename='data/Tc5b.x', )
        txt = '''
        parm ./data/Tc5b.top
        trajin ./data/Tc5b.x
        radgyr @CA nomax
        radgyr nomax
        radgyr !@H= nomax
        '''

        # exclude DatasetTopology
        data = pt.datafiles.load_cpptraj_output(txt)[1:]
        for mask, out in zip(['@CA', '', '!@H='], data):
            aa_eq(pt.radgyr(traj, mask), out)
Пример #27
0
    def test_0(self):
        # TrajectoryIterrator
        # status: failed
        from pytraj.compat import zip
        traj = pt.iterload("./data/tz2.ortho.nc", "./data/tz2.ortho.parm7")
        pt.write_traj("./output/tz2.autoimage_with_rmsfit.nc",
                      traj(autoimage=True,
                           rmsfit=(0, '@CA,C,N')),
                      overwrite=True)

        saved_traj = pt.load('data/tz2.autoimage_with_rmsfit.nc', traj.top)
        p_traj = pt.load('./output/tz2.autoimage_with_rmsfit.nc', traj.top)

        aa_eq(saved_traj.xyz, p_traj.xyz)
        for f1, f2 in zip(p_traj, saved_traj):
            pass
Пример #28
0
    def test_frame_indices(self):
        traj = pt.iterload('data/tz2.nc', 'data/tz2.parm7')
        frame_indices = [0, 6, 7, 4, 5]

        data_without_frame_indices = pt.energy_decomposition(traj, igb=8)
        data_with_frame_indices = pt.energy_decomposition(
            traj,
            igb=8,
            frame_indices=frame_indices)
        data_with_frame_indices_2 = pt.energy_decomposition(
            traj[frame_indices],
            igb=8)

        for key in data_without_frame_indices:
            aa_eq(data_without_frame_indices[key][frame_indices],
                  data_with_frame_indices[key])
            aa_eq(data_without_frame_indices[key][frame_indices],
                  data_with_frame_indices_2[key])
Пример #29
0
    def test_hbond_general(self):
        traj = pt.iterload("./data/DPDP.nc", "./data/DPDP.parm7")
        dslist = pt.search_hbonds(traj, dtype='dataset')
        for key in dslist.keys():
            if 'UU' not in key:
                assert len(dslist[key].values) == traj.n_frames
        mydict = dslist.to_dict()
        mydict_np = dslist.to_dict()
        assert len(mydict.keys()) == dslist.size
        assert len(mydict_np.keys()) == dslist.size

        for key in mydict.keys():
            mydict[key] = np.asarray(mydict[key])
            aa_eq(mydict[key], mydict_np[key])

        # raise if dtype='hbond' and series=False
        self.assertRaises(ValueError,
                          lambda: pt.hbond(traj, series=False, dtype='hbond'))
Пример #30
0
    def test_buffer1d(self):
        FRAME._buffer1d[0] = 199.
        assert FRAME[0, 0] == 199.

        FRAME[0] = 0.1
        assert FRAME[0, 0] == 0.1
        assert FRAME._buffer1d[-1] == FRAME[-1, 2]

        FRAME._buffer1d[:3] = array('d', [1, 2.3, 3.4])
        aa_eq(FRAME.xyz[0], array('d', [1, 2.3, 3.4]))

        arr0 = np.asarray(FRAME._buffer1d)
        arr1 = arr0.reshape(10, 3)
        arr1[1] = [100., 200., 300.]
        start = 0
        stop = 10
        strip = 2
        arr = np.asarray(FRAME[start:stop:strip])
    def test_principal_axes_and_lign_principal_axis(self):
        traj = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))

        cm = '''
        principal * dorotation mass name pout
        createcrd myname
        '''
        state = pt.load_cpptraj_state(cm, traj)
        state.run()

        mut_traj_0 = traj[:]
        mut_traj_1 = traj[:]

        data = pt.principal_axes(mut_traj_0,
                                 mask='*',
                                 dorotation=True,
                                 mass=True)
        pt.align_principal_axis(mut_traj_1, mask='*', mass=True)

        aa_eq(data[0], state.data[1].values)
        aa_eq(data[1], state.data[2].values)
        aa_eq(state.data[-1].xyz, mut_traj_0.xyz)
        aa_eq(state.data[-1].xyz, mut_traj_1.xyz)
Пример #32
0
    def test_projection_for_pca(self):
        traj = pt.load(fn('tz2.nc'), fn('tz2.parm7'))

        state = pt.load_cpptraj_state(command)
        state.run()
        cpp_modes = state.data['MyEvecs']
        cpp_arr_crd = np.array(cpp_modes._get_avg_crd())
        cpp_arr_crd = cpp_arr_crd.reshape(117, 3)

        mask = '!@H='
        pt.superpose(traj, mask=mask)
        avg = pt.mean_structure(traj)
        atom_indices = traj.top(mask).indices
        avg.xyz[atom_indices]
        pt.superpose(traj, mask=mask, ref=avg)
        avg2 = pt.mean_structure(traj, mask=mask)

