def spectroscopy(qubit,frequencies,data = None,ntimes = 20,amplitude = 0.1,variable = "p1x",measureAtReadout = False,delay = 0,f_sb = 0,measure20 = True):
  if data == None:
    data = Datacube()
  if measureAtReadout:
    data.setName("Spectroscopy at Readout - %s" % qubit.name())
  else:
    data.setName("Spectroscopy - %s" % qubit.name())
  measureSpectroscopy(qubit = qubit,frequencies = frequencies,data = data,amplitude = amplitude,measureAtReadout = measureAtReadout,delay = delay,f_sb = f_sb)
  (params,rsquare) = fitQubitFrequency(data,variable)
  if measureAtReadout:
    qubit.parameters()["frequencies.readout.f01"] = params[1]
  else: 
    qubit.parameters()["frequencies.f01"] = params[1]
    qubit.setDriveFrequency(params[1])
  data.setName(data.name()+ " - f01 = %g GHz" % params[1])
  if not measureAtReadout:
    if measure20:
      data02 = Datacube("Spectroscopy of (0->2)_2 transition")
      data.addChild(data02)
      frequencies02 = arange(params[1]-0.2,params[1]-0.05,0.001)
      measureSpectroscopy(qubit = qubit,frequencies = frequencies02,data = data02,amplitude = amplitude*10.0,measureAtReadout = measureAtReadout,delay = delay,f_sb = f_sb)
      (params02,rsquare02) = fitQubitFrequency(data02,variable)
      qubit.parameters()["frequencies.f02"] = params02[1]*2.0
      data.setName(data.name()+" - f02_2 = %g GHz" % params02[1])
  data.savetxt()
  return data
Пример #2
0
def findAnticrossing(voltageRead, voltageWrite, searchRange1, searchRange2, cube=None):
    if cube == None:
        cube = Datacube()
    spectro = Datacube()
    spectro.setName("Qubit 1 Spectroscopy")
    cube.addChild(spectro)
    jba.calibrate()
    params = getQubitFrequency(mwg, initialRange, variable, spectro)
Пример #3
0
def spectroscopy(qubit,frequencies,data = None,ntimes = 20,amplitude = 0.1,variable = "p1x",measureAtReadout = False,delay = 0,f_sb = 0,measure20 = True,fitFrequency = True,factor20 = 10.0,delayAtReadout = 1500,saveData = True,pulseLength = 500,gaussian=True):
  f_drive = qubit.driveFrequency()
  try:
    if data == None:
      data = Datacube()
    if measureAtReadout:
      data.setName("Spectroscopy at Readout - %s" % qubit.name())
    else:
      data.setName("Spectroscopy - %s" % qubit.name())
    data.parameters()["defaultPlot"]=[["f",variable]]
    measureSpectroscopy(qubit = qubit,frequencies = frequencies,data = data,amplitude = amplitude,measureAtReadout = measureAtReadout,delay = delay,f_sb = f_sb,delayAtReadout = delayAtReadout,pulseLength = pulseLength,gaussian=gaussian)
    if fitFrequency:
      (params,rsquare) = fitQubitFrequency(data,variable)
      if measureAtReadout:
        varname01 = "frequencies.readout.f01"
      else:
        varname01 = "frequencies.f01"
      if rsquare > 0.6:
        print params[1]
        qubit.parameters()[varname01] = params[1]
        data.setName(data.name()+ " - f01 = %g GHz" %  qubit.parameters()[varname01])
      else:
        print "No peak found..."
        data.savetxt()
        return data
    if measure20:
      data02 = Datacube("Spectroscopy of (0->2)_2 transition")
      data.addChild(data02)
      frequencies02 = arange(params[1]-0.18,params[1]-0.05,0.001)
      data02.parameters()["defaultPlot"]=[["f",variable]]
      measureSpectroscopy(qubit = qubit,frequencies = frequencies02,data = data02,amplitude = amplitude*factor20,measureAtReadout = measureAtReadout,delay = delay,f_sb = f_sb,delayAtReadout = delayAtReadout,pulseLength = pulseLength,gaussian=gaussian)
      (params02,rsquare02) = fitQubitFrequency(data02,variable)
      if rsquare02 > 0.5 and params[0] > 0.2:
        if measureAtReadout:
          varname02 = "frequencies.readout.f02"
          varname12 = "frequencies.readout.f12"
        else:
          varname02 = "frequencies.f02"
          varname12 = "frequencies.f12"
        qubit.parameters()[varname02] = params02[1]*2.0
        qubit.parameters()[varname12] = params02[1]*2.0-qubit.parameters()[varname01]
        data.setName(data.name()+" - f02_2 = %g GHz" % (qubit.parameters()[varname02]/2))
    if saveData:
      data.savetxt()
    return data
  finally:
    try:
      qubit.setDriveFrequency(f_drive)
    except:
      pass
Пример #4
0
 def caractiseQubit(self,data=None,frequencies=[8.5,9.5]):
   if data==None:
     data=Datacube('caracterisation %s'%self.name())
     dataManager.addDatacube(data)
   acqiris.setNLoops(1)
   self._jba.calibrate(bounds=[2,3,25])
   acqiris.setNLoops(10)
   spectro=Datacube('spectro')
   data.addChild(spectro)
   self.measureSpectroscopy(fstart=frequencies[0],fstop=frequencies[1],fstep=0.002,power=-27.,data=spectro)
   data.set(f01=self._f01)
   rabi=Datacube('rabi')
   data.addChild(rabi)
   self.measureRabi(tstart=0,tstop=60,tstep=2.,data=rabi)
   data.set(rabiPi=self._rabiDuration)
   scurves=Datacube('sCurves')
   data.addChild(scurves)
   self.measureSCurves(data=scurves,ntimes=10)
   t1=Datacube('t1')
   data.addChild(t1)
   self.measureT1(tstart=0,tstop=500,tstep=4,data=t1)
   data.set(t1=self._t1)
   frequencies=[self._f01-0.25,self._f01+0.05]
   data.commit()
   data.savetxt()
Пример #5
0
 def measureSCurves(self,ntimes=None,data=None):
   if data==None:
     if name==None:name='sCurves %s'%self.name()
     data=Datacube(name)
     dataManager.addDatacube(data)
   self._pulseGenerator._MWSource.setPower(self._rabiPower)
   self._pulseGenerator._MWSource.setFrequency(self._f01)
   self._pulseGenerator.generatePulse(duration=self._rabiDuration,frequency=self._f01,DelayFromZero=register['repetitionPeriod']/2-self._rabiDuration-10,useCalibration=False)
   self._pulseGenerator.sendPulse()
   off=Datacube('sOff')
   data.addChild(off)
   self._pulseGenerator._MWSource.turnOff()
   self._jba.measureSCurve(data=off,ntimes=10)    
   on=Datacube('sOn')
   data.addChild(on)
   self._pulseGenerator._MWSource.turnOn()
   self._jba.measureSCurve(data=on,ntimes=10)    
Пример #6
0
  def setUp(self):

