def visualise_agent(self, agent): env = self.game_environment display = Display(visible=0, size=(1400, 900)) display.start() state = env.reset() img = plt.imshow(env.render(mode='rgb_array')) for t in range(1000): agent.step() img.set_data(env.render(mode='rgb_array')) plt.axis('off') display.display(env.gcf()) display.clear_output(wait=True) if agent.done: break env.close()
import matplotlib.pyplot as plt from pyvirtualdisplay import Display # Set plotting options plt.style.use('ggplot') np.set_printoptions(precision=3, linewidth=120) display = Display(visible=0, size=(1400, 900)) display.start() plt.ion() # Create an environment and set random sed env = gym.make('MountainCar-v0') env.seed(505) state = env.reset() img = plt.imshow(env.render(mode='rgb_array')) for t in range(1000): action = env.action_space.sample() img.set_data(env.render(mode='rgb_array')) plt.axis('off') display.display(plt.gcf()) display.clear_output(wait=True) state, reward, done, _ = env.step(action) if done: print('Score: ', t + 1) break env.close()