        mat = pt.matrix.covar(traj, mask)
        modes = pt.matrix.diagonalize(mat, n_vecs=2, dtype='dataset')[0]

        aa_eq(cpp_arr_crd, avg2.xyz)

        aa_eq(np.abs(modes.eigenvalues),
              np.abs(state.data['MyEvecs'].eigenvalues))
        aa_eq(np.abs(modes.eigenvectors),
              np.abs(state.data['MyEvecs'].eigenvectors))

        projection_data = pt.all_actions.projection(
            traj,
            mask=mask,
            average_coords=avg2.xyz,
            eigenvalues=modes.eigenvalues,
            eigenvectors=modes.eigenvectors,
            scalar_type='covar')
        aa_eq(np.abs(projection_data),
              np.abs(state.data[-2:].values),
              decimal=3)
Пример #33
0
    def test_1(self):
        # TODO: get absolute path so we can use `tempfolder`
        # if not: wrong dir if using TrajectoryIterator
        traj = mdio.iterload("./data/Tc5b.x", "./data/Tc5b.top")[:]
        trajout = TrajectoryWriter()

        # multiple pdb in multiple files, using `save` method in traj
        with tempfolder():
            basename = "test_pdb_files.pdb"
            traj.save(basename, overwrite=True, options="multi")
            for i in range(10):
                fname = basename + "." + str(i + 1)  # cpptraj use `1`
                frame = mdio.iterload(fname, traj.top)[0]
                aa_eq(frame.xyz, traj[i].xyz)

        # multiple pdb in multiple files, using `mdio.write_traj`
        with tempfolder():
            basename = "test_pdb_files_mdio_write_traj.pdb"
            mdio.write_traj(basename, traj, overwrite=True, options="multi")
            for i in range(10):
                fname = basename + "." + str(i + 1)  # cpptraj use `1`
                frame = pt.iterload(fname, traj.top)[0]
                aa_eq(frame.xyz, traj[i].xyz)

        # multiple pdb in SINGLE file
        with tempfolder():
            basename = "test_pdb_files.pdb"
            traj.save(basename, overwrite=True)
            traj2 = mdio.load(basename, traj.top)
            aa_eq(traj.xyz, traj2.xyz)

        # multiple pdb in SINGLE file with `model` keyword
        # write to output so we can manually check
        basename = "./output/test_pdb_files_model.pdb"
        traj.save(basename, overwrite=True, options='model')
        traj3 = mdio.load(basename, traj.top)
        aa_eq(traj.xyz, traj3.xyz)
Пример #34
0
    def test_rotation_matrix_in_rmsd_calculation(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))
        saved_mat = pt.rotation_matrix(traj, ref=traj[3], mask='@CA')
        saved_rmsd = pt.rmsd(traj, ref=traj[3], mask='@CA')

        for n_cores in [2, 3]:
            out = pt.pmap(pt.rotation_matrix, traj, ref=traj[3], mask='@CA')
            out_with_rmsd = pt.pmap(pt.rotation_matrix,
                                    traj,
                                    ref=traj[3],
                                    mask='@CA',
                                    with_rmsd=True)
            mat = out[list(out.keys())[0]]
            mat2, rmsd_ = out_with_rmsd[list(out_with_rmsd.keys())[0]]
            aa_eq(saved_mat, mat)
            aa_eq(saved_mat, mat2)
            aa_eq(saved_rmsd, rmsd_)
    def test_atom_distance(self):
        traj = pt.iterload(tz2_trajin, tz2_top)
        top = traj.top

        ref = traj[0]
        # test for 1st frame
        top.set_reference(ref)
        ref.top = top

        # all atoms within 5 Angtrom from :3@CA
        indices = top.select(":3@CA <@5.0")

        saved_indices = np.loadtxt(
            fn("mask.tz2.dat"), skiprows=1, usecols=(1, ))

        neighbors_smaller = pt.search_neighbors(
            traj, mask=':3@CA <@5.0', frame_indices=[
                0,
            ])
        # subtract by '1' since cpptraj uses "1" as starting index for output
        saved_indices = saved_indices - 1
        aa_eq(indices, saved_indices)
        aa_eq(neighbors_smaller.values, indices)

        # re-calculate the distance
        ca_indices = pt.select_atoms(':3@CA', traj.top)
        all_pairs = list(product(ca_indices, indices))
        distances = pt.tools.flatten(pt.distance(ref, all_pairs))
        for dist in distances:
            assert dist < 5.0, 'all distances must be smaller than 5.0 Angstrom'

        # test larger
        # why do we need to set reference frame again?
        top.set_reference(ref)
        indices_larger = top.select(":3@CA >@5.0")
        all_pairs_larger = list(product(ca_indices, indices_larger))
        distances = pt.tools.flatten(pt.distance(ref, all_pairs_larger))
        for dist in distances:
            assert dist > 5.0, 'all distances must be larger than 5.0 Angstrom'