    """
    We create all necessary directories and test datacubes for the IO tests.
    """
  
    self.testCubes = dict()
    rc = Datacube()
    
    self.testCubes["real"] = rc
    
    rc.setName("Datacube test: Real data")
    rc.setParameters({"test":1,"array":[1,2,3,4],"hash":{"a":1,"b":2}})
    for i in range(0,2):
      rc.set(x = i,y = i*i, z = i*i*i,r = random.random())
      child = Datacube()
      child.setName("test {0:d}".format(i))
      rc.addChild(child)
      rc.commit()
      for j in range(0,2):
        child.set(x = j,t = j*2-j*j,r = random.random())
        child.commit()
    
    self.dataPath = os.path.normpath(os.path.dirname(__file__)+"/data")
    
    if not os.path.exists(self.dataPath):
      os.mkdir(self.dataPath)
        
    cx = Datacube(dtype = numpy.complex128)
        
    self.testCubes["complex"] = cx
    
    rc.setName("Datacube test: Complex data")
    rc.setParameters({"test":1,"array":[1,2,3,4],"hash":{"a":1,"b":2}})
    for i in range(0,2):
      cx.set(x = i,y = i*i*1j+4, z = i*i*i*1j,r = 1j*random.random())
      child = Datacube(dtype = numpy.complex128)
      child.setName("test {0:d}".format(i))
      cx.addChild(child)
      cx.commit()
      for j in range(0,2):
        child.set(x = j,t = j*2-j*j*1j,r = 1j*random.random())
        child.commit()
Пример #7
0
  def caracteriseIQvsFvsP(self,frequencies,voltages,data=None):
  
    if data==None:
      data=Datacube("JBA mapping")
      dataManager.addDatacube(data)
    try:
      previousShape=self.shape
      self.shape=zeros((20000),dtype = numpy.complex128)
      self.shape[10000:10010]=linspace(0,1,10)
      self.shape[10010:12100]=1
      self.shape[12100:12110]=linspace(1,0,10)
#      return self.shape
      import scipy

      pvsv=Datacube("power")
      data.addChild(pvsv)
      for v in voltages:
        self.setAmplitude(amplitude=v)
        p=self.measureJBAPower(f='autodetect')
        pvsv.set(v=v,bluePower=p)       
        pvsv.commit()
      pv=scipy.interpolate.interp1d(pvsv.column("v"),pvsv.column("bluePower"))
      data.savetxt()
      
      
      for f in frequencies:
        child=Datacube("f=%f"%f)
        data.addChild(child)
        self.setFrequency(f)
        for v in voltages:
          self.setAmplitude(amplitude=v)
          time.sleep(0.5)
          co=self.getThisMeasure()[1]
          var=cov(co[0])+cov(co[1])
          if var>0.01:
              cod=Datacube("components at p=%f" %pv(v))
              cod.createColumn('I',co[0])
              cod.createColumn('Q',co[1])
              cod.createColumn('bluePower',[pv(v)]*len(co[0]))
              child.addChild(cod)
          else:
             ####### ECRIRE QUELQUE CHOSE ICI
            [I,Q]=[mean(co[0]),mean(co[1])]
            child.set(f=f,v=v,I=I,Q=Q,sigma=var,bluePower=pv(v))
            child.set(M=sqrt(I**2+Q**2))
            child.set(phi=math.atan2(I,Q))
            child.commit()
            data.set(f=f,v=v,I=I,Q=Q,sigma=var,bluePower=pv(v))
            data.set(M=sqrt(I**2+Q**2))
            data.set(phi=math.atan2(I,Q))
            data.commit()
        data.savetxt()
    except:
      raise
    finally:
      data.savetxt()
      self.shape=previousShape
def sCurves(qubit,jba,variable = "p1x",data = None,ntimes = 20,optimize = "v20"):
  """
  Measures the s curves of the JBA. Assumes that the qubit is alread preset to a pi-pulse.
  """
  def getVoltageBounds(v0,jba,variable,ntimes):
    v = v0
    jba.setVoltage(v)
    acqiris.bifurcationMap(ntimes = ntimes)
    p = acqiris.Psw()[variable]
    
    while p > 0.03 and v < v0*2.0:
      v*=1.05
      jba.setVoltage(v)
      acqiris.bifurcationMap()
      p = acqiris.Psw()[variable]
    vmax = v
    
    v = v0
    jba.setVoltage(v)
    acqiris.bifurcationMap(ntimes = ntimes)
    p = acqiris.Psw()[variable]
    
    while p < 0.98 and v > v0/2.0:
      v/=1.05
      jba.setVoltage(v)
      acqiris.bifurcationMap()
      p = acqiris.Psw()[variable]
    vmin = v
    return (vmin*0.95,vmax*1.2)

  try:
    v0 = jba.voltage()
    if data == None:
    	sData = Datacube()
    else:
    	sData = data
    sData.setName("S curves - %s" % qubit.name())
    sData.setParameters(instrumentManager.parameters())
    s0 = Datacube("S0")
    s1 = Datacube("S1")
    s2 = Datacube("S2")
    
    sData.addChild(s0)
    sData.addChild(s1)
    sData.addChild(s2)
    
    qubit.turnOffDrive()
    
