Пример #1
0
  def _getargs(self, node, args):
    """Extracts the typename, field_names and rename arguments.

    collections.namedtuple takes potentially 4 arguments, but we only care about
    three of them. This function checks the argument count and ensures multiple
    values aren't passed for 'verbose' and 'rename'.

    Args:
      node: The current CFG node. Used by match_args.
      args: A function.Args object

    Returns:
      A tuple containing the typename, field_names and rename arguments passed
      to this call to collections.namedtuple.

    Raises:
      function.FailedFunctionCall: The arguments do not match those needed by
        the function call. See also: abstract.PyTDFunction.match_args().
      abstract_utils.ConversionError: One of the args could not be extracted.
        Typically occurs if typename or one of the field names is in unicode.
    """

    # abstract.PyTDFunction.match_args checks the args for this call.
    self.match_args(node, args)

    # namedtuple only has one signature
    sig, = self.signatures
    callargs = {name: var for name, var, _ in sig.signature.iter_args(args)}

    # The name of the namedtuple class is the first arg (a Variable)
    # We need the actual Variable later, so we'll just return name_var and
    # extract the name itself later.
    name_var = callargs["typename"]

    # The fields are also a Variable, which stores the field names as Variables.
    # Extract the list itself, we don't need the wrapper.
    fields_var = callargs["field_names"]
    fields = abstract_utils.get_atomic_python_constant(fields_var)
    # namedtuple fields can be given as a single string, e.g. "a, b, c" or as a
    # list [Variable('a'), Variable('b'), Variable('c')].
    # We just want a list of strings.
    if isinstance(fields, (bytes, six.text_type)):
      fields = compat.native_str(fields)
      field_names = fields.replace(",", " ").split()
    else:
      field_names = [abstract_utils.get_atomic_python_constant(f)
                     for f in fields]
      field_names = [compat.native_str(f) for f in field_names]

    # namedtuple also takes a "verbose" argument, but we don't care about that.

    # rename will take any problematic field names and give them a new name.
    # Like the other args, it's stored as a Variable, but we want just a bool.
    if callargs.get("rename", None):
      rename = abstract_utils.get_atomic_python_constant(callargs["rename"])
    else:
      rename = False

    return name_var, field_names, rename
Пример #2
0
    def _match_pyval_against_string(self, pyval, string, subst):
        """Matches a concrete value against a string literal."""
        assert isinstance(string, str)

        if pyval.__class__ is str:  # native str
            left_type = "bytes" if self.vm.PY2 else "unicode"
        elif isinstance(pyval, compat.BytesType):
            left_type = "bytes"
        elif isinstance(pyval, compat.UnicodeType):
            left_type = "unicode"
        else:
            return None
        # needs to be native str to match `string`
        left_value = compat.native_str(pyval)

        right_prefix, right_value = (
            parser_constants.STRING_RE.match(string).groups()[:2])
        if "b" in right_prefix or "u" not in right_prefix and self.vm.PY2:
            right_type = "bytes"
        else:
            right_type = "unicode"
        right_value = right_value[1:-1]  # remove quotation marks

        if left_type == right_type and left_value == right_value:
            return subst
        return None
Пример #3
0
def compile_src_string_to_pyc_string(src, filename, python_exe, mode="exec"):
    """Compile Python source code to pyc data.

  This may use py_compile if the src is for the same version as we're running,
  or else it spawns an external process to produce a .pyc file. The generated
  bytecode (.pyc file) is read and both it and any temporary files are deleted.

  Args:
    src: Python sourcecode
    filename: Name of the source file. For error messages.
    python_exe: Tuple of a path to a Python interpreter and command-line flags.
    mode: Same as __builtin__.compile: "exec" if source consists of a
      sequence of statements, "eval" if it consists of a single expression,
      or "single" if it consists of a single interactive statement.