        # search_neighbors
        neighbors_larger = pt.search_neighbors(
            traj, mask=':3@CA >@5.0', frame_indices=[
                0,
            ])
        aa_eq(neighbors_larger.values, indices_larger)
Пример #36
0
    def test_0(self):
        # create Trajectory from Trajing_Single
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")[:]
        aa_eq(traj[3, 3], traj[3][3, :])
        frame1 = traj[1]
        aa_eq(frame1[0], traj[1][:, :][0])
        assert traj[0, 0, 0] == -16.492
        assert traj[:, :, 0][0, 0] == traj[0, 0, 0]
        f0 = traj[0]
        farr0 = traj[:2]

        fa = traj[2:4]

        # we don't support traj[:, idx] or traj[:, idx, idy] since this give wrong answer
        #  got ~0.0 value
        aa_eq(traj[:, 0, 0], np.asarray(traj[0][0]))

        for i in range(traj[0]._buffer2d.shape[0]):
            aa_eq(traj[:, :, 0][i], traj[0]._buffer2d[i])

        # slicing with mask
        atm = traj.top("@CA")
        traj[atm]
        traj[:, atm]
Пример #37
0
    def testsuper_dispatch(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))

        funclist = [pt.radgyr, pt.molsurf]
        for func in funclist:
            mask = '@CA'
            atom_indices = pt.select_atoms(mask, traj.top)
            # mask
            aa_eq(func(traj, mask=mask), func(traj, mask=atom_indices))
            # specify traj=traj
            aa_eq(func(traj=traj, mask=mask), func(traj, mask=atom_indices))

            # frame_indices with mask
            frame_indices = [0, 5, 8]
            aa_eq(
                func(traj[frame_indices], mask=mask),
                func(traj, mask=atom_indices, frame_indices=frame_indices))
    def test_len_on_disk(self):
        N = ts.n_frames
        old_xyz_5_10 = ts[5].xyz[:10].copy()
        assert ts[:3].n_frames == 3
        assert ts[1:3].n_frames == 2
        assert ts[3:1].n_frames == 0
        assert ts[3:1:-1].n_frames == 2
        assert ts[-1:-3].n_frames == 0
        assert ts[-1:-3:-1].n_frames == 2
        # need to store xyz
        xyz = ts[-1].xyz.copy()
        aa_eq(xyz, ts[N - 1].xyz)

        # need to create a temp farray
        subfarray = ts[5:1:-1]
        aa_eq(subfarray[0].xyz, ts[5].xyz)
        aa_eq(old_xyz_5_10, ts[5].xyz[:10])
Пример #39
0
    def test_3(self):
        traj = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))

        count = 0
        for frame in traj.iterframe():
            count += 1
        aa_eq(frame.xyz, traj[-1].xyz)

        count = 0
        for frame in traj.iterframe(2, 8, 2):
            count += 1
        assert count == 3
        aa_eq(frame.xyz, traj[6].xyz)

        count = 0
        for frame in traj[:].iterframe():
            count += 1
        aa_eq(frame.xyz, traj[-1].xyz)
Пример #40
0
    def test_calc_atomicfluct_with_unitcell(self):
        # use iterload for load_batch
        traj = pt.iterload(fn('tz2.ortho.nc'), fn('tz2.ortho.parm7'))
        state = pt.load_cpptraj_state(
            '''
        distance :3 :7
        atomicfluct @CA
        distance :3 :7''', traj)
        state.run()

        # use `load` method
        t0 = pt.load(fn('tz2.ortho.nc'), fn('tz2.ortho.parm7'))
        data = pt.atomicfluct(traj, '@CA')
        aa_eq(data, state.data[-2].values)
        # make sure that traj's coordinates were not altered
        # https://github.com/Amber-MD/pytraj/issues/1166
        aa_eq(pt.distance(t0, ':3 :7'), state.data[-1])
        aa_eq(traj.xyz, t0.xyz)
    def test_0(self):
        import numpy as np

        traj = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))
        traj2 = traj[:]
        d1 = pt.calc_center_of_mass(traj, dtype='dataset')
        d2 = pt.calc_center_of_mass(traj2, dtype='dataset')

        for frame in traj:
            pass

        saved_d0 = np.loadtxt(fn('vec.out'), skiprows=1, usecols=(1, 2, 3))

        aa_eq(d1.to_ndarray().flatten(), saved_d0.flatten())
        aa_eq(d2.to_ndarray().flatten(), saved_d0.flatten())

        aa_eq(pt.center_of_geometry(traj, dtype='ndarray'),
              pt.center_of_geometry(traj2, dtype='ndarray'))
    def test_len_in_memory(self):
        N = 10
        farray = FARRAY[:N].copy()
        assert farray.n_frames == N
        old_xyz_5_10 = farray[5].xyz[:10]
        assert farray[:3].n_frames == 3
        assert farray[1:3].n_frames == 2
        assert farray[3:1].n_frames == 0
        assert farray[3:1:-1].n_frames == 2
        assert farray[-1:-3].n_frames == 0
        assert farray[-1:-3:-1].n_frames == 2
        aa_eq(farray[-1].xyz, farray[N - 1].xyz)

