Пример #1
0
    def _visualize(self, obj, **kwargs):
        fnResults = self.protocol._getPath("results.txt")

        if exists(fnResults):
            X, Y, _, _ = self.protocol.getXYValues(False)

            minX = min(X)
            maxX = max(X)
            step = (maxX - minX) / 50
            xValues = np.arange(minX, maxX+step, step)
            yValues = self.protocol.evalFunction(xValues)

            plotter = EmPlotter()
            varNameX = self.protocol.labelX.get()
            varNameY = self.protocol.labelY.get()
            ax = plotter.createSubPlot("Regression Plot",
                                       "%s [%s]"%(varNameX,strUnit(self.protocol.experiment.variables[varNameX].units.unit)),
                                       "%s [%s]"%(varNameY,strUnit(self.protocol.experiment.variables[varNameY].units.unit)))
            ax.plot(xValues, yValues)
            ax.plot(X, Y, 'o')

            return [plotter]
        else:
            return [self.errorMessage("Result file '%s' not produced yet. "
                                      % fnResults)]
Пример #2
0
    def prepareForSampleAnalysis(self, sampleName):
        sample = self.experiment.samples[sampleName]
        sampleFit = self.eliminationFitting.getSampleFit(sampleName)
        sample.interpretDose()
        self.model.D = sample.getDoseAt(0.0)
        self.model.Dunits = sample.getDoseUnits()
        if sampleFit == None:
            print(
                "  Cannot process %s because its elimination rate cannot be found\n\n"
                % sampleName)
            return False
        self.model.C0 = sampleFit.parameters[0]
        self.model.C0units = self.eliminationFitting.modelParameterUnits[0]
        self.model.Ke = sampleFit.parameters[1]
        self.model.KeUnits = self.eliminationFitting.modelParameterUnits[1]
        print("Concentration at t=0 = %f [%s]" %
              (self.model.C0, strUnit(self.model.C0units)))
        print("Elimination rate = %f [%s]" %
              (self.model.Ke, strUnit(self.model.KeUnits)))

        self.experiment.addParameterToSample(
            sampleName, "Ke", self.model.KeUnits,
            "Automatically estimated elimination rate", self.model.Ke)

        return True
Пример #3
0
    def _visualize(self, obj, **kwargs):
        fnResults = self.protocol._getPath("results.txt")

        if exists(fnResults):
            X, Y, _, _ = self.protocol.getXYValues(False)

            minX = min(X)
            maxX = max(X)
            step = (maxX - minX) / 50
            xValues = np.arange(minX, maxX + step, step)
            yValues = self.protocol.evalFunction(xValues)

            plotter = EmPlotter()
            varNameX = self.protocol.labelX.get()
            varNameY = self.protocol.labelY.get()
            ax = plotter.createSubPlot(
                "Regression Plot", "%s [%s]" %
                (varNameX,
                 strUnit(
                     self.protocol.experiment.variables[varNameX].units.unit)),
                "%s [%s]" %
                (varNameY,
                 strUnit(
                     self.protocol.experiment.variables[varNameY].units.unit)))
            ax.plot(xValues, yValues)
            ax.plot(X, Y, 'o')

            return [plotter]
        else:
            return [
                self.errorMessage("Result file '%s' not produced yet. " %
                                  fnResults)
            ]
    def postSampleAnalysis(self, sampleName):
        xunits = self.experiment.getVarUnits(self.varNameX)
        Cunits = self.experiment.getVarUnits(self.varNameY)
        Ka = self.model.parameters[0]
        Ke = self.model.Ke
        tmax = math.log(Ka/Ke)/(Ka-Ke)

        self.experiment.addParameterToSample(sampleName, "tmax", xunits, "Estimated time of the Maximum of the non-iv peak", tmax)
        Cmax = self.model.forwardModel(self.model.parameters,x=[np.atleast_1d(np.array(tmax))])[0][0]
        self.experiment.addParameterToSample(sampleName, "Cmax", Cunits, "Estimated concentration of the Maximum of the non-iv peak", Cmax)
        print("tmax = %f [%s]"%(tmax,strUnit(xunits)))
        print("Cmax = %f [%s]"%(Cmax,strUnit(Cunits)))
Пример #5
0
    def postSampleAnalysis(self, sampleName):
        xunits = self.experiment.getVarUnits(self.varNameX)
        Cunits = self.experiment.getVarUnits(self.varNameY)
        Ka = self.model.parameters[0]
        Ke = self.model.Ke
        tmax = math.log(Ka / Ke) / (Ka - Ke)

        self.experiment.addParameterToSample(
            sampleName, "tmax", xunits,
            "Estimated time of the Maximum of the non-iv peak", tmax)
        Cmax = self.model.forwardModel(self.model.parameters,
                                       x=[np.atleast_1d(np.array(tmax))])[0][0]
        self.experiment.addParameterToSample(
            sampleName, "Cmax", Cunits,
            "Estimated concentration of the Maximum of the non-iv peak", Cmax)
        print("tmax = %f [%s]" % (tmax, strUnit(xunits)))
        print("Cmax = %f [%s]" % (Cmax, strUnit(Cunits)))
Пример #6
0
    def runStatistcs(self, objId):
        experiment = self.readExperiment(self.inputExperiment.get().fnPKPD)
        self.printSection("Calculating statistical descriptors")
        fnStatistics = self._getPath("statistics.txt")
        fhOut = open(fnStatistics, 'w')