    (vmin,vmax) = getVoltageBounds(v0,jba,variable,ntimes)
    measureSingleS(voltages = arange(vmin,vmax,0.005),data = s0,jba = jba,ntimes = ntimes)

    qubit.turnOnDrive()

    loadPi01Pulse(qubit)
    measureSingleS(voltages = arange(vmin,vmax,0.005),data = s1,jba = jba,ntimes = ntimes)

    failed12 = False

    try:
      loadPi012Pulse(qubit)
      measureSingleS(voltages = arange(vmin,vmax,0.005),data = s2,jba = jba,ntimes = ntimes)  
      s1.createColumn("contrast20",s2.column(variable)-s0.column(variable))
      s1.createColumn("contrast21",s2.column(variable)-s1.column(variable))
      qubit.parameters()["readout.v20"] = s1.column("v")[argmax(s1.column("contrast20"))]
      qubit.parameters()["readout.v21"] = s1.column("v")[argmax(s1.column("contrast21"))]
    except:
      failed12 = True
      raise
      
    s1.createColumn("contrast10",s1.column(variable)-s0.column(variable))
    qubit.parameters()["readout.v10"] = s1.column("v")[argmax(s1.column("contrast10"))]
    
    if optimize == "v20" and not failed12:
      imax = argmax(s1.column("contrast20"))
      qubit.parameters()["readout.p11"] = s2.column(variable)[imax]
      v0 = s1.column("v")[imax]
    elif optimize == "v21" and not failed12:
      imax = argmax(s1.column("contrast21"))
      v0 = s1.column("v")[imax]
    else:
      imax = argmax(s1.column("contrast10"))
      qubit.parameters()["readout.p11"] = s1.column(variable)[imax]
      v0 = s1.column("v")[imax]
    
    #To do: Add dialog to ask to which voltage (v10,v20,v21) in 
    
    qubit.parameters()["readout.p00"] = 1.0-s0.column(variable)[imax]

    return (sData,v0)
    
  finally: 
    jba.setVoltage(v0)
    data.savetxt()
class IqOptimization(Reloadable):
  
  """
  Optimizes the parameters of an IQ mixer.
  """
  
  def __init__(self,mwg,fsp,awg,channels = [1,2]):
    Reloadable.__init__(self)
    self._mwg = mwg
    self._fsp = fsp
    self._awg = awg
    self._awgChannels = channels
    self.initCalibrationData()
  
  def initCalibrationData(self):
    """
    Initialize the datacubes that contain the IQ calibration data.
    """
    self._offsetCalibrationData = Datacube()
    self._offsetCalibrationData.setName("IQ mixer calibration - Offset Calibration Data")
    self._powerCalibrationData = Datacube()
    self._powerCalibrationData.setName("IQ mixer calibration - Power Calibration Data")
    self._sidebandCalibrationData = Datacube()
    self._sidebandCalibrationData.setName("IQ mixer calibration - Sideband Mixing Calibration Data")
  
  def sidebandCalibrationData(self):
    return self._sidebandCalibrationData
    
  def setSidebandCalibrationData(self,data):
    self._sidebandCalibrationData = data
  
  def offsetCalibrationData(self):
    """
    Return the datacube containing the offset calibration data.
    """
    return self._offsetCalibrationData
  
  def setOffsetCalibrationData(self,data):
    self._offsetCalibrationData = data
    self.updateOffsetCalibrationInterpolation()
    
  def updateOffsetCalibrationInterpolation(self):
    if len(self._offsetCalibrationData.column("frequency"))>1:
      frequencies = self._offsetCalibrationData.column("frequency")
      self._iOffsetInterpolation = scipy.interpolate.interp1d(frequencies,self._offsetCalibrationData.column("lowI"))        
      self._qOffsetInterpolation = scipy.interpolate.interp1d(frequencies,self._offsetCalibrationData.column("lowQ"))
    else:
      self._iOffsetInterpolation=lambda x:self._offsetCalibrationData.column("lowI")[0]
      self._qOffsetInterpolation=lambda x:self._offsetCalibrationData.column("lowQ")[0]

  
  def powerCalibrationData(self):
    """
    Return the datacube containing the power calibration data.
    """
    return self._powerCalibrationData

  def setPowerCalibrationData(self,data):
    self._powerCalibrationData = data
  
  def teardown(self):
  	"""
  	Restore the original configuration.
  	"""
  	self._fsp.loadConfig("IQCalibration")
  	self._awg.loadSetup("iq_calibration.awg")
  	self._mwg.restoreState(self._mwgState)
  
  def setup(self,averaging = 10,reference = -50):
    """
    Configure the AWG and the FSP for the IQ mixer calibration.
    """
    self._fsp.storeConfig("IQCalibration")
    self._awg.saveSetup("iq_calibration.awg")
    self._mwgState = self._mwg.saveState("iq calibration")
    self._fsp.write("SENSE1:FREQUENCY:SPAN 0 MHz")
    period = int(1.0/self._awg.repetitionRate()*1e9)
    self._fsp.write("SWE:TIME 2 ms")
    self._rbw = 1000
    self._fsp.write("SENSE1:BAND:RES %f Hz" % self._rbw)
    self._fsp.write("SENSE1:BAND:VIDEO AUTO")
    self._fsp.write("TRIG:SOURCE EXT")
    self._fsp.write("TRIG:HOLDOFF 0.02 s")
    self._fsp.write("TRIG:LEVEL 0.5 V")
    self._fsp.write("TRIG:SLOP POS")
    self._fsp.write("SENSE1:AVERAGE:COUNT %d" % averaging)
    self._fsp.write("SENSE1:AVERAGE:STAT1 ON")
    self._fsp.write("DISP:TRACE1:Y:RLEVEL %f" % reference)
    self.setupWaveforms()
  	
  def setupWaveforms(self):
    self._awg.write("AWGC:RMOD CONT")
    period = int(1.0/self._awg.repetitionRate()*1e9)
    print period
    waveformOffset = zeros((period))
    waveformActive = zeros((period))+1.0
    waveformPassive = zeros((period))-1.0
    self._markers = zeros((period),dtype = uint8)
    self._markers[1:len(self._markers)/2] = 255
    self._awg.createRawWaveform("IQ_Offset_Calibration",waveformOffset,self._markers,"REAL")
    self._awg.createRawWaveform("IQ_Power_Calibration_active",waveformActive,self._markers,"REAL")
    self._awg.createRawWaveform("IQ_Power_Calibration_passive",waveformPassive,self._markers,"REAL")

    length = int(1.0/self._awg.repetitionRate()*1e9)
    waveform = self.generateSidebandWaveform(f_sb = 0, c = 0,phi = 0,length = length)