        # need to create a temp farray
        subfarray = farray[5:1:-1]
        aa_eq(subfarray[0].xyz, farray[5].xyz)
        aa_eq(old_xyz_5_10, farray[5].xyz[:10])

        f_last = farray[-3:-1][-1]
Пример #43
0
    def test_iterframe_indices(self):
        traj = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))

        t0 = traj[:]
        indices = range(3)

        d1 = pt.radgyr(traj[indices])
        d2 = pt.radgyr(traj, frame_indices=indices)

        aa_eq(d2, d1)

        n_frames = traj.n_frames
        aa_eq(
             np.array([frame.xyz.copy() for frame in
                       traj._iterframe_indices([-2, -1])]),
             traj[[n_frames-2, n_frames-1]].xyz) # yapf: disable
        aa_eq(
             traj[[-2, -1]].xyz,
             traj[[n_frames-2, n_frames-1]].xyz) # yapf: disable
    def test_len_TrajectoryIterator(self):
        # create alias of `ts` (TrajectoryIterator instance  created above)
        farray = ts
        N = ts.n_frames
        assert farray.n_frames == N
        old_xyz_5_10 = farray[5].xyz[:10].copy()
        assert farray[:3].n_frames == 3
        assert farray[1:3].n_frames == 2
        assert farray[3:1].n_frames == 0
        assert farray[3:1:-1].n_frames == 2
        assert farray[-1:-3].n_frames == 0
        assert farray[-1:-3:-1].n_frames == 2
        # need to store xyz
        xyz = farray[-1].xyz.copy()
        aa_eq(xyz, farray[N - 1].xyz)

        # need to create a temp farray
        subfarray = farray[5:1:-1]
        aa_eq(subfarray[0].xyz, farray[5].xyz)
        aa_eq(old_xyz_5_10, farray[5].xyz[:10])
Пример #45
0
    def test_molsurf(self):
        traj = self.traj

        text = '''
        parm {0}
        trajin {1}
        molsurf @CA
        molsurf @CA probe 1.2
        molsurf @CA probe 1.2 offset 0.3
        '''.format(traj.top.filename, traj.filename)

        state = pt.load_cpptraj_state(text)
        state.run()
        cpp_data = state.data[1:].values

        atom_indices = traj.top.select("@CA")

        for mask in [atom_indices, '@CA']:
            aa_eq(pt.molsurf(traj, mask), cpp_data[0])
            aa_eq(pt.molsurf(traj, mask, probe=1.2), cpp_data[1])
            aa_eq(pt.molsurf(traj, mask, probe=1.2, offset=0.3), cpp_data[2])
Пример #46
0
    def test_distances(self):
        traj = pt.iterload(tc5b_trajin, tc5b_top)[:]

        trajin = """
        parm {}
        trajin {}
        distance @CB @CA
        distance @CA @H
        """.format(fn('Tc5b.parm7'), fn('Tc5b.x'))

        cout = pt.datafiles.load_cpptraj_output(trajin)[1:]

        mask_list = ('@CB @CA', '@CA @H')
        dslist = pt.calc_distance(traj, mask_list)
        dslist3_0 = pt.calc_distance(traj, mask_list[0])
        dslist3_1 = pt.calc_distance(traj, mask_list[1])

        # compare to cpptraj output
        aa_eq(dslist.flatten(), cout.values.flatten())
        aa_eq(dslist3_0, dslist[0])
        aa_eq(dslist3_1, dslist[1])
Пример #47
0
    def test_simple_for_coverage(self):
        '''
        '''
        traj = pt.iterload(traj_dir, parm_dir)
        h_indices = pt.select_atoms('@H', traj.top)
        n_indices = pt.select_atoms('@H', traj.top) - 1
        nh_indices = list(zip(n_indices, h_indices))
        vecs_and_mat = pt.ired_vector_and_matrix(traj, nh_indices, dtype='tuple')
        vecs_and_mat = pt.ired_vector_and_matrix(traj, nh_indices, dtype='tuple')
        state_vecs = vecs_and_mat[0]
        mat_ired = vecs_and_mat[1]

        # get eigenvalues and eigenvectors
        modes = pt.matrix.diagonalize(mat_ired, n_vecs=len(state_vecs))
        evals, evecs = modes

        data_0 = _ired(state_vecs,
                       modes=(evals, evecs),
                       NHbond=True,
                       tcorr=10000,
                       tstep=1.)

        data_1 = _ired(state_vecs,
                       modes=modes,
                       NHbond=True,
                       tcorr=10000,
                       tstep=1)

        for d0, d1 in zip(data_0, data_1):
            if d0.dtype not in ['modes', ]:
                aa_eq(d0.values, d1.values)
            else:
                # modes
                # values: tuple
                aa_eq(d0.values[0], d1.values[0])
                aa_eq(d0.values[1], d1.values[1])