  Returns:
    The compiled pyc file as a binary string.
  Raises:
    CompileError: If we find a syntax error in the file.
    IOError: If our compile script failed.
  """
    tempfile_options = {"mode": "w", "suffix": ".py", "delete": False}
    if six.PY3:
        tempfile_options.update({"encoding": "utf-8"})
    else:
        tempfile_options.update({"mode": "wb"})
    fi = tempfile.NamedTemporaryFile(**tempfile_options)

    try:
        if six.PY3:
            fi.write(src)
        else:
            fi.write(src.encode("utf-8"))
        fi.close()
        # In order to be able to compile pyc files for both Python 2 and Python 3,
        # we spawn an external process.
        # We pass -E to ignore the environment so that PYTHONPATH and sitecustomize
        # on some people's systems don't mess with the interpreter.
        exe, flags = python_exe
        cmd = [exe] + flags + ["-E", "-", fi.name, filename or fi.name, mode]

        compile_script_src = pytype_source_utils.load_pytype_file(
            COMPILE_SCRIPT)

        p = subprocess.Popen(cmd,
                             stdin=subprocess.PIPE,
                             stdout=subprocess.PIPE)
        bytecode, _ = p.communicate(compile_script_src)
        assert p.poll() == 0, "Child process failed"
    finally:
        os.unlink(fi.name)
    first_byte = six.indexbytes(bytecode, 0)
    if first_byte == 0:  # compile OK
        return bytecode[1:]
    elif first_byte == 1:  # compile error
        code = bytecode[1:]  # type: bytes
        raise CompileError(compat.native_str(code))
    else:
        raise IOError("_compile.py produced invalid result")
Пример #4
0
 def load_string(self):
     n = self._read_long()
     s = self._read(n)
     if self.python_version[0] >= 3:
         # load_string() loads a bytestring, and in Python 3, str and bytes are
         # different classes.
         s = compat.BytesType(s)
     elif not self._keep_bytes:
         # In Python 2, load_string is used to load both bytestrings and native
         # strings, so we have to specify which we want.
         s = compat.native_str(s)
     return s
Пример #5
0
 def load_string(self):
   n = self._read_long()
   s = self._read(n)
   if self.python_version[0] >= 3:
     # load_string() loads a bytestring, and in Python 3, str and bytes are
     # different classes.
     s = compat.BytesType(s)
   elif not self._keep_bytes:
     # In Python 2, load_string is used to load both bytestrings and native
     # strings, so we have to specify which we want. We use the
     # 'backslashreplace' error mode in order to handle non-utf8
     # backslash-escaped string literals correctly.
     s = compat.native_str(s, 'backslashreplace')
   return s
Пример #6
0
 def _getargs(self, node, args):
     self.match_args(node, args)
     sig, = self.signatures
     callargs = {
         name: var
         for name, var, _ in sig.signature.iter_args(args)
     }
     # typing.NamedTuple doesn't support rename or verbose
     name_var = callargs["typename"]
     fields_var = callargs["fields"]
     fields = abstract_utils.get_atomic_python_constant(fields_var)
     if isinstance(fields, six.string_types):
         # Since str matches Sequence, we have to manually check for it.
         raise function.WrongArgTypes(sig.signature, args, self.vm,
                                      self._fields_param)
     # The fields is a list of tuples, so we need to deeply unwrap them.
     fields = [abstract_utils.get_atomic_python_constant(t) for t in fields]
     # We need the actual string for the field names and the AtomicAbstractValue
     # for the field types.
     names = []
     types = []
     for field in fields:
         if isinstance(field, six.string_types):
             # Since str matches Sequence, we have to manually check for it.
             raise function.WrongArgTypes(sig.signature, args, self.vm,
                                          self._fields_param)
         if (len(field) != 2 or any(not self._is_str_instance(v)
                                    for v in field[0].data)):
             # Note that we don't need to check field[1] because both 'str'
             # (forward reference) and 'type' are valid for it.
             raise function.WrongArgTypes(sig.signature, args, self.vm,
                                          self._fields_param)
         name, typ = field
         name_py_constant = abstract_utils.get_atomic_python_constant(name)
         if name_py_constant.__class__ is compat.UnicodeType:
             # Unicode values should be ASCII.
             name_py_constant = compat.native_str(
                 name_py_constant.encode("ascii"))
         names.append(name_py_constant)
         types.append(abstract_utils.get_atomic_value(typ))
     return name_var, names, types
Пример #7
0
    def _build_namedtuple(self, name, field_names, field_types, late_annots,
                          node):
        # Build an InterpreterClass representing the namedtuple.
        if field_types:
            # TODO(mdemello): Fix this to support late types.
            field_types_union = abstract.Union(field_types, self.vm)
        else:
            field_types_union = self.vm.convert.none_type

        members = {
            n: t.instantiate(node)
            for n, t in moves.zip(field_names, field_types)
        }