        for varName, variable in experiment.variables.iteritems():
            if variable.role == PKPDVariable.ROLE_LABEL:
                varValues = experiment.getSubGroupLabels("True", varName)
                if variable.varType == PKPDVariable.TYPE_TEXT:
                    self.doublePrint(fhOut, "%s ------------" % varName)
                    counter = {}
                    for value in varValues:
                        if value in counter:
                            counter[value] += 1
                        else:
                            counter[value] = 1
                    for value in counter:
                        self.doublePrint(
                            fhOut, "Value=%s Total count=%d (%f%%)" %
                            (value, counter[value],
                             100 * float(counter[value]) / len(varValues)))
                elif variable.varType == PKPDVariable.TYPE_NUMERIC:
                    self.doublePrint(
                        fhOut, "%s [%s] ------------" %
                        (varName, strUnit(variable.units.unit)))
                    varValues = np.asarray(varValues, np.double)
                    self.doublePrint(
                        fhOut, "Number of observations= %d" % len(varValues))
                    self.doublePrint(
                        fhOut, "Range=    [%f,%f]" %
                        (np.min(varValues), np.max(varValues)))
                    self.doublePrint(fhOut,
                                     "Mean=     %f" % np.mean(varValues))
                    self.doublePrint(fhOut, "StdDev=   %f" % np.std(varValues))
                    self.doublePrint(
                        fhOut, "Skewness= %f" % scipy.stats.skew(varValues))
                    self.doublePrint(
                        fhOut,
                        "Kurtosis= %f" % scipy.stats.kurtosis(varValues))
                    self.doublePrint(
                        fhOut,
                        "Quantile 5%%= %f" % np.percentile(varValues, 5))
                    self.doublePrint(
                        fhOut,
                        "Quantile 25%%= %f" % np.percentile(varValues, 25))
                    self.doublePrint(
                        fhOut,
                        "Quantile 50%%= %f" % np.percentile(varValues, 50))
                    self.doublePrint(
                        fhOut,
                        "Quantile 75%%= %f" % np.percentile(varValues, 75))
                    self.doublePrint(
                        fhOut,
                        "Quantile 95%%= %f" % np.percentile(varValues, 95))
                self.doublePrint(fhOut, " ")

        fhOut.close()
    def prepareForSampleAnalysis(self, sampleName):
        sample = self.experiment.samples[sampleName]
        sampleFit = self.eliminationFitting.getSampleFit(sampleName)
        sample.interpretDose()
        self.model.D = sample.getDoseAt(0.0)
        self.model.Dunits = sample.getDoseUnits()
        if sampleFit == None:
            print("  Cannot process %s because its elimination rate cannot be found\n\n"%sampleName)
            return False
        self.model.C0 = sampleFit.parameters[0]
        self.model.C0units = self.eliminationFitting.modelParameterUnits[0]
        self.model.Ke = sampleFit.parameters[1]
        self.model.KeUnits = self.eliminationFitting.modelParameterUnits[1]
        print("Concentration at t=0 = %f [%s]"%(self.model.C0,strUnit(self.model.C0units)))
        print("Elimination rate = %f [%s]"%(self.model.Ke,strUnit(self.model.KeUnits)))

        self.experiment.addParameterToSample(sampleName, "Ke", self.model.KeUnits, "Automatically estimated elimination rate", self.model.Ke)

        return True
 def _validate(self):
     errors=[]
     experiment = self.readExperiment(self.inputExperiment.get().fnPKPD, False)
     if not self.labelToChange.get() in experiment.variables:
         errors.append("Cannot find %s as variable"%self.labelToChange)
     else:
         variable = experiment.variables[self.labelToChange.get()]
         if variable.varType!=PKPDVariable.TYPE_NUMERIC:
             errors.append("%s is not a numeric variable"%variable.varName)
         else:
             currentUnit = experiment.getVarUnits(self.labelToChange.get())
             newUnit = unitFromString(self._getNewUnit())
             try:
                 K=convertUnits(1,currentUnit,newUnit)
                 if K==None:
                     errors.append("Unknown conversion from %s to %s. If it makes sense and it is not implemented you may contact [email protected]"%\
                                   (strUnit(currentUnit),strUnit(newUnit)))
             except:
                 errors.append("Unknown conversion from %s to %s. If it makes sense and it is not implemented you may contact [email protected]"%(currentUnit,newUnit))
     return errors
Пример #9
0
 def _validate(self):
     errors = []
     experiment = self.readExperiment(self.inputExperiment.get().fnPKPD,
                                      False)
     if not self.labelToChange.get() in experiment.variables:
         errors.append("Cannot find %s as variable" % self.labelToChange)
     else:
         variable = experiment.variables[self.labelToChange.get()]
         if variable.varType != PKPDVariable.TYPE_NUMERIC:
             errors.append("%s is not a numeric variable" %
                           variable.varName)
         else:
             currentUnit = experiment.getVarUnits(self.labelToChange.get())
             newUnit = unitFromString(self._getNewUnit())
             try:
                 K = convertUnits(1, currentUnit, newUnit)
                 if K == None:
                     errors.append("Unknown conversion from %s to %s. If it makes sense and it is not implemented you may contact [email protected]"%\
                                   (strUnit(currentUnit),strUnit(newUnit)))
             except:
                 errors.append(
                     "Unknown conversion from %s to %s. If it makes sense and it is not implemented you may contact [email protected]"
                     % (currentUnit, newUnit))
     return errors
Пример #10
0
    def postAnalysis(self, sampleName):
        if self.experimentIV!=None:
            if sampleName in self.experimentIV.samples:
                sampleNIV = self.experiment.samples[sampleName]
                DNIV= self.analysis.D

                sampleIV = self.experimentIV.samples[sampleName]
                sampleIV.interpretDose()
                DIV = sampleIV.getDoseAt(0.0)