        # try different dtype
        out_try_new_dtype = pt.ired_vector_and_matrix(traj, nh_indices, dtype='cpptraj_dataset')
Пример #48
0
    def test_multivector(self):
        traj = pt.iterload(fn('tz2.nc'), fn('tz2.parm7'))
        state = pt.load_batch(
            traj, '''
        multivector resrange 3-7 name1 C name2 N
        ''')
        state.run()
        cpp_data = state.data[1:].values

        aa_eq(
            pt.multivector(traj,
                           resrange='3-7',
                           names=('C', 'N'),
                           dtype='ndarray'), cpp_data)
        aa_eq(
            pt.multivector(traj, resrange='3-7', names='C N', dtype='ndarray'),
            cpp_data)
        aa_eq(
            pt.multivector(traj,
                           resrange='3-7',
                           names='name1 C name2 N',
                           dtype='ndarray'), cpp_data)
Пример #49
0
    def testTwoTrajTypes(self):
        '''test different metrics with different traj objects
        '''
        funclist = [pt.iterload, pt.load]
        txt = '''
        parm ./data/Tc5b.top
        trajin ./data/Tc5b.x
        rms2d @CA metric_holder rmsout tmp.out
        '''

        for func in funclist:
            traj = func("./data/Tc5b.x", "./data/Tc5b.top")
            for metric in ['rms', 'nofit', 'dme']:
                d0 = pt.pairwise_rmsd(traj(mask='@CA'), metric=metric)
                d1 = pt.pairwise_rmsd(traj, mask='@CA', metric=metric)
                d2 = pt.pairwise_rmsd(traj(), mask='@CA', metric=metric)

                txt0 = txt.replace('metric_holder', metric)
                state = pt.datafiles.load_cpptraj_output(txt0, dtype='state')
                d3 = state.datasetlist[-1].values

                aa_eq(d0, d1)
                aa_eq(d0, d2)
                aa_eq(d0, d3)
Пример #50
0
    def test_superpose_trajectory_iterator_pytraj_method(self):
        traj_on_disk = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))
        traj_on_disk2 = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))
        traj_on_mem = pt.load(fn('Tc5b.x'), fn('Tc5b.top'))

        ref = pt.iterload(fn("Tc5b.crd"), fn('Tc5b.top'))[0]
        pt.superpose(traj_on_mem, ref=ref, mask='@CA')
        pt.superpose(traj_on_disk, ref=ref, mask='@CA')
        assert traj_on_disk._being_transformed == True, '_being_transformed must be True'

        aa_eq(traj_on_mem.xyz, traj_on_disk.xyz)

        # test saving
        with tempfolder():
            traj_on_mem.save('t0.nc', overwrite=True)
            traj_on_disk.save('t1.nc', overwrite=True)

            aa_eq(
                pt.load('t0.nc', traj_on_mem.top).xyz,
                pt.load('t1.nc', traj_on_disk.top).xyz)

        # turn off superpose
        traj_on_disk._being_transformed = False
        aa_eq(traj_on_disk.xyz, traj_on_disk2.xyz)
Пример #51
0
    def test_assert(self):
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")
        fa = Trajectory.from_iterable(iterframe_master(traj), top=traj.top)

        for f0, f1 in zip(fa, traj):
            aa_eq(f0.xyz, f1.xyz)
Пример #52
0
    def test_ired_vector(self):
        '''test mask as a list of strings or as a 2D array of integers
        '''
        parm_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                '1IEE_A_prot.prmtop')
        trajin_dir = os.path.join(cpptraj_test_dir, 'Test_IRED',
                                  '1IEE_A_test.mdcrd')
        traj = pt.iterload(trajin_dir, parm_dir)

        # get a list of mask from cpptraj input
        maskes = []
        lines = None

        n_indices_cpp = []

        with open('data/ired.in', 'r') as fh:
            lines = fh.readlines()
            for line in lines:
                if 'vector' in line and 'ired' in line:
                    # example: vector v100 @1541 ired @1542
                    sline = line.split()
                    mask = ' '.join((sline[2], sline[4]))
                    n_indices_cpp.append(int(sline[2][1:]) - 1)
                    maskes.append(mask)

        h_indices_cpp = [i + 1 for i in n_indices_cpp]

        # calcuate vector from a list of strings
        data_vec = va.vector_mask(traj, maskes)

        # calcuate vector from a 2d array of integers
        nh_indices = np.array(list(zip(n_indices_cpp, h_indices_cpp)))
        data_vec_2 = va.vector_mask(traj, nh_indices)

        # re-create cpptraj input to run cpptraj
        txt = ''.join(lines)
        # add parm and trajin lines
        txt = 'parm ' + parm_dir + '\n' + \
              'trajin ' + trajin_dir + '\n' + \
              txt

        state = pt.datafiles.load_cpptraj_output(txt, dtype='state')
        state.run()
        cpp_data = state.datasetlist
        cpp_vectors = cpp_data.grep('vector', mode='dtype').values
        cpp_matired = cpp_data.grep('matrix', mode='dtype')['matired']