        # collections.namedtuple has: __dict__, __slots__ and _fields.
        # typing.NamedTuple adds: _field_types, __annotations__ and _field_defaults.
        # __slots__ and _fields are tuples containing the names of the fields.
        slots = tuple(
            self.vm.convert.build_string(node, f) for f in field_names)
        members["__slots__"] = abstract.Tuple(slots, self.vm).to_variable(node)
        members["_fields"] = abstract.Tuple(slots, self.vm).to_variable(node)
        # __dict__ and _field_defaults are both collections.OrderedDicts that map
        # field names (strings) to objects of the field types.
        ordered_dict_cls = self.vm.convert.name_to_value(
            "collections.OrderedDict", ast=self.collections_ast)

        # In Python 2, keys can be `str` or `unicode`; support both.
        # In Python 3, `str_type` and `unicode_type` are the same.
        field_keys_union = abstract.Union(
            [self.vm.convert.str_type, self.vm.convert.unicode_type], self.vm)

        # Normally, we would use abstract_utils.K and abstract_utils.V, but
        # collections.pyi doesn't conform to that standard.
        field_dict_cls = abstract.ParameterizedClass(ordered_dict_cls, {
            "K": field_keys_union,
            "V": field_types_union
        }, self.vm)
        members["__dict__"] = field_dict_cls.instantiate(node)
        members["_field_defaults"] = field_dict_cls.instantiate(node)
        # _field_types and __annotations__ are both collections.OrderedDicts
        # that map field names (strings) to the types of the fields.
        field_types_cls = abstract.ParameterizedClass(
            ordered_dict_cls, {
                "K": field_keys_union,
                "V": self.vm.convert.type_type
            }, self.vm)
        members["_field_types"] = field_types_cls.instantiate(node)
        members["__annotations__"] = field_types_cls.instantiate(node)

        # __new__
        # We set the bound on this TypeParameter later. This gives __new__ the
        # signature: def __new__(cls: Type[_Tname], ...) -> _Tname, i.e. the same
        # signature that visitor.CreateTypeParametersForSignatures would create.
        # This allows subclasses of the NamedTuple to get the correct type from
        # their constructors.
        cls_type_param = abstract.TypeParameter(
            visitors.CreateTypeParametersForSignatures.PREFIX + name,
            self.vm,
            bound=None)
        cls_type = abstract.ParameterizedClass(
            self.vm.convert.type_type, {abstract_utils.T: cls_type_param},
            self.vm)
        # Use late annotations as field types if they exist.
        params = [
            Param(n, late_annots.get(n, t))
            for n, t in moves.zip(field_names, field_types)
        ]
        members["__new__"] = overlay_utils.make_method(
            self.vm,
            node,
            name="__new__",
            self_param=Param("cls", cls_type),
            params=params,
            return_type=cls_type_param,
        )

        # __init__
        members["__init__"] = overlay_utils.make_method(self.vm,
                                                        node,
                                                        name="__init__",
                                                        varargs=Param("args"),
                                                        kwargs=Param("kwargs"))

        # _make
        # _make is a classmethod, so it needs to be wrapped by
        # specialibuiltins.ClassMethodInstance.
        # Like __new__, it uses the _Tname TypeVar.
        sized_cls = self.vm.convert.name_to_value("typing.Sized")
        iterable_type = abstract.ParameterizedClass(
            self.vm.convert.name_to_value("typing.Iterable"),
            {abstract_utils.T: field_types_union}, self.vm)
        cls_type = abstract.ParameterizedClass(
            self.vm.convert.type_type, {abstract_utils.T: cls_type_param},
            self.vm)
        len_type = abstract.CallableClass(
            self.vm.convert.name_to_value("typing.Callable"), {
                0: sized_cls,
                abstract_utils.ARGS: sized_cls,
                abstract_utils.RET: self.vm.convert.int_type
            }, self.vm)
        params = [
            Param("iterable", iterable_type),
            Param("new").unsolvable(self.vm, node),
            Param("len", len_type).unsolvable(self.vm, node)
        ]
        make = overlay_utils.make_method(self.vm,
                                         node,
                                         name="_make",
                                         params=params,
                                         self_param=Param("cls", cls_type),
                                         return_type=cls_type_param)
        make_args = function.Args(posargs=(make, ))
        _, members["_make"] = self.vm.special_builtins["classmethod"].call(
            node, None, make_args)