                F = float(sampleNIV.descriptors['AUC_0inf'])/float(sampleNIV.descriptors['AUC_0inf'])*DIV/DNIV
                MAT = float(sampleNIV.descriptors['MRT']) - float(sampleIV.descriptors['MRT'])
                self.experiment.addParameterToSample(sampleName, "F", PKPDUnit.UNIT_NONE, "Estimated bioavailability", F)
                self.experiment.addParameterToSample(sampleName, "MAT", self.analysis.parameterUnits[-1], "Estimated Mean Absorption Time", MAT)
                print("F = %f"%F)
                print("MAT = %f [%s]"%(MAT,strUnit(self.analysis.parameterUnits[-1])))
Пример #11
0
    def _createSlidersFrame(self, content):
        frame = tk.Frame(content, bg='white')
        lfBounds = tk.LabelFrame(frame, text="Parameter Bounds", bg='white')
        gui.configureWeigths(frame)

        i = 0
        self.sliders = {}
        paramUnits = self.targetProtocol.parameterUnits
        for paramName, bounds in self.targetProtocol.getParameterBounds().iteritems():
            bounds = bounds or (0, 1)
            slider = MinMaxSlider(lfBounds, "%s [%s]"%(paramName,strUnit(paramUnits[i])),
                                  bounds[0], bounds[1],
                                  callback=self._onVarChanged)
            slider.grid(row=i, column=0, padx=5, pady=5)
            self.sliders[paramName] = slider
            i += 1

        lfBounds.grid(row=0, column=0, sticky='news', padx=5, pady=5)
        frame.grid(row=0, column=1, sticky='news', padx=5, pady=5)
Пример #12
0
    def _createSlidersFrame(self, content):
        frame = tk.Frame(content, bg='white')
        lfBounds = tk.LabelFrame(frame, text="Parameter Bounds", bg='white')
        gui.configureWeigths(frame)

        i = 0
        self.sliders = {}
        paramUnits = self.targetProtocol.parameterUnits
        for paramName, bounds in self.targetProtocol.getParameterBounds(
        ).iteritems():
            bounds = bounds or (0, 1)
            slider = MinMaxSlider(lfBounds,
                                  "%s [%s]" %
                                  (paramName, strUnit(paramUnits[i])),
                                  bounds[0],
                                  bounds[1],
                                  callback=self._onVarChanged)
            slider.grid(row=i, column=0, padx=5, pady=5)
            self.sliders[paramName] = slider
            i += 1

        lfBounds.grid(row=0, column=0, sticky='news', padx=5, pady=5)
        frame.grid(row=0, column=1, sticky='news', padx=5, pady=5)
    def runStatistcs(self, objId):
        experiment = self.readExperiment(self.inputExperiment.get().fnPKPD)
        self.printSection("Calculating statistical descriptors")
        fnStatistics = self._getPath("statistics.txt")
        fhOut = open(fnStatistics,'w')

        for varName, variable in experiment.variables.iteritems():
            if variable.role == PKPDVariable.ROLE_LABEL:
                varValues = experiment.getSubGroupLabels("True",varName)
                if variable.varType == PKPDVariable.TYPE_TEXT:
                    self.doublePrint(fhOut,"%s ------------"%varName)
                    counter = {}
                    for value in varValues:
                        if value in counter:
                            counter[value]+=1
                        else:
                            counter[value]=1
                    for value in counter:
                        self.doublePrint(fhOut,"Value=%s Total count=%d (%f%%)"%(value,counter[value],100*float(counter[value])/len(varValues)))
                elif variable.varType == PKPDVariable.TYPE_NUMERIC:
                    self.doublePrint(fhOut,"%s [%s] ------------"%(varName,strUnit(variable.units.unit)))
                    varValues = np.asarray(varValues,np.double)
                    self.doublePrint(fhOut,"Number of observations= %d"%len(varValues))
                    self.doublePrint(fhOut,"Range=    [%f,%f]"%(np.min(varValues),np.max(varValues)))
                    self.doublePrint(fhOut,"Mean=     %f"%np.mean(varValues))
                    self.doublePrint(fhOut,"StdDev=   %f"%np.std(varValues))
                    self.doublePrint(fhOut,"Skewness= %f"%scipy.stats.skew(varValues))
                    self.doublePrint(fhOut,"Kurtosis= %f"%scipy.stats.kurtosis(varValues))
                    self.doublePrint(fhOut,"Quantile 5%%= %f"%np.percentile(varValues,5))
                    self.doublePrint(fhOut,"Quantile 25%%= %f"%np.percentile(varValues,25))
                    self.doublePrint(fhOut,"Quantile 50%%= %f"%np.percentile(varValues,50))
                    self.doublePrint(fhOut,"Quantile 75%%= %f"%np.percentile(varValues,75))
                    self.doublePrint(fhOut,"Quantile 95%%= %f"%np.percentile(varValues,95))
                self.doublePrint(fhOut," ")

        fhOut.close()
Пример #14
0
    def runSimulate(self, objId, Nsimulations, confidenceInterval, doses):
        self.protODE = self.inputODE.get()
        if hasattr(self.protODE, "outputExperiment"):
            self.experiment = self.readExperiment(
                self.protODE.outputExperiment.fnPKPD)
        elif hasattr(self.protODE, "outputExperiment1"):
            self.experiment = self.readExperiment(
                self.protODE.outputExperiment1.fnPKPD)
        else:
            raise Exception("Cannot find an outputExperiment in the input ODE")
        if self.paramsSource == ProtPKPDODESimulate.PRM_POPULATION:
            self.fitting = self.readFitting(
                self.inputPopulation.get().fnFitting,
                cls="PKPDSampleFitBootstrap")
        else:
            if hasattr(self.protODE, "outputFitting"):
                self.fitting = self.readFitting(
                    self.protODE.outputFitting.fnFitting)
            elif hasattr(self.protODE, "outputFitting1"):
                self.fitting = self.readFitting(
                    self.protODE.outputFitting1.fnFitting)
        self.varNameX = self.fitting.predictor.varName
        if type(self.fitting.predicted) != list:
            self.varNameY = self.fitting.predicted.varName
        else:
            self.varNameY = [var.varName for var in self.fitting.predicted]