        # assert between pytraj's data_vec and cpptraj's cpp_vectors
        aa_eq(data_vec, cpp_vectors)

        # from a 2D array of integers
        aa_eq(data_vec_2, cpp_vectors)

        # test ired vector with ired matrix
        # open file

        with open('data/ired_reduced.in', 'r') as fh:
            text = ''.join(fh.readlines())
        state2 = pt.load_batch(traj, text)
        state2.run()

        data = pt.ired_vector_and_matrix(traj, nh_indices, order=2)
        data_vec_3 = data[0]
        assert len(data_vec_3) == 126, 'must have 126 vectors'
        matired = data[1]
        # TODO: know why??
        matired /= matired[0, 0]
        aa_eq(data_vec_3, cpp_vectors)
        assert pt.tools.rmsd(matired.flatten(),
                             cpp_matired.values) < 1E-6, 'matired'
Пример #53
0
    def test_iterframe_from_array(self):
        traj = pt.iterload("./data/Tc5b.x", "./data/Tc5b.top")

        # no mass
        fi = pt.iterframe_from_array(traj.xyz, traj.n_atoms,
                                     range(traj.n_frames))
        for f_traj, f_fi in zip(traj, fi):
            aa_eq(f_traj.xyz, f_fi.xyz)
            # f_fi mass must be [1.0, ...]
            aa_eq(f_fi.mass, [1.0 for _ in range(traj.n_atoms)])

        # mass from Topology
        fi = pt.iterframe_from_array(traj.xyz, traj.n_atoms,
                                     range(traj.n_frames), traj.top)
        for f_traj, f_fi in zip(traj, fi):
            aa_eq(f_traj.xyz, f_fi.xyz)
            aa_eq(f_fi.mass, f_traj.mass)
            aa_eq(f_fi.mass, traj.top.mass)

        # mass from array
        fi = pt.iterframe_from_array(traj.xyz,
                                     traj.n_atoms,
                                     range(traj.n_frames),
                                     mass=traj.top.mass)
        for f_traj, f_fi in zip(traj, fi):
            aa_eq(f_traj.xyz, f_fi.xyz)
            aa_eq(f_fi.mass, f_traj.mass)
            aa_eq(f_fi.mass, traj.top.mass)
Пример #54
0
 def test_pickle_datasetlist(self):
     traj = pt.iterload(fn('Tc5b.x'), fn('Tc5b.top'))
     dslist = pt.multidihedral(traj)
     pt.to_pickle(dslist, 'ds.pk')
     dslist2 = pt.read_pickle('ds.pk')
     aa_eq(dslist.values, dslist2.values)
    def test_frame_indices_for_function(self):
        traj = self.traj

        pdict = pt.__dict__
        funclist = list(
            set(pdict[key] for key in dir(pt)
                if hasattr(pdict[key], '_issuper_dispatched')))

        frame_indices = [0, 2]

        # remove 'calc_jcoupling' since does not have kfile on travis
        # remove energy_decomposition since does not have sander
        # remove center, why?
        # remove search_neighbors, why? (got messup with Frame memory owner)
        excluded_fn = [
            jcoupling,
            volmap,
            center,
            search_neighbors,
            atomiccorr,
            autoimage,
            closest,
            volume,
            superpose,
            randomize_ions,
            check_structure,
            align_principal_axis,
        ]
        func_nu = [
            calc_epsilon,
            calc_alpha,
            calc_zeta,
            calc_beta,
            calc_nu1,
            calc_nu2,
            calc_delta,
            calc_chin,
            calc_gamma,
        ]

        # default mask, default ref
        for func in funclist:
            if func not in excluded_fn:
                if func is pt.calc_multivector:
                    data_0 = func(
                        traj,
                        resrange='1-6',
                        names='C N',
                        frame_indices=frame_indices)
                    data_1 = func(
                        traj[frame_indices], resrange='1-6', names='C N')
                elif func is pt.volmap:
                    # use water
                    data_0 = func(
                        self.traj_ortho,
                        mask=':WAT@O',
                        grid_spacing=(0.2, 0.2, 0.2),
                        centermask='!:1-13',
                        frame_indices=frame_indices)
                    data_1 = func(
                        self.traj_ortho[frame_indices],
                        mask=':WAT@O',
                        centermask='!:1-13',
                        grid_spacing=(0.2, 0.2, 0.2))
                elif func in func_nu:
                    data_0 = func(self.traj_nu, frame_indices=frame_indices)
                    data_1 = func(self.traj_nu[frame_indices])
                else:
                    data_0 = func(traj, frame_indices=frame_indices)
                    data_1 = func(traj[frame_indices])

                if isinstance(data_0, np.ndarray):
                    aa_eq(data_0, data_1)
                elif isinstance(data_0, pt.DatasetList):
                    for arr0, arr1 in zip(data_0, data_1):
                        # do each element in case we can not convert DatasetList to
                        # ndarray
                        if not isinstance(arr0[0], string_types):
                            aa_eq(arr0.values, arr1.values)
                elif isinstance(data_0, DatasetHBond):
                    aa_eq(data_0.data.values, data_1.data.values)
                elif isinstance(data_0, (list, tuple)):
                    # dssp
                    aa_eq(data_0[-1].values, data_1[-1].values)
                else:
                    raise RuntimeError(
                        'must return ndarray or DatasetList or DatasetHBond')