    self._awg.createRawWaveform("IQ_Sideband_Calibration_I",waveform,self._markers,"REAL")
    self._awg.createRawWaveform("IQ_Sideband_Calibration_Q",waveform,self._markers,"REAL")
        
  def loadSidebandWaveforms(self):
    self._awg.setWaveform(1,"IQ_Sideband_Calibration_I")
    self._awg.setWaveform(2,"IQ_Sideband_Calibration_Q")
    self._awg.setWaveform(3,"IQ_Sideband_Calibration_I")
    self._awg.setWaveform(4,"IQ_Sideband_Calibration_Q")

  def loadSidebandCalibrationWaveform(self,f_sb = 0,c = 0,phi = 0):
    
    length = int(1.0/self._awg.repetitionRate()*1e9)
    waveform = self.generateSidebandWaveform(f_sb = f_sb, c = c,phi = phi,length = length)
    self._awg.createRawWaveform("IQ_Sideband_Calibration_I",real(waveform)*0.5,self._markers,"REAL")
    self._awg.createRawWaveform("IQ_Sideband_Calibration_Q",imag(waveform)*0.5,self._markers,"REAL")

    return waveform
    
  def sidebandParameters(self,f_c,f_sb):
  
    if self.sidebandCalibrationData().column("f_c") == None:
      return (0,0)
  
    min_index = argmin(abs(self.sidebandCalibrationData().column("f_c")-f_c))
    f_c = self.sidebandCalibrationData()["f_c"][min_index]
    
    
    if min_index == None:
      return (0,0)
    
    calibrationData = self.sidebandCalibrationData().children(f_c = f_c)[0]
    
    
    rows = calibrationData.search(f_sb = f_sb)
    
    if rows != []:
      c = calibrationData.column("c")[rows[0]]
      phi = calibrationData.column("phi")[rows[0]]
    else:      
      phiInterpolation = scipy.interpolate.interp1d(calibrationData.column("f_sb"),calibrationData.column("phi"))      
      cInterpolation = scipy.interpolate.interp1d(calibrationData.column("f_sb"),calibrationData.column("c"))      
      
      c = cInterpolation(f_sb)
      phi = phiInterpolation(f_sb)
    
    return (c,phi)

  def calibrationParameters(self, f_c, f_sb):    
    (iO,qO)=(self.iOffset(f_c),self.qOffset(f_c))
    (c,phi) = self.sidebandParameters(f_c,f_sb)
    return (iO, qO, c, phi)
    
    
  def generateCalibratedSidebandWaveform(self,f_c,f_sb = 0,length = 100,delay = 0):
  
    (c,phi) = self.sidebandParameters(f_c,f_sb)

#    print "Generating a sideband waveform at f_c = %g GHz at f_sb = %g GHZ, c = %g, phi = %g deg" % (f_c,f_sb,c,phi*180.0/math.pi)
    
    return self.generateSidebandWaveform(f_sb,length = length,delay = delay,c = c,phi = phi)*0.8  
    

  def generateSidebandWaveform(self,f_sb = 0,c = 0,phi = 0,length = 100,delay = 0,normalize = True):
    """
    Generates a sideband waveform using a sideband frequency "f_sb", an amplitude correction "c" and a phase correction "phi"
    """
    
    if length == 0:
      return array([])
    
    waveformIQ = zeros((max(1,length)),dtype = complex128)

    times = arange(0,length,1)
    
    cr = c*exp(1j*phi)
    
    waveformIQ = exp(-1.j*f_sb*2.0*math.pi*(times+float(delay)))+cr*exp(1.j*f_sb*2.0*math.pi*(times+float(delay)))

    return waveformIQ

  def calibrateIQPower(self,amplitude = 3.0):
    """
    Calibrate the IQ mixer output power.
    """
    try:
      self.setup(averaging = 100,reference = 0)
      params = dict()
      params["power"] = self._mwg.power()
      params["amplitude"] = amplitude
      params["channels"] = self._awgChannels
      params["mwg"] = self._mwg.name()
      params["awg"] = self._awg.name()
      params["fsp"] = self._fsp.name()
      self.powerCalibrationData().setParameters(params)
      freqs = self.offsetCalibrationData().column("frequency")
      Is = self.offsetCalibrationData().column("lowI")
      Qs = self.offsetCalibrationData().column("lowQ")
      for i in range(0,len(freqs)):
        f = freqs[i]
        amp = max(0,min(4.5,4.5-2.0*max(Is[i],Qs[i])))
        self._mwg.setFrequency(f)
        self._awg.setLow(self._awgChannels[0],Is[i])
        self._awg.setLow(self._awgChannels[1],Qs[i])
        self._awg.setHigh(self._awgChannels[0],Is[i]+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             amp)
        self._awg.setHigh(self._awgChannels[1],Qs[i]+amp)
      	self._fsp.write("SENSE1:FREQUENCY:CENTER %f GHZ" % f)
      	for channels in [[self._awgChannels[0],self._awgChannels[1],"I"],[self._awgChannels[1],self._awgChannels[0],"Q"]]:
          name = channels[2]
          
          self._awg.setWaveform(channels[0],"IQ_Power_Calibration_passive")
          self._awg.setWaveform(channels[1],"IQ_Power_Calibration_passive")
          
          time.sleep(0.5)
          
          trace = self._fsp.getSingleTrace()
          zero = mean(trace[1])
          
          self._awg.setWaveform(channels[0],"IQ_Power_Calibration_active")
          
          time.sleep(0.5)
          
          trace = self._fsp.getSingleTrace()
          level = mean(trace[1])
          diff = level - zero
          