        # Create drug source
        self.clearGroupParameters()
        self.createDrugSource()

        # Create output object
        self.outputExperiment = PKPDExperiment()
        tvar = PKPDVariable()
        tvar.varName = "t"
        tvar.varType = PKPDVariable.TYPE_NUMERIC
        tvar.role = PKPDVariable.ROLE_TIME
        tvar.units = createUnit("min")

        self.outputExperiment.variables[self.varNameX] = tvar
        if type(self.fitting.predicted) != list:
            self.outputExperiment.variables[
                self.varNameY] = self.experiment.variables[self.varNameY]
        else:
            for varName in self.varNameY:
                self.outputExperiment.variables[
                    varName] = self.experiment.variables[varName]
        self.outputExperiment.general["title"] = "Simulated ODE response"
        self.outputExperiment.general["comment"] = "Simulated ODE response"
        self.outputExperiment.vias = self.experiment.vias

        # Setup model
        self.model = self.protODE.createModel()
        self.model.setExperiment(self.outputExperiment)
        if hasattr(self.protODE, "deltaT"):
            self.model.deltaT = self.protODE.deltaT.get()
        self.model.setXVar(self.varNameX)
        self.model.setYVar(self.varNameY)
        Nsamples = int(60 * math.ceil(
            (self.tF.get() - self.t0.get()) / self.model.deltaT)) + 1
        self.model.x = [
            self.t0.get() + i * self.model.deltaT for i in range(0, Nsamples)
        ]
        self.modelList.append(self.model)

        # Read the doses
        for line in self.doses.get().replace('\n', ';;').split(';;'):
            tokens = line.split(';')
            if len(tokens) < 5:
                print("Skipping dose: ", line)
                continue
            dosename = tokens[0].strip()
            self.outputExperiment.doses[dosename] = PKPDDose()
            self.outputExperiment.doses[dosename].parseTokens(
                tokens, self.experiment.vias)
        auxSample = PKPDSample()
        auxSample.descriptors = {}
        auxSample.doseDictPtr = self.outputExperiment.doses
        auxSample.variableDictPtr = self.outputExperiment.variables
        auxSample.doseList = [dosename]
        auxSample.interpretDose()
        self.drugSource.setDoses(auxSample.parsedDoseList,
                                 self.t0.get() - 10,
                                 self.tF.get() + 10)
        self.model.drugSource = self.drugSource

        # Check units
        # Dunits = self.outputExperiment.doses[dosename].dunits
        # Cunits = self.experiment.variables[self.varNameY].units

        # Process user parameters
        if self.paramsSource == ProtPKPDODESimulate.PRM_POPULATION:
            Nsimulations = self.Nsimulations.get()
        else:
            lines = self.prmUser.get().strip().replace('\n', ';;').split(';;')
            Nsimulations = len(lines)
            prmUser = []
            for line in lines:
                tokens = line.strip().split(',')
                prmUser.append([float(token) for token in tokens])

        # Simulate the different responses
        simulationsX = self.model.x
        simulationsY = np.zeros(
            (Nsimulations, len(simulationsX), self.getResponseDimension()))
        AUCarray = np.zeros(Nsimulations)
        AUMCarray = np.zeros(Nsimulations)
        MRTarray = np.zeros(Nsimulations)
        CminArray = np.zeros(Nsimulations)
        CmaxArray = np.zeros(Nsimulations)
        CavgArray = np.zeros(Nsimulations)
        fluctuationArray = np.zeros(Nsimulations)
        percentageAccumulationArray = np.zeros(Nsimulations)
        for i in range(0, Nsimulations):
            self.setTimeRange(None)

            if self.paramsSource == ProtPKPDODESimulate.PRM_POPULATION:
                # Take parameters randomly from the population
                nfit = int(random.uniform(0, len(self.fitting.sampleFits)))
                sampleFit = self.fitting.sampleFits[nfit]
                nprm = int(random.uniform(0, sampleFit.parameters.shape[0]))
                parameters = sampleFit.parameters[nprm, :]
            else:
                parameters = np.asarray(prmUser[i], np.double)
            print("Simulated sample %d: %s" % (i, str(parameters)))

            # Prepare source and this object
            self.drugSource.setDoses(auxSample.parsedDoseList, self.model.t0,
                                     self.model.tF)
            self.protODE.configureSource(self.drugSource)
            self.model.drugSource = self.drugSource
            parameterNames = self.getParameterNames(
            )  # Necessary to count the number of source and PK parameters

            # Prepare the model
            self.setParameters(parameters)
            y = self.forwardModel(parameters,
                                  [simulationsX] * self.getResponseDimension())