        # _replace
        # Like __new__, it uses the _Tname TypeVar. We have to annotate the `self`
        # param to make sure the TypeVar is substituted correctly.
        members["_replace"] = overlay_utils.make_method(
            self.vm,
            node,
            name="_replace",
            self_param=Param("self", cls_type_param),
            return_type=cls_type_param,
            kwargs=Param("kwds", field_types_union))

        # __getnewargs__
        getnewargs_tuple_params = dict(
            tuple(enumerate(field_types)) +
            ((abstract_utils.T, field_types_union), ))
        getnewargs_tuple = abstract.TupleClass(self.vm.convert.tuple_type,
                                               getnewargs_tuple_params,
                                               self.vm)
        members["__getnewargs__"] = overlay_utils.make_method(
            self.vm, node, name="__getnewargs__", return_type=getnewargs_tuple)

        # __getstate__
        members["__getstate__"] = overlay_utils.make_method(
            self.vm, node, name="__getstate__")

        # _asdict
        members["_asdict"] = overlay_utils.make_method(
            self.vm, node, name="_asdict", return_type=field_dict_cls)

        # Finally, make the class.
        cls_dict = abstract.Dict(self.vm)
        cls_dict.update(node, members)
        if name.__class__ is compat.UnicodeType:
            # Unicode values should be ASCII.
            name = compat.native_str(name.encode("ascii"))

        node, cls_var = self.vm.make_class(
            node=node,
            name_var=self.vm.convert.build_string(node, name),
            bases=[self.vm.convert.tuple_type.to_variable(node)],
            class_dict_var=cls_dict.to_variable(node),
            cls_var=None)
        cls = cls_var.data[0]

        # Now that the class has been made, we can complete the TypeParameter used
        # by __new__, _make and _replace.
        cls_type_param.bound = cls

        # Add late annotations to the new class
        if late_annots:
            cls.late_annotations = late_annots
            self.vm.classes_with_late_annotations.append(cls)

        return node, cls_var
Пример #8
0
def compile_src_string_to_pyc_string(src,
                                     filename,
                                     python_version,
                                     python_exe,
                                     mode="exec"):
    """Compile Python source code to pyc data.

  This may use py_compile if the src is for the same version as we're running,
  or else it spawns an external process to produce a .pyc file. The generated
  bytecode (.pyc file) is read and both it and any temporary files are deleted.

  Args:
    src: Python sourcecode
    filename: Name of the source file. For error messages.
    python_version: Python version, (major, minor).
    python_exe: Tuple of a path to a Python interpreter and command-line flags.
    mode: Same as __builtin__.compile: "exec" if source consists of a
      sequence of statements, "eval" if it consists of a single expression,
      or "single" if it consists of a single interactive statement.

  Returns:
    The compiled pyc file as a binary string.
  Raises:
    CompileError: If we find a syntax error in the file.
    IOError: If our compile script failed.
  """

    if python_version == sys.version_info[:2] and (
            sys.version_info.major != 2 or not utils.USE_ANNOTATIONS_BACKPORT):
        # Optimization: calling compile_bytecode directly is faster than spawning a
        # subprocess. We can do this only when the host and target versions match
        # and we don't need the patched 2.7 interpreter.
        output = six.BytesIO()
        compile_bytecode.compile_src_to_pyc(src, filename or "<>", output,
                                            mode)
        bytecode = output.getvalue()
    else:
        tempfile_options = {"mode": "w", "suffix": ".py", "delete": False}
        if six.PY3:
            tempfile_options.update({"encoding": "utf-8"})
        else:
            tempfile_options.update({"mode": "wb"})
        fi = tempfile.NamedTemporaryFile(**tempfile_options)
        try:
            if six.PY3:
                fi.write(src)
            else:
                fi.write(src.encode("utf-8"))
            fi.close()
            # In order to be able to compile pyc files for a different Python version
            # from the one we're running under, we spawn an external process.
            # We pass -E to ignore the environment so that PYTHONPATH and
            # sitecustomize on some people's systems don't mess with the interpreter.
            exe, flags = python_exe
            cmd = [exe
                   ] + flags + ["-E", "-", fi.name, filename or fi.name, mode]