          #This is the linear output coefficient:
          coefficient =(pow(10.0,level/10.0)-pow(10.0,zero/10.0))/pow(amp,2.0)
          self._powerCalibrationData.set(frequency = f)
          params = {"power"+name : sqrt(exp(log(10.0)*diff/10.0)),"powerDBM"+name : diff, "zero"+name : zero,"level"+name : level,"coeff"+name : coefficient}
          self._powerCalibrationData.set(**params)
      	self._powerCalibrationData.commit()
    finally:
      self.teardown()
    
  def calibrateIQOffset(self,frequencyRange = None):
    """
    Calibrate the IQ mixer DC offset.
    """
    if frequencyRange==None:
      frequencyRange=[self._mwg.frequency()]
    try:
      self.setup()
      params = dict()
      params["power"] = self._mwg.power()
      params["channels"] = self._awgChannels
      params["mwg"] = self._mwg.name()
      params["awg"] = self._awg.name()
      params["fsp"] = self._fsp.name()
      self.offsetCalibrationData().setParameters(params)
      self._mwg.turnOn()
      for channel in [1,2,3,4]:
        self._awg.setWaveform(channel,"IQ_Offset_Calibration")
      for frequency in frequencyRange:
        self._mwg.setFrequency(frequency)
        (voltages,minimum) = self.optimizeIQMixerPowell()
        minimum = self.measurePower(voltages) 
        print "Optimum value of %g dBm at offset %g V, %g V" % (minimum,voltages[0],voltages[1])
        rows = self._offsetCalibrationData.search(frequency = frequency)
        if rows != []:
          self._offsetCalibrationData.removeRows(rows)
        self._offsetCalibrationData.set(frequency = frequency,lowI = voltages[0],lowQ = voltages[1],minimum = minimum)
        self._offsetCalibrationData.commit()
        self._offsetCalibrationData.sortBy("frequency")
        self._offsetCalibrationData.savetxt()
    except StopThread:
      pass
    except:
      traceback.print_exc()
    finally:
      self.teardown()
      self.updateOffsetCalibrationInterpolation()
    return self._offsetCalibrationData.filename()
    
  def calibrateSidebandMixing(self,frequencyRange = None,sidebandRange = arange(-0.5,0.51,0.1)):
    """
    Calibrate the IQ mixer sideband generation.
    """
    if frequencyRange==None:
      frequencyRange=[self._mwg.frequency()]
    try:
      self.setup()
      params = dict()
      params["power"] = self._mwg.power()
      params["channels"] = self._awgChannels
      params["mwg"] = self._mwg.name()
      params["awg"] = self._awg.name()
      params["fsp"] = self._fsp.name()
      self.sidebandCalibrationData().setParameters(params)
      self._mwg.turnOn()
      channels = self._awgChannels
      self.loadSidebandWaveforms()
      for f_c in frequencyRange:
        #We round the center frequency to an accuracy of 1 MHz
        f_c = round(f_c,3)
        self._mwg.setFrequency(f_c)
        self._awg.setAmplitude(channels[0],4.5)
        self._awg.setAmplitude(channels[1],4.5)
        self._awg.setOffset(channels[0],self.iOffset(f_c))
        self._awg.setOffset(channels[1],self.qOffset(f_c))
        data = Datacube("f_c = %g GHz" % f_c)
        rowsToDelete = []
        try:
          for i in range(0,len(self._sidebandCalibrationData.column("f_c"))):
           if abs(self._sidebandCalibrationData.column("f_c")[i]-f_c) < 0.1:
              rowsToDelete.append(i)
        except:
          pass
        self._sidebandCalibrationData.removeRows(rowsToDelete)
        self._sidebandCalibrationData.addChild(data, f_c=f_c)
        self._sidebandCalibrationData.set(f_c = f_c)
        self._sidebandCalibrationData.commit()
        for f_sb in sidebandRange: 
          print "f_c = %g GHz, f_sb = %g GHz" % (f_c,f_sb)
          self._fsp.write("SENSE1:FREQUENCY:CENTER %f GHZ" % (f_c+f_sb))
          result = scipy.optimize.fmin_powell(lambda x,*args: self.measureSidebandPower(x,*args),[0,0],args = [f_sb],full_output = 1,xtol = 0.00001,ftol = 1e-4,maxiter = 2)
          params = result[0]
          value = result[1]
          print "f_c = %g GHz, f_sb = %g GHz, c = %g, phi = %g rad" % (f_c,f_sb,params[0],params[1])
          self.loadSidebandCalibrationWaveform(f_sb = f_sb,c = params[0],phi = params[1])
          for i in [-3,-2,-1,0,1,2,3]:
            self._fsp.write("SENSE1:FREQUENCY:CENTER %f GHZ" % (f_c+f_sb*i))
            if i < 0:
              suppl = "m"
            else:
              suppl = ""
            data.set(**{"p_sb%s%d" % (suppl,abs(i)) : self.measureAveragePower()})
          data.set(f_c = f_c,f_sb = f_sb,c = params[0],phi = params[1])
          data.commit()
        self._sidebandCalibrationData.sortBy("f_c")
        self._sidebandCalibrationData.savetxt()
    finally:
      self.teardown()
    return self._sidebandCalibrationData.filename()
   
  def iOffset(self,f):
    return self._iOffsetInterpolation(f)
    
  def qOffset(self,f):
    return self._qOffsetInterpolation(f)
    
  def setDriveFrequency(self,f):
    self._mwg.setFrequency(f)
    self._awg.setOffset(self._awgChannels[0],self.iOffset(f))
    self._awg.setOffset(self._awgChannels[1],self.qOffset(f))
  
  def optimizeIQMixerPowell(self):
    """
    Use Powell's biconjugate gradient method to minimize the power leak in the IQ mixer.
    """
    f = self._mwg.frequency()
    self._mwg.turnOn()
    self._fsp.write("SENSE1:FREQUENCY:CENTER %f GHZ" % f)
    result = scipy.optimize.fmin_powell(lambda x: self.measurePower(x),[0.,0.],full_output = 1,xtol = 0.0001,ftol = 1e-2,maxiter =500,maxfun =1000, disp=True, retall=True)
    return (result[0],result)

  def measureSidebandPower(self,x,f_sb):
    
    c = x[0]
    
    if c > 0.5 or c < -0.5:
      return 100

    phi = fmod(x[1],math.pi*2)
    
    self.loadSidebandCalibrationWaveform(f_sb = f_sb,c = c,phi = phi)
    
    power = self.measureAveragePower()
    
    print "Sideband power at f_sb = %g GHz,c = %g, phi = %g : %g dBm" % (f_sb,c,phi,power) 

    return power

  def measureAveragePower(self):
  
    trace = self._fsp.getSingleTrace()
    