            # Create AUC, AUMC, MRT variables and units
            if i == 0:
                if type(self.varNameY) != list:
                    self.Cunits = self.experiment.variables[
                        self.varNameY].units
                else:
                    self.Cunits = self.experiment.variables[
                        self.varNameY[0]].units
                self.AUCunits = multiplyUnits(tvar.units.unit,
                                              self.Cunits.unit)
                self.AUMCunits = multiplyUnits(tvar.units.unit, self.AUCunits)

                if self.addStats or self.addIndividuals:
                    AUCvar = PKPDVariable()
                    AUCvar.varName = "AUC0t"
                    AUCvar.varType = PKPDVariable.TYPE_NUMERIC
                    AUCvar.role = PKPDVariable.ROLE_LABEL
                    AUCvar.units = createUnit(strUnit(self.AUCunits))

                    AUMCvar = PKPDVariable()
                    AUMCvar.varName = "AUMC0t"
                    AUMCvar.varType = PKPDVariable.TYPE_NUMERIC
                    AUMCvar.role = PKPDVariable.ROLE_LABEL
                    AUMCvar.units = createUnit(strUnit(self.AUMCunits))

                    MRTvar = PKPDVariable()
                    MRTvar.varName = "MRT"
                    MRTvar.varType = PKPDVariable.TYPE_NUMERIC
                    MRTvar.role = PKPDVariable.ROLE_LABEL
                    MRTvar.units = createUnit("min")

                    self.outputExperiment.variables["AUC0t"] = AUCvar
                    self.outputExperiment.variables["AUMC0t"] = AUMCvar
                    self.outputExperiment.variables["MRT"] = MRTvar

            # Evaluate AUC, AUMC and MRT in the last full period
            self.NCA(self.model.x, y[0])

            # Keep results
            for j in range(self.getResponseDimension()):
                simulationsY[i, :, j] = y[j]
            AUCarray[i] = self.AUC0t
            AUMCarray[i] = self.AUMC0t
            MRTarray[i] = self.MRT
            CminArray[i] = self.Cmin
            CmaxArray[i] = self.Cmax
            CavgArray[i] = self.Cavg
            fluctuationArray[i] = self.fluctuation
            percentageAccumulationArray[i] = self.percentageAccumulation
            if self.addIndividuals or self.paramsSource == ProtPKPDODESimulate.PRM_USER_DEFINED:
                self.addSample("Simulation_%d" % i, dosename, simulationsX, y)

        # Report NCA statistics
        alpha_2 = (100 - self.confidenceLevel.get()) / 2
        limits = np.percentile(AUCarray, [alpha_2, 100 - alpha_2])
        print("AUC %f%% confidence interval=[%f,%f] [%s] mean=%f" %
              (self.confidenceLevel.get(), limits[0], limits[1],
               strUnit(self.AUCunits), np.mean(AUCarray)))
        limits = np.percentile(AUMCarray, [alpha_2, 100 - alpha_2])
        print("AUMC %f%% confidence interval=[%f,%f] [%s] mean=%f" %
              (self.confidenceLevel.get(), limits[0], limits[1],
               strUnit(self.AUMCunits), np.mean(AUMCarray)))
        limits = np.percentile(MRTarray, [alpha_2, 100 - alpha_2])
        print("MRT %f%% confidence interval=[%f,%f] [min] mean=%f" %
              (self.confidenceLevel.get(), limits[0], limits[1],
               np.mean(MRTarray)))
        limits = np.percentile(CminArray, [alpha_2, 100 - alpha_2])
        print("Cmin %f%% confidence interval=[%f,%f] [%s] mean=%f" %
              (self.confidenceLevel.get(), limits[0], limits[1],
               strUnit(self.Cunits.unit), np.mean(CminArray)))
        limits = np.percentile(CmaxArray, [alpha_2, 100 - alpha_2])
        print("Cmax %f%% confidence interval=[%f,%f] [%s] mean=%f" %
              (self.confidenceLevel.get(), limits[0], limits[1],
               strUnit(self.Cunits.unit), np.mean(CmaxArray)))
        limits = np.percentile(CavgArray, [alpha_2, 100 - alpha_2])
        print("Cavg %f%% confidence interval=[%f,%f] [%s] mean=%f" %
              (self.confidenceLevel.get(), limits[0], limits[1],
               strUnit(self.Cunits.unit), np.mean(CavgArray)))
        limits = np.percentile(fluctuationArray, [alpha_2, 100 - alpha_2])
        print("Fluctuation %f%% confidence interval=[%f,%f] [%%] mean=%f" %
              (self.confidenceLevel.get(), limits[0] * 100, limits[1] * 100,
               np.mean(fluctuationArray) * 100))
        limits = np.percentile(percentageAccumulationArray,
                               [alpha_2, 100 - alpha_2])
        print("Accum(1) %f%% confidence interval=[%f,%f] [%%] mean=%f" %
              (self.confidenceLevel.get(), limits[0] * 100, limits[1] * 100,
               np.mean(percentageAccumulationArray) * 100))

        # Calculate statistics
        if self.addStats:
            if self.paramsSource != ProtPKPDODESimulate.PRM_USER_DEFINED:
                limits = np.percentile(simulationsY, [alpha_2, 100 - alpha_2],
                                       axis=0)

                print("Lower limit NCA")
                self.NCA(simulationsX, limits[0])
                self.addSample("LowerLimit", dosename, simulationsX, limits[0])

            print("Mean profile NCA")
            if self.getResponseDimension() == 1:
                mu = np.mean(simulationsY, axis=0)
                self.NCA(simulationsX, mu)
            else:
                mu = []
                for j in range(self.getResponseDimension()):
                    mu.append(np.mean(simulationsY[:, :, j], axis=0))
                self.NCA(simulationsX, mu[0])
            self.addSample("Mean", dosename, simulationsX, mu)