            compile_script_src = pytype_source_utils.load_pytype_file(
                COMPILE_SCRIPT)

            p = subprocess.Popen(cmd,
                                 stdin=subprocess.PIPE,
                                 stdout=subprocess.PIPE)
            bytecode, _ = p.communicate(compile_script_src)
            assert p.poll() == 0, "Child process failed"
        finally:
            os.unlink(fi.name)
    first_byte = six.indexbytes(bytecode, 0)
    if first_byte == 0:  # compile OK
        return bytecode[1:]
    elif first_byte == 1:  # compile error
        code = bytecode[1:]  # type: bytes
        raise CompileError(compat.native_str(code))
    else:
        raise IOError("_compile.py produced invalid result")
Пример #9
0
 def load_short_ascii(self):
     n = self._read_byte()
     return compat.native_str(self._read(n))
Пример #10
0
 def load_ascii(self):
     n = self._read_long()
     return compat.native_str(self._read(n))
Пример #11
0
 def load_interned(self):
     n = self._read_long()
     s = self._read(n)
     ret = six.moves.intern(compat.native_str(s))
     self._stringtable.append(ret)
     return ret
Пример #12
0
    def _build_namedtuple(self, name, field_names, field_types, node):
        # Build an InterpreterClass representing the namedtuple.
        if field_types:
            field_types_union = abstract.Union(field_types, self.vm)
        else:
            field_types_union = self.vm.convert.none_type

        members = {
            n: t.instantiate(node)
            for n, t in moves.zip(field_names, field_types)
        }
        # collections.namedtuple has: __dict__, __slots__ and _fields.
        # typing.NamedTuple adds: _field_types, __annotations__ and _field_defaults.
        # __slots__ and _fields are tuples containing the names of the fields.
        slots = tuple(
            self.vm.convert.build_string(node, f) for f in field_names)
        members["__slots__"] = abstract.Tuple(slots, self.vm).to_variable(node)
        members["_fields"] = abstract.Tuple(slots, self.vm).to_variable(node)
        # __dict__ and _field_defaults are both collections.OrderedDicts that map
        # field names (strings) to objects of the field types.
        ordered_dict_cls = self.vm.convert.name_to_value(
            "collections.OrderedDict", ast=self.collections_ast)

        # In Python 2, keys can be `str` or `unicode`; support both.
        # In Python 3, `str_type` and `unicode_type` are the same.
        field_keys_union = abstract.Union(
            [self.vm.convert.str_type, self.vm.convert.unicode_type], self.vm)