    if trace == None:
      return 0
    
    minimum =  mean(trace[1])
    return minimum
  
  def measurePower(self,lows):
    """
    Measure the leaking power of the IQ mixer at a given point.
    Used by optimizeIQMixerPowell.
    """
    for i in [0,1]:
      if math.fabs(lows[i]) > 2.0:
        return 100.0
      self._awg.setOffset(self._awgChannels[i],lows[i])
    minimum = self.measureAveragePower()
    print "Measuring power at %g,%g : %g" % (lows[0],lows[1],minimum)
    linpower = math.pow(10.0,minimum/10.0)/10.0
    return minimum 
Пример #10
0
def measureSCurves(qubit,jba,variable = "p1x",data = None,ntimes = 20):
  """
  Measures the s curves of the JBA. Assumes that the qubit is alread preset to a pi-pulse.
  """
  def getVoltageBounds(v0,jba,variable,ntimes):
    v = v0
    jba.setVoltage(v)
    acqiris.bifurcationMap(ntimes = ntimes)
    p = acqiris.Psw()[variable]
    
    while p > 0.03 and v < v0*2.0:
      v*=1.05
      jba.setVoltage(v)
      acqiris.bifurcationMap()
      p = acqiris.Psw()[variable]
    vmax = v
    
    v = v0
    jba.setVoltage(v)
    acqiris.bifurcationMap(ntimes = ntimes)
    p = acqiris.Psw()[variable]
    
    while p < 0.98 and v > v0/2.0:
      v/=1.05
      jba.setVoltage(v)
      acqiris.bifurcationMap()
      p = acqiris.Psw()[variable]
    vmin = v
    return (vmin*0.9,vmax*1.1)

  try:
    v0 = jba.voltage()
    if data == None:
    	sData = Datacube()
    else:
    	sData = data
    sData.setName("S curves - %s" % qubit.name())
    sData.setParameters(instrumentManager.parameters())
    sOff = Datacube("SOFF")
    sOn = Datacube("SON")
    sData.addChild(sOff)
    sData.addChild(sOn)
    
    qubit.turnOffDrive()
    
    (vmin,vmax) = getVoltageBounds(v0,jba,variable,ntimes)
    
    for v in arange(vmin,vmax,0.005):
      jba.setVoltage(v)
      acqiris.bifurcationMap(ntimes = ntimes)
      sOff.set(**(acqiris.Psw()))
      sOff.set(v = v)
      sOff.commit()
    
    qubit.turnOnDrive()
    
    for v in arange(vmin,vmax,0.005):
      jba.setVoltage(v)
      acqiris.bifurcationMap(ntimes = ntimes)
      sOn.set(**acqiris.Psw())
      sOn.set(v = v)
      sOn.commit()
    
    sOn.createColumn("contrast",sOn.column(variable)-sOff.column(variable))
    
    v0 = sOn.column("v")[argmax(sOn.column("contrast"))]
    maxContrast = max(sOn.column("contrast"))
    
    return (sData,maxContrast,v0)
    
  finally: 
    jba.setVoltage(v0)
Пример #11
0
def sCurves(jba,qubit = None,variable = "p1x",data = None,ntimes = 20,s2=False,optimize = "v10",step = 0.01,measureErrors = False,saveData = True,voltageBounds = None,**kwargs):
  """
  Measures the s curves of the JBA. Assumes that the qubit is alread preset to a pi-pulse.
  """
  def getVoltageBounds(v0,jba,variable,ntimes):
    v = v0
    jba.setVoltage(v)
    acqiris.bifurcationMap(ntimes = ntimes)
    p = acqiris.Psw()[variable]
    
    while p > 0.03 and v < v0*2.0:
      v*=1.1
      jba.setVoltage(v)
      acqiris.bifurcationMap()
      p = acqiris.Psw()[variable]
    vmax = v
    
    v = v0
    jba.setVoltage(v)
    acqiris.bifurcationMap(ntimes = ntimes)
    p = acqiris.Psw()[variable]
    
    while p < 0.98 and v > v0/2.0:
      v/=1.1
      jba.setVoltage(v)
      acqiris.bifurcationMap()
      p = acqiris.Psw()[variable]
    vmin = v
    return (vmin*0.95,vmax*1.1)

  hasFinished = False
  
  try:
    data.setParameters(instrumentManager.parameters())
    v0 = jba.voltage()
    if data == None:
    	sData = Datacube()
    else:
    	sData = data
    if sData.name() == "datacube":
      if not qubit == None:
        sData.setName("S curves - %s" % qubit.name())
        s0 = Datacube("S0")
        s1 = Datacube("S1")
        sData.addChild(s0)
        sData.addChild(s1)
        s0.parameters()["defaultPlot"]=[["v",variable]]
        s1.parameters()["defaultPlot"]=[["v",variable]]
        s1.parameters()["defaultPlot"].append(["v","contrast10"])
      else:
        sData.setName("S curve - %s" % jba.name())
        sData.parameters()["defaultPlot"]=[["v",variable]]

    error=False 
    
    if not qubit == None:
        
      qubit.turnOnDrive()
      qubit.loadRabiPulse(length = 0)
    
    if voltageBounds == None:
      (vmin,vmax) = getVoltageBounds(v0,jba,variable,ntimes)
    else:
      (vmin,vmax) = voltageBound
      
    print vmin,vmax
    
    if qubit == None:
      measureSingleS(voltages = arange(vmin,vmax,step),data = sData,jba = jba,ntimes = ntimes)
      return
    else:
      measureSingleS(voltages = arange(vmin,vmax,step),data = s0,jba = jba,ntimes = ntimes)

    qubit.loadRabiPulse(phase = math.pi,**kwargs)
    measureSingleS(voltages = arange(vmin,vmax,step),data = s1,jba = jba,ntimes = ntimes)
    failed12 = False
    if s2:
      try:
        s2 = Datacube("S2")
        s2.parameters()["defaultPlot"]=[["v",variable]]
        sData.addChild(s2)
        
        loadPi012Pulse(qubit)
        