            if self.paramsSource != ProtPKPDODESimulate.PRM_USER_DEFINED:
                print("Upper limit NCA")
                self.NCA(simulationsX, limits[1])
                self.addSample("UpperLimit", dosename, simulationsX, limits[1])

        self.outputExperiment.write(self._getPath("experiment.pkpd"))
Пример #15
0
    def NCA(self, t, C):
        AUClist = []
        AUMClist = []
        Cminlist = []
        Cavglist = []
        Cmaxlist = []
        Tmaxlist = []
        Tminlist = []
        Ndoses = len(self.drugSource.parsedDoseList)
        for ndose in range(0, max(Ndoses - 1, 1)):
            tperiod0 = self.drugSource.parsedDoseList[ndose].t0
            if ndose + 1 < Ndoses:
                tperiodF = self.drugSource.parsedDoseList[
                    ndose + 1].t0 - self.model.deltaT
            else:
                tperiodF = np.max(t) - 1
            idx0 = find_nearest(t, tperiod0)
            idxF = find_nearest(t, tperiodF)

            AUC0t = 0
            AUMC0t = 0
            t0 = t[idx0 + 1]
            for idx in range(idx0, idxF + 1):
                dt = (t[idx + 1] - t[idx])
                if C[idx + 1] >= C[idx]:  # Trapezoidal in the raise
                    AUC0t += 0.5 * dt * (C[idx] + C[idx + 1])
                    AUMC0t += 0.5 * dt * (C[idx] * t[idx] +
                                          C[idx + 1] * t[idx + 1])
                else:  # Log-trapezoidal in the decay
                    decrement = C[idx] / C[idx + 1]
                    K = math.log(decrement)
                    B = K / dt
                    AUC0t += dt * (C[idx] - C[idx + 1]) / K
                    AUMC0t += (C[idx] * (t[idx] - tperiod0) - C[idx + 1] *
                               (t[idx + 1] - tperiod0)) / B - (
                                   C[idx + 1] - C[idx]) / (B * B)

                if idx == idx0:
                    Cmax = C[idx]
                    Tmax = t[idx] - t0
                    Cmin = C[idx]
                    Tmin = t[idx] - t0
                else:
                    if C[idx] < Cmin:
                        Cmin = C[idx]
                        Tmin = t[idx] - t0
                    elif C[idx] > Cmax:
                        Cmax = C[idx]
                        Tmax = t[idx] - t0
                        if ndose == 0:
                            Cmin = C[idx]
                            Tmin = t[idx] - t0
            AUClist.append(AUC0t)
            AUMClist.append(AUMC0t)
            Cminlist.append(Cmin)
            Cmaxlist.append(Cmax)
            Tmaxlist.append(Tmax)
            Tminlist.append(Tmin)
            Cavglist.append(AUC0t / (t[idxF] - t[idx0]))

        print("Fluctuation = Cmax/Cmin")
        print("Accumulation(1) = Cavg(n)/Cavg(1) %")
        print("Accumulation(n) = Cavg(n)/Cavg(n-1) %")
        print("Steady state fraction(n) = Cavg(n)/Cavg(last) %")
        for ndose in range(0, len(AUClist)):
            fluctuation = Cmaxlist[ndose] / Cminlist[ndose]
            if ndose > 0:
                accumn = Cavglist[ndose] / Cavglist[ndose - 1]
            else:
                accumn = 0
            print("Dose #%d: Cavg= %f [%s] Cmin= %f [%s] Tmin= %d [min] Cmax= %f [%s] Tmax= %d [min] Fluct= %f %% Accum(1)= %f %% Accum(n)= %f %% SSFrac(n)= %f %% AUC= %f [%s] AUMC= %f [%s]"%\
                  (ndose+1,Cavglist[ndose], strUnit(self.Cunits.unit), Cminlist[ndose],strUnit(self.Cunits.unit), int(Tminlist[ndose]), Cmaxlist[ndose], strUnit(self.Cunits.unit),
                   int(Tmaxlist[ndose]), fluctuation*100, Cavglist[ndose]/Cavglist[0]*100, accumn*100, Cavglist[ndose]/Cavglist[-1]*100, AUClist[ndose],strUnit(self.AUCunits),
                   AUMClist[ndose],strUnit(self.AUMCunits)))

        self.AUC0t = AUClist[-1]
        self.AUMC0t = AUMClist[-1]
        self.MRT = self.AUMC0t / self.AUC0t
        self.Cmin = Cminlist[-1]
        self.Cmax = Cmaxlist[-1]
        self.Cavg = Cavglist[-1]
        self.fluctuation = self.Cmax / self.Cmin
        self.percentageAccumulation = Cavglist[-1] / Cavglist[0]

        print("   AUC0t=%f [%s]" % (self.AUC0t, strUnit(self.AUCunits)))
        print("   AUMC0t=%f [%s]" % (self.AUMC0t, strUnit(self.AUMCunits)))
        print("   MRT=%f [min]" % self.MRT)
    def runSimulate(self, objId, Nsimulations, confidenceInterval, doses):
        self.protODE = self.inputODE.get()
        if hasattr(self.protODE,"outputExperiment"):
            self.experiment = self.readExperiment(self.protODE.outputExperiment.fnPKPD)
        elif hasattr(self.protODE,"outputExperiment1"):
            self.experiment = self.readExperiment(self.protODE.outputExperiment1.fnPKPD)
        else:
            raise Exception("Cannot find an outputExperiment in the input ODE")
        if self.paramsSource==ProtPKPDODESimulate.PRM_POPULATION:
            self.fitting = self.readFitting(self.inputPopulation.get().fnFitting, cls="PKPDSampleFitBootstrap")
        else:
            if hasattr(self.protODE, "outputFitting"):
                self.fitting = self.readFitting(self.protODE.outputFitting.fnFitting)
            elif hasattr(self.protODE, "outputFitting1"):
                self.fitting = self.readFitting(self.protODE.outputFitting1.fnFitting)
        self.varNameX = self.fitting.predictor.varName
        if type(self.fitting.predicted)!=list:
            self.varNameY = self.fitting.predicted.varName
        else:
            self.varNameY = [var.varName for var in self.fitting.predicted]

