Пример #1
0
    def add_particle_diag(self):
        particle_diag = picmi.ParticleDiagnostic(
            name=self.name,
            period=self.diag_steps,
            species=self.species,
            data_list=self.data_list,
            write_dir=self.write_dir
        )

        mwxrun.simulation.add_diagnostic(particle_diag)
Пример #2
0
                    n_macroparticle_per_cell=number_per_cell_each_dim))
sim.add_species(plasma,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))

field_diag = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=2,
    data_list=['Ex', 'Ey', 'Ez', 'Jx', 'Jy', 'Jz', 'part_per_cell'],
    write_dir='diags',
    warpx_file_prefix='plotfiles/plt')

part_diag = picmi.ParticleDiagnostic(
    name='diag1',
    period=2,
    species=[beam, plasma],
    data_list=['ux', 'uy', 'uz', 'weighting', 'Ex', 'Ey', 'Ez'],
    write_dir='diags')

sim.add_diagnostic(field_diag)
sim.add_diagnostic(part_diag)

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
#sim.write_input_file(file_name = 'inputs_from_PICMI.mr')

# Alternatively, sim.step will run WarpX, controlling it from Python
sim.step()
sim = picmi.Simulation(solver = solver,
                       max_steps = max_steps,
                       verbose = 1,
                       warpx_current_deposition_algo = 'esirkepov')

sim.add_species(beam, layout=picmi.GriddedLayout(grid=grid, n_macroparticle_per_cell=number_per_cell_each_dim))
sim.add_species(plasma, layout=picmi.GriddedLayout(grid=grid, n_macroparticle_per_cell=number_per_cell_each_dim))

field_diag = picmi.FieldDiagnostic(name = 'diag1',
                                   grid = grid,
                                   period = max_steps,
                                   data_list = ['Ex', 'Ey', 'Ez', 'Jx', 'Jy', 'Jz', 'part_per_cell'],
                                   write_dir = '.',
                                   warpx_file_prefix = 'Python_PlasmaAcceleration_plt')

part_diag = picmi.ParticleDiagnostic(name = 'diag1',
                                     period = max_steps,
                                     species = [beam, plasma],
                                     data_list = ['ux', 'uy', 'uz', 'weighting'])

sim.add_diagnostic(field_diag)
sim.add_diagnostic(part_diag)

# write_inputs will create an inputs file that can be used to run
# with the compiled version.
#sim.write_input_file(file_name = 'inputs_from_PICMI')

# Alternatively, sim.step will run WarpX, controlling it from Python
sim.step()

Пример #4
0
##########################
# diagnostics
##########################

diag_field_list = ["rho", "E", "B", "J"]
field_diag1 = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=10,
    write_dir='.',
    warpx_file_prefix='Python_LaserAccelerationMR_plt',
    data_list=diag_field_list)

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=10,
                                      species=[electrons])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       warpx_current_deposition_algo='esirkepov',
                       warpx_use_filter=0)

sim.add_species(electrons,
                layout=picmi.GriddedLayout(
                    grid=grid,
Пример #5
0
                             upper_boundary_conditions = ['periodic', 'periodic', 'periodic'],
                             moving_window_velocity = [0., 0., 0.],
                             warpx_max_grid_size = 32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(grid = grid,
                                    period = diagnostic_interval,
                                    data_list = ['Ex', 'Jx'])

part_diag1 = picmi.ParticleDiagnostic(period = diagnostic_interval,
                                      species = [electrons],
                                      data_list = ['weighting', 'ux', 'Ex'])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver = solver,
                       max_steps = max_steps,
                       verbose = 1,
                       warpx_current_deposition_algo = 'direct')

sim.add_species(electrons,
                layout = picmi.GriddedLayout(n_macroparticle_per_cell=number_per_cell_each_dim, grid=grid))

sim.add_diagnostic(field_diag1)
Пример #6
0
# Plasma lenses
plasma_lenses = picmi.PlasmaLens(
    period=0.5,
    starts=[0.1, 0.11, 0.12, 0.13],
    lengths=[0.1, 0.11, 0.12, 0.13],
    strengths_E=[600000., 800000., 600000., 200000.],
    strengths_B=[0.0, 0.0, 0.0, 0.0])

# Electromagnetic solver
solver = picmi.ElectromagneticSolver(grid=grid, method='Yee', cfl=0.7)

# Diagnostics
part_diag1 = picmi.ParticleDiagnostic(
    name='diag1',
    period=max_steps,
    species=[electrons],
    data_list=['ux', 'uy', 'uz'],
    write_dir='.',
    warpx_file_prefix='Python_plasma_lens_plt')

# Set up simulation
sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       particle_shape='linear',
                       warpx_serialize_initial_conditions=1,
                       warpx_do_dynamic_scheduling=0)