        measureSingleS(voltages = arange(vmin,vmax,step),data = s2,jba = jba,ntimes = ntimes)  
        s1.createColumn("contrast20",s2.column(variable)-s0.column(variable))
        s1.createColumn("contrast21",s2.column(variable)-s1.column(variable))
        s1.parameters()["defaultPlot"].extend([["v","contrast20"],["v","contrast21"]])
        qubit.parameters()["readout.v20"] = float(s1.column("v")[argmax(s1.column("contrast20"))])
        qubit.parameters()["readout.v21"] = float(s1.column("v")[argmax(s1.column("contrast21"))])
        qubit.parameters()["readout.contrast20"] = float(s1.column("contrast20")[argmax(s1.column("contrast20"))])
        qubit.parameters()["readout.contrast21"] = float(s1.column("contrast21")[argmax(s1.column("contrast21"))])
        data.setName(data.name()+" - v20 = %g" % qubit.parameters()["readout.contrast20"])
        data.setName(data.name()+" - v21 = %g" % qubit.parameters()["readout.contrast21"])
      except:
        failed12 = True
        raise
    else:
      failed12=True    
    s1.createColumn("contrast10",s1.column(variable)-s0.column(variable))
    s1.parameters()["defaultPlot"].append(["v",variable])
    qubit.parameters()["readout.v10"] = float(s1.column("v")[argmax(s1.column("contrast10"))])
    qubit.parameters()["readout.contrast10"] = float(s1.column("contrast10")[argmax(s1.column("contrast10"))])
    data.setName(data.name()+" - v10 = %g" % qubit.parameters()["readout.contrast10"])
    if optimize == "v21" or optimize == 'v20':
      qubit.parameters()["readout.use12"] = True
    else:
      qubit.parameters()["readout.use12"] = False
    
    if optimize == "v20" and not failed12:
      imax = argmax(s1.column("contrast20"))
      v0 = s1.column("v")[imax]
    elif optimize == "v21" and not failed12:
      imax = argmax(s1.column("contrast21"))
      v0 = s1.column("v")[imax]
    else:
      imax = argmax(s1.column("contrast10"))
      v0 = s1.column("v")[imax]
      
    hasFinished = True
    
    return (sData,v0)
  finally: 
    jba.setVoltage(v0)
    
    if hasFinished:
      if optimize == 'v20': 
        loadPi012Pulse(qubit)
      else:
        qubit.loadRabiPulse(phase = math.pi)
  
      if measureErrors:
      
        qubit.turnOnDrive()
        qubit.loadRabiPulse(phase=0)
        acqiris.bifurcationMap(ntimes = 1000)
        qubit.parameters()["readout.p00"] = float(1.0-acqiris.Psw()[variable])
 
        if optimize == 'v10':   
          qubit.loadRabiPulse(phase=math.pi)
        else:
          loadPi012Pulse(qubit)
        
        acqiris.bifurcationMap(ntimes = 1000)
        qubit.parameters()["readout.p11"] = float(acqiris.Psw()[variable])
    if saveData:
      data.savetxt()
Пример #12
0
def parameterSurvey(qubit,jba,values,generator,data = None,ntimes = 20,durations = arange(0,50,2),freqs = list(arange(5.0,6.5,0.002))+list(arange(7.0,8.3,0.002)),autoRange = False,spectroAmp = 0.1,rabiAmp = 1.0,f_sb = -0.1,variable = "p1x",fastMeasure=False,use12Pulse=False):
  """
  Measure the characteristic properties of the qubit (T1, Rabi period, transition frequency, readout contrast) for a list of different parameters.
  "params" contains a list of parameters, which are iterated over and passed to the function "generator" at each iteration.
  
  Example:
    
    values = [0.0,1.0,2.0]
    
    def generator(x):
      #Set the amplitude of AFG1 to the given parameter value      
      afg1.setAmplitude(x)
  
  """

  if data == None:
    data = Datacube()
  
  data.setName("Parameter Survey - %s" % qubit.name())
  
  for v in values:
    generator(v)

    try:
      jba.calibrate()
    except:
    	continue
    
    vData = Datacube("flux = %g V" % v)
    data.addChild(vData)
    data.set(flux = v)
    
    spectroData = Datacube()
    vData.addChild(spectroData)
    
    #Measure a spectroscopy
    
    spectroscopy(qubit = qubit,frequencies = freqs,variable = variable,data = spectroData,ntimes = 20,amplitude = spectroAmp,measureAtReadout = False,measure20=use12Pulse)
    if qubit.parameters()["frequencies.f01"] == None:
    	data.commit()
    	continue
    
    if autoRange:
      freqs = list(arange(qubit.parameters()["frequencies.f01"]-0.2,qubit.parameters()["frequencies.f01"]+0.2,0.002))
    data.set(f01 = qubit.parameters()["frequencies.f01"],f02 = qubit.parameters()["frequencies.f02"])
    
    #Measure a Rabi oscillation
    
    rabiData = Datacube()
    vData.addChild(rabiData)

    f01 = qubit1.parameters()["frequencies.f01"]
    f_sb = -0.1-(f01-round(f01,2))
    qubit.parameters()["pulses.xy.f_sb"]=float(f_sb)

    rabi(qubit = qubit,durations = rabiDurations,variable = variable,data = rabiData,amplitude = rabiAmp,f_sb = f_sb,averaging = 20)
    if qubit.parameters()["pulses.xy.t_pi"] == None:
    	data.commit()
    	continue
    
    data.set(t_pi = qubit.parameters()["pulses.xy.t_pi"])


      
    if use12Pulse:
      #Measure a Rabi 12 oscillation
      
      qubit.parameters()["pulses.xy.drive_amplitude"]=rabiAmp
      rabi12Data = Datacube()
      vData.addChild(rabi12Data)

      rabi12(qubit = qubit,durations = rabiDurations,variable = variable,data = rabi12Data,averaging = 20)
      if qubit.parameters()["pulses.xy.t_pi12"] == None:
      	data.commit()
      	continue
      
      data.set(t_pi12 = qubit.parameters()["pulses.xy.t_pi12"])
    
    #Measure S curves
    sData = Datacube()    
    vData.addChild(sData)
    sCurves(qubit = qubit,jba = jba,variable = variable,data = sData,optimize = "v10",s2=use12Pulse)
    data.set(contrast10 = qubit.parameters()["readout.contrast10"])
    
    if not fastMeasure:    
      #Measure T1
      t1Data = Datacube()
      vData.addChild(t1Data)
      delays = list(arange(0,200,10))+list(arange(200,2000,50))
      T1(qubit = qubit,delays = delays,variable = variable,data = t1Data, averaging=20)
      data.set(T1 = qubit.parameters()["relaxation.t1"])
      