        # Create drug source
        self.clearGroupParameters()
        self.createDrugSource()

        # Create output object
        self.outputExperiment = PKPDExperiment()
        tvar = PKPDVariable()
        tvar.varName = "t"
        tvar.varType = PKPDVariable.TYPE_NUMERIC
        tvar.role = PKPDVariable.ROLE_TIME
        tvar.units = createUnit("min")

        self.outputExperiment.variables[self.varNameX] = tvar
        if type(self.fitting.predicted)!=list:
            self.outputExperiment.variables[self.varNameY] = self.experiment.variables[self.varNameY]
        else:
            for varName in self.varNameY:
                self.outputExperiment.variables[varName] = self.experiment.variables[varName]
        self.outputExperiment.general["title"]="Simulated ODE response"
        self.outputExperiment.general["comment"]="Simulated ODE response"
        self.outputExperiment.vias = self.experiment.vias

        # Setup model
        self.model = self.protODE.createModel()
        self.model.setExperiment(self.outputExperiment)
        if hasattr(self.protODE,"deltaT"):
            self.model.deltaT = self.protODE.deltaT.get()
        self.model.setXVar(self.varNameX)
        self.model.setYVar(self.varNameY)
        Nsamples = int(60*math.ceil((self.tF.get()-self.t0.get())/self.model.deltaT))+1
        self.model.x = [self.t0.get()+i*self.model.deltaT for i in range(0,Nsamples)]
        self.modelList.append(self.model)

        # Read the doses
        for line in self.doses.get().replace('\n',';;').split(';;'):
            tokens = line.split(';')
            if len(tokens)<5:
                print("Skipping dose: ",line)
                continue
            dosename = tokens[0].strip()
            self.outputExperiment.doses[dosename] = PKPDDose()
            self.outputExperiment.doses[dosename].parseTokens(tokens,self.experiment.vias)
        auxSample = PKPDSample()
        auxSample.descriptors = {}
        auxSample.doseDictPtr = self.outputExperiment.doses
        auxSample.variableDictPtr = self.outputExperiment.variables
        auxSample.doseList = [dosename]
        auxSample.interpretDose()
        self.drugSource.setDoses(auxSample.parsedDoseList, self.t0.get()-10, self.tF.get()+10)
        self.model.drugSource = self.drugSource

        # Check units
        # Dunits = self.outputExperiment.doses[dosename].dunits
        # Cunits = self.experiment.variables[self.varNameY].units

        # Process user parameters
        if self.paramsSource==ProtPKPDODESimulate.PRM_POPULATION:
            Nsimulations = self.Nsimulations.get()
        else:
            lines = self.prmUser.get().strip().replace('\n',';;').split(';;')
            Nsimulations = len(lines)
            prmUser = []
            for line in lines:
                tokens = line.strip().split(',')
                prmUser.append([float(token) for token in tokens])

        # Simulate the different responses
        simulationsX = self.model.x
        simulationsY = np.zeros((Nsimulations,len(simulationsX),self.getResponseDimension()))
        AUCarray = np.zeros(Nsimulations)
        AUMCarray = np.zeros(Nsimulations)
        MRTarray = np.zeros(Nsimulations)
        CminArray = np.zeros(Nsimulations)
        CmaxArray = np.zeros(Nsimulations)
        CavgArray = np.zeros(Nsimulations)
        fluctuationArray = np.zeros(Nsimulations)
        percentageAccumulationArray = np.zeros(Nsimulations)
        for i in range(0,Nsimulations):
            self.setTimeRange(None)

            if self.paramsSource==ProtPKPDODESimulate.PRM_POPULATION:
                # Take parameters randomly from the population
                nfit = int(random.uniform(0,len(self.fitting.sampleFits)))
                sampleFit = self.fitting.sampleFits[nfit]
                nprm = int(random.uniform(0,sampleFit.parameters.shape[0]))
                parameters = sampleFit.parameters[nprm,:]
            else:
                parameters = np.asarray(prmUser[i],np.double)
            print("Simulated sample %d: %s"%(i,str(parameters)))

            # Prepare source and this object
            self.drugSource.setDoses(auxSample.parsedDoseList, self.model.t0, self.model.tF)
            self.protODE.configureSource(self.drugSource)
            self.model.drugSource = self.drugSource
            parameterNames = self.getParameterNames() # Necessary to count the number of source and PK parameters

            # Prepare the model
            self.setParameters(parameters)
            y = self.forwardModel(parameters, [simulationsX]*self.getResponseDimension())

            # Create AUC, AUMC, MRT variables and units
            if i == 0:
                if type(self.varNameY)!=list:
                    self.Cunits = self.experiment.variables[self.varNameY].units
                else:
                    self.Cunits = self.experiment.variables[self.varNameY[0]].units
                self.AUCunits = multiplyUnits(tvar.units.unit, self.Cunits.unit)
                self.AUMCunits = multiplyUnits(tvar.units.unit, self.AUCunits)

                if self.addStats or self.addIndividuals:
                    AUCvar = PKPDVariable()
                    AUCvar.varName = "AUC0t"
                    AUCvar.varType = PKPDVariable.TYPE_NUMERIC
                    AUCvar.role = PKPDVariable.ROLE_LABEL
                    AUCvar.units = createUnit(strUnit(self.AUCunits))