        # test excluded fns
        aa_eq(
            pt.atomiccorr(traj[frame_indices], '@CA'),
            pt.atomiccorr(traj, '@CA', frame_indices=frame_indices))

        # align_principal_axis
        indices = [0, 3, 7]
        t0 = self.traj[:]
        t1 = self.traj[indices]
        pt.align_principal_axis(t0, frame_indices=indices)
        pt.align_principal_axis(t1)
        aa_eq(t0[indices].xyz, t1.xyz)
        # make sure that other frames are not affected
        other_indices = list(set(range(10)) - set(indices))
        aa_eq(self.traj[other_indices].xyz, t0[other_indices].xyz)
Пример #56
0
def test_load_comprehensive():
    traj = traj_tz2_ortho
    trajin, tn = fn("tz2.ortho.nc"), fn("tz2.ortho.parm7")

    # load from filelist
    t0 = pt.load([trajin, trajin], tn)
    n_frames_half = int(t0.n_frames / 2)
    aa_eq(traj.xyz, t0[:n_frames_half].xyz)
    aa_eq(traj.xyz, t0[n_frames_half:].xyz)

    # frame_slice
    t0 = pt.io.load_traj(trajin, tn, frame_slice=(0, 3))
    aa_eq(traj_tz2_ortho[:3].xyz, t0.xyz)

    # mask
    t1 = pt.load(trajin, tn, mask='@CA')
    aa_eq(t1.xyz, traj['@CA'].xyz)

    # frame_indices, list
    t1 = pt.load(trajin, tn, frame_indices=[0, 3])
    aa_eq(t1.xyz, traj[[0, 3]].xyz)

    # frame_indices, tuple
    t1 = pt.load(trajin, tn, frame_indices=(0, 3))
    aa_eq(t1.xyz, traj[[0, 3]].xyz)

    # frame_indices with negative index
    t12 = pt.load(trajin, tn, frame_indices=(-2, -1))
    aa_eq(t12.xyz, traj[[traj.n_frames - 2, traj.n_frames - 1]].xyz)

    # mask and frame_indices
    t2 = pt.load(trajin, tn, mask='@CA', frame_indices=[3, 8])
    aa_eq(t2.xyz, traj[[3, 8], '@CA'].xyz)

    # stride
    t2 = pt.load(trajin, tn, stride=2)
    aa_eq(t2.xyz, traj[::2].xyz)

    # stride with mask
    t2 = pt.load(trajin, tn, stride=2, mask='@CA')
    aa_eq(t2.xyz, traj[::2, '@CA'].xyz)

    # stride, ignore frame_indices if stride is given
    t2 = pt.load(trajin, tn, stride=2, frame_indices=[2, 5, 8])
    aa_eq(t2.xyz, traj[::2].xyz)
Пример #57
0
def test_load_url():
    url = 'https://raw.githubusercontent.com/Amber-MD/pytraj/master/tests/data/1L2Y.pdb'
    local_traj = pt.load(fn('1L2Y.pdb'))
    github_traj = pt.io.load_url(url)
    aa_eq(local_traj.xyz, github_traj.xyz)
Пример #58
0
def test_iterload_comprehensive():
    trajin, tn = fn("tz2.ortho.nc"), fn("tz2.ortho.parm7")

    # frame_slice
    t0 = pt.iterload(trajin, tn, frame_slice=(0, -1, 0))
    aa_eq(traj_tz2_ortho.xyz, t0.xyz)

    t0 = pt.iterload(trajin, tn, frame_slice=(0, -1, 2))
    aa_eq(traj_tz2_ortho.xyz[::2], t0.xyz)

    # stride
    t0 = pt.iterload(trajin, tn, stride=2)
    aa_eq(traj_tz2_ortho.xyz[::2], t0.xyz)

    # stride, ignore frame_slice
    t0 = pt.iterload(trajin, tn, stride=2, frame_slice=(0, -1, 3))
    aa_eq(traj_tz2_ortho.xyz[::2], t0.xyz)

    # stride, load two files
    t0 = pt.iterload([trajin, trajin], tn, stride=2)
    xyz_2 = np.vstack((traj_tz2_ortho.xyz[::2], traj_tz2_ortho.xyz[::2]))
    aa_eq(xyz_2, t0.xyz)

    # stride, load two files, ignore frame_slice
    t0 = pt.iterload([trajin, trajin],
                     tn,
                     stride=2,
                     frame_slice=[(0, -1, 5), (0, -1, 2)])
    xyz_2 = np.vstack((traj_tz2_ortho.xyz[::2], traj_tz2_ortho.xyz[::2]))
    aa_eq(xyz_2, t0.xyz)