      #Measure T2
  
      ramseyData = Datacube()
      vData.addChild(ramseyData)
      durations = arange(0,200,3.0)
      ramsey(qubit = qubit,durations = durations,variable = variable,data = ramseyData,averaging = 20,amplitude = 0.0,f_offset = 0.03,correctFrequency = False)
      data.set(T2 = ramseyData.parameters()["ramseyFit"][2])
      data.set(Tphi = 1.0/(1.0/ramseyData.parameters()["ramseyFit"][2]-1.0/2./qubit.parameters()["relaxation.t1"]))

    data.commit()
    data.savetxt()

  return data
dataManager.addDatacube(curves)
i = 0
curve = None
while i < len(lines):
	elements = lines[i].split(",")
	if re.search("l1=(\d+\.\d+)",lines[i],re.I):
		if curve != None and len(curve) == 0:
			curves.removeChild(curve)
		print lines[i]
		lq = float(re.search("l1=(\d+\.\d+)",lines[i],re.I).group(1))
		print lq
		i+=2
		if i >= len(lines):	
			break
		curve = Datacube("l1 = %g nH" % lq)
		curves.addChild(curve,lq = lq)
		curve.parameters()["defaultPlot"] = [("freq","mag")]
	elif len(elements) == 2:
		(freq,mag) = map(lambda x:float(x),lines[i].split(","))
		curve.set(freq = freq,mag = mag)
		curve.commit()
	i+=1	
curves.savetxt("sonnet_model")
##
import os
from numpy import *
m = zeros((len(curves.children()[0]),len(curves.children())))
i = 0
for child in curves.children():
	print mean(child["mag"]),max(child["mag"])
	m[:,i] = child["mag"]
Пример #14
0
  def methods(self,instrument,methodNames):
    return [getattr(instrument,methodName for methodName in methodNames]

  def methodsFromAliases(self,localInstrumentName,methodAliases):
    instr,methodsDict=self._subInstruments[localInstrumentName]
    return self.methods(instr,[methodsDict[methodAlias] for methodAlias in methodAliases])

  def checkAliasedMethodsExist(self,localInstrumentName,methodAliases=None):
    if methodAliases==None: methodAliases=self._subInstruments[localInstrumentName][1].keys()
    methods= self.methodsFromAliases(localInstrumentName,methodAliases)
    indices = [i for i, x in enumerate(methods) if x == None]
      if len(indices)!=O:
        raise NameError('methods '+str([methodAliases[i] for i in indices])+' do not seem to exist')

  def setBiasGen(self,instr,setBiasFuncName='setVoltage',getBiasFuncName='voltage'):
    if instr!=None:
      if isinstance(instr,str):
        inst=getInstrument(instr)
      else:
        inst=instr
      methods={'setBias':setBiasFuncName,'getBias':getBiasFuncName}
      self._subInstruments['biasGen']=(inst,methods)
      self.checkAliasedMethodsExist('biasGen')

  def setPumpGen(self,instr,setFreqFuncName='setFrequency',getFreqFuncName='frequency',setPowFuncName='setPower',getPowFuncName='power'):
    if instr!=None:
      if isinstance(instr,str):
        inst=getInstrument(pumpGen)
      else:
        inst=instr
      methods={'setFreq':setFreqFuncName,'getFreq':getFreqFuncNam,'setPow':setPowFuncName,'getPow':getPowFuncName}
      self._subInstruments['pumpGen']=(inst,methods)
      self.checkAliasedMethodsExist('pumpGen')

  def setTestVna(self,instr,\
    setFreqFuncName='setCenterInGhz',getFreqFuncName='getCenterInGhz',\
    setSpanFuncName='setSpanInGhz',getSpanFuncName='setSpanInGhz',\
    setPowFuncName='setTotalPower',getPowFuncName='getTotalPower',\
    getSpectrumFuncName='getFreqMagPhase',check=True\
    ):
    if instr!=None:
      if isinstance(instr,str):
        inst=getInstrument(pumpGen)
      else:
        inst=instr
      methods={'setFreq':setFreqFuncName,'getFreq':getSpanFuncNam,'setSpan':setSpanFuncName,'getSpan':getSpanFuncName,\
      'setPow':setPowFuncName,'getPow':getPowFuncName,'getSpectrum':getSpectrumFuncName}
      self._subInstruments['testVNA']=(inst,methods)
      self.checkAliasedMethodsExist('testVNA')


  def adaptFunc1(self,adaptiveLoop,deltafMax=span/10.,deltafMin=span/20.,stepMin=0.1,stepMax=1.):
        fbValues=adaptiveLoop.feedBackValues()
        if len(fbValues)>=2:
          step=adaptiveLoop.getStep()
          dir=1.0;
          if step<0:
            dir=-1.0
          deltaF=abs(fbValues[-1]-fbValues[-2])
          newStep=step
          if deltaF > deltafMax:
            newStep=max(abs(step/2.),stepMin)*dir
            adaptiveLoop.setStep(newStep)
          elif deltaF < deltafMin:
            newStep=min(abs(step*2),stepMax)*dir
            adaptiveLoop.setStep(newStep)

  def calibrateFreq(self,biasStart=None,biasStop=None,biasStep=1,centerStart=None,span=None,):
      
    if self._subInstruments['testVNA'].has_Key('biasGen')  
      setBias,getBias=self.methodsFromAliases('biasGen',['setBias','getBias'])     
      [setFreq,getFreq,setSpan,getSpan,setPow,getPow,getSpectrum]=self.methodsFromAliases('testVna',['setFreq','getFreq','setSpan','getSpan','setPow','getPow','getSpectrum'])
      if biasStart!=None : setFreq(biasStart)
      else :biasStart=getFreq()
      if biasStop==None : biasStop=biasStart+10*biasStep
      if centerStart!=None : setFreq(centerStart)
      if span!=None : setSpan(span)

      data=Datacube('parampFreqVsBias')
      data.toDataManager()
      xLoop=AdaptiveLoop(biasStart,step=biasStep,stop=biasStop,name=parampFreqVsBias,adaptFunc=self.adaptFunc1)
      setFreq(fCenter)
      for x in xLoop:
        print "Bias= ", x
        setBias(x,slewRate=0.5)
        child1=getSpectrum(waitFullSweep = True)
        child1.setName('bias'+str(x))
        data.addChild(child1)
        #Fit phase and determine center frequency f here
        xLoop.newFeedbackValue(f)
        data.set(bias=x,freq=f,commit=True,columnOrder=['bias','freq','peakdB'])