        # Normally, we would use abstract_utils.K and abstract_utils.V, but
        # collections.pyi doesn't conform to that standard.
        field_dict_cls = abstract.ParameterizedClass(ordered_dict_cls, {
            "K": field_keys_union,
            "V": field_types_union
        }, self.vm)
        members["__dict__"] = field_dict_cls.instantiate(node)
        members["_field_defaults"] = field_dict_cls.instantiate(node)
        # _field_types and __annotations__ are both collections.OrderedDicts
        # that map field names (strings) to the types of the fields.
        field_types_cls = abstract.ParameterizedClass(
            ordered_dict_cls, {
                "K": field_keys_union,
                "V": self.vm.convert.type_type
            }, self.vm)
        members["_field_types"] = field_types_cls.instantiate(node)
        members["__annotations__"] = field_types_cls.instantiate(node)
        # __new__
        new_annots = {}
        new_lates = {}
        for (n, t) in moves.zip(field_names, field_types):
            # We don't support late annotations yet, but once we do, they'll show up
            # as LateAnnotation objects to be stored in new_lates.
            new_annots[n] = t
        # We set the bound on this TypeParameter later. This gives __new__ the
        # signature: def __new__(cls: Type[_Tname], ...) -> _Tname, i.e. the same
        # signature that visitor.CreateTypeParametersForSignatures would create.
        # This allows subclasses of the NamedTuple to get the correct type from
        # their constructors.
        cls_type_param = abstract.TypeParameter(
            visitors.CreateTypeParametersForSignatures.PREFIX + name,
            self.vm,
            bound=None)
        new_annots["cls"] = abstract.ParameterizedClass(
            self.vm.convert.type_type, {abstract_utils.T: cls_type_param},
            self.vm)
        new_annots["return"] = cls_type_param
        members["__new__"] = abstract.SimpleFunction(
            name="__new__",
            param_names=("cls", ) + tuple(field_names),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={},
            annotations=new_annots,
            late_annotations=new_lates,
            vm=self.vm).to_variable(node)
        # __init__
        members["__init__"] = abstract.SimpleFunction(
            name="__init__",
            param_names=("self", ),
            varargs_name="args",
            kwonly_params=(),
            kwargs_name="kwargs",
            defaults={},
            annotations={},
            late_annotations={},
            vm=self.vm).to_variable(node)
        # _make
        # _make is a classmethod, so it needs to be wrapped by
        # specialibuiltins.ClassMethodInstance.
        # Like __new__, it uses the _Tname TypeVar.
        sized_cls = self.vm.convert.name_to_value("typing.Sized")
        iterable_type = abstract.ParameterizedClass(
            self.vm.convert.name_to_value("typing.Iterable"),
            {abstract_utils.T: field_types_union}, self.vm)
        make = abstract.SimpleFunction(
            name="_make",
            param_names=("cls", "iterable", "new", "len"),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={
                "new": self.vm.new_unsolvable(node),
                "len": self.vm.new_unsolvable(node)
            },
            annotations={
                "cls":
                abstract.ParameterizedClass(self.vm.convert.type_type,
                                            {abstract_utils.T: cls_type_param},
                                            self.vm),
                "iterable":
                iterable_type,
                "new":
                self.vm.convert.unsolvable,
                "len":
                abstract.Callable(
                    self.vm.convert.name_to_value("typing.Callable"), {
                        0: sized_cls,
                        abstract_utils.ARGS: sized_cls,
                        abstract_utils.RET: self.vm.convert.int_type
                    }, self.vm),
                "return":
                cls_type_param
            },
            late_annotations={},
            vm=self.vm).to_variable(node)
        make_args = function.Args(posargs=(make, ))
        _, members["_make"] = self.vm.special_builtins["classmethod"].call(
            node, None, make_args)
        # _replace
        # Like __new__, it uses the _Tname TypeVar. We have to annotate the `self`
        # param to make sure the TypeVar is substituted correctly.
        members["_replace"] = abstract.SimpleFunction(
            name="_replace",
            param_names=("self", ),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name="kwds",
            defaults={},
            annotations={
                "self": cls_type_param,
                "kwds": field_types_union,
                "return": cls_type_param
            },
            late_annotations={},
            vm=self.vm).to_variable(node)
        # __getnewargs__
        getnewargs_tuple_params = dict(
            tuple(enumerate(field_types)) +
            ((abstract_utils.T, field_types_union), ))
        getnewargs_tuple = abstract.TupleClass(self.vm.convert.tuple_type,
                                               getnewargs_tuple_params,
                                               self.vm)
        members["__getnewargs__"] = abstract.SimpleFunction(
            name="__getnewargs__",
            param_names=("self", ),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={},
            annotations={
                "return": getnewargs_tuple
            },
            late_annotations={},
            vm=self.vm).to_variable(node)
        # __getstate__
        members["__getstate__"] = abstract.SimpleFunction(
            name="__getstate__",
            param_names=("self", ),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={},
            annotations={},
            late_annotations={},
            vm=self.vm).to_variable(node)
        # _asdict
        members["_asdict"] = abstract.SimpleFunction(
            name="_asdict",
            param_names=("self", ),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={},
            annotations={
                "return": field_dict_cls
            },
            late_annotations={},
            vm=self.vm).to_variable(node)
        # Finally, make the class.
        abs_membs = abstract.Dict(self.vm)
        abs_membs.update(node, members)
        if name.__class__ is compat.UnicodeType:
            # Unicode values should be ASCII.
            name = compat.native_str(name.encode("ascii"))
        node, cls_var = self.vm.make_class(
            node=node,
            name_var=self.vm.convert.build_string(node, name),
            bases=[self.vm.convert.tuple_type.to_variable(node)],
            class_dict_var=abs_membs.to_variable(node),
            cls_var=None)
        # Now that the class has been made, we can complete the TypeParameter used
        # by __new__, _make and _replace.
        cls_type_param.bound = cls_var.data[0]
        return node, cls_var