# Add plasma electrons
sim.add_species(electrons, layout=None)
Пример #7
0
protons = picmi.Species(particle_type='proton',
                        name='protons',
                        initial_distribution=proton_beam)

field_diag1 = picmi.FieldDiagnostic(
    name='diag1',
    grid=grid,
    period=10,
    data_list=args.fields_to_plot,
    warpx_format=args.diagformat,
    write_dir='.',
    warpx_file_prefix='Python_gaussian_beam_plt')

part_diag1 = picmi.ParticleDiagnostic(name='diag1',
                                      period=10,
                                      species=[electrons, protons],
                                      data_list=['weighting', 'momentum'],
                                      warpx_format=args.diagformat)

sim = picmi.Simulation(solver=solver,
                       max_steps=10,
                       verbose=1,
                       warpx_current_deposition_algo='direct',
                       warpx_use_filter=0)

sim.add_species(
    electrons,
    layout=picmi.PseudoRandomLayout(n_macroparticles=number_sim_particles))
sim.add_species(
    protons,
    layout=picmi.PseudoRandomLayout(n_macroparticles=number_sim_particles))
Пример #8
0
solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

##########################
# diagnostics
##########################

field_diag = picmi.FieldDiagnostic(
    name=f'diag{color + 1}',
    grid=grid,
    period=diagnostic_intervals,
    data_list=['Ex', 'Jx'],
    write_dir='.',
    warpx_file_prefix=f'Python_pass_mpi_comm_plt{color + 1}_')

part_diag = picmi.ParticleDiagnostic(name=f'diag{color + 1}',
                                     period=diagnostic_intervals,
                                     species=[electrons],
                                     data_list=['weighting', 'ux'])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       warpx_current_deposition_algo='direct')

sim.add_species(electrons,
                layout=picmi.GriddedLayout(
                    n_macroparticle_per_cell=number_per_cell_each_dim,
                    grid=grid))
Пример #9
0
# Diagnostics
diag_field_list = ['B', 'E', 'J', 'rho']
field_diag = picmi.FieldDiagnostic(
    name = 'diag1',
    grid = grid,
    period = 10,
    data_list = diag_field_list,
    warpx_dump_rz_modes = 1,
    write_dir = '.',
    warpx_file_prefix = 'Python_LaserAccelerationRZ_plt')
diag_particle_list = ['weighting', 'momentum']
particle_diag = picmi.ParticleDiagnostic(
    name = 'diag1',
    period = 10,
    species = [electrons, beam],
    data_list = diag_particle_list,
    write_dir = '.',
    warpx_file_prefix = 'Python_LaserAccelerationRZ_plt')

# Set up simulation
sim = picmi.Simulation(
    solver = solver,
    max_steps = max_steps,
    verbose = 1,
    particle_shape = 'cubic',
    warpx_use_filter = 0)

# Add plasma electrons
sim.add_species(
    electrons,
Пример #10
0
electrons = picmi.Species(
    particle_type='electron', name='electrons',
    initial_distribution=uniform_plasma_elec,
    warpx_save_particles_at_zhi=1,
    warpx_save_particles_at_zlo=1,
    warpx_reflection_model_zhi="0.5"
)

##########################
# diagnostics
##########################

field_diag = picmi.ParticleDiagnostic(
    species=electrons,
    name = 'diag1',
    data_list=['previous_positions'],
    period = 10,
    write_dir = '.',
    warpx_file_prefix = 'Python_particle_reflection_plt'
)

##########################
# simulation setup
##########################

sim = picmi.Simulation(
    solver = solver,
    time_step_size = dt,
    max_steps = max_steps,
    # warpx_embedded_boundary=embedded_boundary,
    verbose = 1
)
Пример #11
0
solver = picmi.ElectromagneticSolver(grid=grid, cfl=1., warpx_do_pml=0)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(name='diag1',
                                    grid=grid,
                                    period=diagnostic_interval,
                                    data_list=['E', 'B', 'J', 'part_per_cell'],
                                    warpx_file_prefix='plotfiles/plt')

part_diag1 = picmi.ParticleDiagnostic(
    name='diag1',
    period=diagnostic_interval,
    species=[electrons],
    data_list=['weighting', 'momentum', 'fields'])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=40,
                       verbose=1,
                       warpx_current_deposition_algo='esirkepov',
                       warpx_field_gathering_algo='energy-conserving',
                       warpx_particle_pusher_algo='boris')

sim.add_species(electrons,
Пример #12
0
    upper_boundary_conditions=['periodic', 'periodic', 'open'],
    moving_window_velocity=moving_window_velocity,
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, method='CKC', cfl=1.)

##########################
# diagnostics
##########################

field_diag1 = picmi.FieldDiagnostic(grid=grid,
                                    period=100,
                                    warpx_plot_raw_fields=1,
                                    warpx_plot_raw_fields_guards=1)

part_diag1 = picmi.ParticleDiagnostic(period=100, species=[electrons])

##########################
# simulation setup
##########################

sim = picmi.Simulation(solver=solver,
                       max_steps=max_steps,
                       verbose=1,
                       cfl=1.0,
                       warpx_current_deposition_algo='esirkepov')

sim.add_species(electrons,
                layout=picmi.GriddedLayout(
                    grid=grid,
                    n_macroparticle_per_cell=number_per_cell_each_dim))