    # stride, 4 trajs
    filenames, tn = get_remd_fn('remd_ala2')
    t0 = pt.iterload(filenames, tn, stride=3)
    # add frame_slice
    t1 = pt.iterload(filenames, tn, frame_slice=[
        (0, -1, 3),
    ] * 4)
    xyz_expected = np.vstack(
        [pt.iterload(fname, tn)[::3].xyz for fname in filenames])
    aa_eq(xyz_expected, t0.xyz)
    aa_eq(xyz_expected, t1.xyz)

    # stride, 4 trajs, ignore frame_slice
    filenames, tn = get_remd_fn('remd_ala2')
    t0 = pt.iterload(filenames, tn, stride=3, frame_slice=(0 - 1, 4))
    xyz_expected = np.vstack(
        [pt.iterload(fname, tn)[::3].xyz for fname in filenames])
    aa_eq(xyz_expected, t0.xyz)
Пример #59
0
def test_get_coordinates_trajecotoryiterator():
    '''immutable pytraj.TrajectoryIterator
    '''
    traj = traj_tz2_ortho.copy()

    # all coordinates
    xyz = pt.get_coordinates(traj)
    aa_eq(traj.xyz, xyz)

    # given frames
    xyz = pt.get_coordinates(traj, frame_indices=[0, 5])
    aa_eq(traj[[0, 5]].xyz, xyz)

    # given frames, autoimage=True
    xyz = pt.get_coordinates(traj, frame_indices=[0, 5], autoimage=True)
    aa_eq(traj[[0, 5]].autoimage().xyz, xyz)

    # given frames, autoimage=True, rmsfit=ref
    ref = traj[-3]
    pt.autoimage(ref, top=traj.top)
    xyz = pt.get_coordinates(traj,
                             frame_indices=[0, 5],
                             autoimage=True,
                             rmsfit=ref)
    aa_eq(traj[[0, 5]].autoimage().superpose(ref=ref).xyz, xyz)

    xyz = pt.get_coordinates(traj,
                             frame_indices=range(3),
                             autoimage=True,
                             rmsfit=ref)

    # with mask
    xyz = pt.get_coordinates(traj, mask='@CA')
    aa_eq(xyz, traj['@CA'].xyz)

    # slow
    fi = pt.pipe(traj, ['autoimage'])
    aa_eq(pt.get_coordinates(fi), traj[:].autoimage().xyz)

    # raise
    with pytest.raises(ValueError):
        pt.get_coordinates(traj(), frame_indices=[0, 2])
Пример #60
0
    def test_nupars_vs_x3dna(self):
        traj = pt.iterload(fn('Test_NAstruct/x3dna/rna.pdb'))
        ref = pt.iterload(fn('Test_NAstruct/x3dna/rna_nab.pdb'))
        nu = pt.nastruct(traj, ref=ref, groove_3dna=True)

        root = fn('Test_NAstruct/x3dna/')

        # helical pars
        saved_helical_pars = np.loadtxt(root + 'bp_helical.par',
                                        skiprows=3,
                                        usecols=range(1, 13)).T
        aa_eq(nu.shear[1][0], saved_helical_pars[0], decimal=3)
        aa_eq(nu.stretch[1][0], saved_helical_pars[1], decimal=3)
        aa_eq(nu.stagger[1][0], saved_helical_pars[2], decimal=3)
        aa_eq(nu.buckle[1][0], saved_helical_pars[3], decimal=3)
        aa_eq(nu.prop[1][0], saved_helical_pars[4], decimal=3)
        aa_eq(nu.open[1][0], saved_helical_pars[5], decimal=3)
        aa_eq(nu.xdisp[1][0], saved_helical_pars[6][1:], decimal=3)
        aa_eq(nu.ydisp[1][0], saved_helical_pars[7][1:], decimal=3)
        aa_eq(nu.hrise[1][0], saved_helical_pars[8][1:], decimal=3)
        aa_eq(nu.incl[1][0], saved_helical_pars[9][1:], decimal=3)
        aa_eq(nu.tip[1][0], saved_helical_pars[10][1:], decimal=3)
        aa_eq(nu.htwist[1][0], saved_helical_pars[11][1:], decimal=3)

        # bp_step
        saved_helical_pars = np.loadtxt(root + 'bp_step.par',
                                        skiprows=3,
                                        usecols=range(1, 13)).T
        aa_eq(nu.shift[1][0], saved_helical_pars[6][1:], decimal=3)
        aa_eq(nu.slide[1][0], saved_helical_pars[7][1:], decimal=3)
        aa_eq(nu.tilt[1][0], saved_helical_pars[9][1:], decimal=3)
        aa_eq(nu.roll[1][0], saved_helical_pars[10][1:], decimal=3)
        aa_eq(nu.twist[1][0], saved_helical_pars[11][1:], decimal=3)

        # grove
        aa_eq(nu.minor[1][0], [15.8, 15.8, 15.5], decimal=1)
        aa_eq(nu.major[1][0], [19.9, 20.8, 20.0], decimal=1)