                    AUMCvar = PKPDVariable()
                    AUMCvar.varName = "AUMC0t"
                    AUMCvar.varType = PKPDVariable.TYPE_NUMERIC
                    AUMCvar.role = PKPDVariable.ROLE_LABEL
                    AUMCvar.units = createUnit(strUnit(self.AUMCunits))

                    MRTvar = PKPDVariable()
                    MRTvar.varName = "MRT"
                    MRTvar.varType = PKPDVariable.TYPE_NUMERIC
                    MRTvar.role = PKPDVariable.ROLE_LABEL
                    MRTvar.units = createUnit("min")

                    self.outputExperiment.variables["AUC0t"] = AUCvar
                    self.outputExperiment.variables["AUMC0t"] = AUMCvar
                    self.outputExperiment.variables["MRT"] = MRTvar

            # Evaluate AUC, AUMC and MRT in the last full period
            self.NCA(self.model.x,y[0])

            # Keep results
            for j in range(self.getResponseDimension()):
                simulationsY[i,:,j] = y[j]
            AUCarray[i] = self.AUC0t
            AUMCarray[i] = self.AUMC0t
            MRTarray[i] = self.MRT
            CminArray[i] = self.Cmin
            CmaxArray[i] = self.Cmax
            CavgArray[i] = self.Cavg
            fluctuationArray[i] = self.fluctuation
            percentageAccumulationArray[i] = self.percentageAccumulation
            if self.addIndividuals or self.paramsSource==ProtPKPDODESimulate.PRM_USER_DEFINED:
                self.addSample("Simulation_%d"%i, dosename, simulationsX, y)

        # Report NCA statistics
        alpha_2 = (100-self.confidenceLevel.get())/2
        limits = np.percentile(AUCarray,[alpha_2,100-alpha_2])
        print("AUC %f%% confidence interval=[%f,%f] [%s] mean=%f"%(self.confidenceLevel.get(),limits[0],limits[1],strUnit(self.AUCunits),np.mean(AUCarray)))
        limits = np.percentile(AUMCarray,[alpha_2,100-alpha_2])
        print("AUMC %f%% confidence interval=[%f,%f] [%s] mean=%f"%(self.confidenceLevel.get(),limits[0],limits[1],strUnit(self.AUMCunits),np.mean(AUMCarray)))
        limits = np.percentile(MRTarray,[alpha_2,100-alpha_2])
        print("MRT %f%% confidence interval=[%f,%f] [min] mean=%f"%(self.confidenceLevel.get(),limits[0],limits[1],np.mean(MRTarray)))
        limits = np.percentile(CminArray,[alpha_2,100-alpha_2])
        print("Cmin %f%% confidence interval=[%f,%f] [%s] mean=%f"%(self.confidenceLevel.get(),limits[0],limits[1],strUnit(self.Cunits.unit),np.mean(CminArray)))
        limits = np.percentile(CmaxArray,[alpha_2,100-alpha_2])
        print("Cmax %f%% confidence interval=[%f,%f] [%s] mean=%f"%(self.confidenceLevel.get(),limits[0],limits[1],strUnit(self.Cunits.unit),np.mean(CmaxArray)))
        limits = np.percentile(CavgArray,[alpha_2,100-alpha_2])
        print("Cavg %f%% confidence interval=[%f,%f] [%s] mean=%f"%(self.confidenceLevel.get(),limits[0],limits[1],strUnit(self.Cunits.unit),np.mean(CavgArray)))
        limits = np.percentile(fluctuationArray,[alpha_2,100-alpha_2])
        print("Fluctuation %f%% confidence interval=[%f,%f] [%%] mean=%f"%(self.confidenceLevel.get(),limits[0]*100,limits[1]*100,np.mean(fluctuationArray)*100))
        limits = np.percentile(percentageAccumulationArray,[alpha_2,100-alpha_2])
        print("Accum(1) %f%% confidence interval=[%f,%f] [%%] mean=%f"%(self.confidenceLevel.get(),limits[0]*100,limits[1]*100,np.mean(percentageAccumulationArray)*100))

        # Calculate statistics
        if self.addStats:
            if self.paramsSource!=ProtPKPDODESimulate.PRM_USER_DEFINED:
                limits = np.percentile(simulationsY,[alpha_2,100-alpha_2],axis=0)

                print("Lower limit NCA")
                self.NCA(simulationsX,limits[0])
                self.addSample("LowerLimit", dosename, simulationsX, limits[0])

            print("Mean profile NCA")
            if self.getResponseDimension()==1:
                mu = np.mean(simulationsY,axis=0)
                self.NCA(simulationsX, mu)
            else:
                mu = []
                for j in range(self.getResponseDimension()):
                    mu.append(np.mean(simulationsY[:,:,j],axis=0))
                self.NCA(simulationsX,mu[0])
            self.addSample("Mean", dosename, simulationsX, mu)

            if self.paramsSource!=ProtPKPDODESimulate.PRM_USER_DEFINED:
                print("Upper limit NCA")
                self.NCA(simulationsX,limits[1])
                self.addSample("UpperLimit", dosename, simulationsX, limits[1])

        self.outputExperiment.write(self._getPath("experiment.pkpd"))
    def NCA(self,t,C):
        AUClist = []
        AUMClist = []
        Cminlist = []
        Cavglist = []
        Cmaxlist = []
        Tmaxlist = []
        Tminlist = []
        Ndoses=len(self.drugSource.parsedDoseList)
        for ndose in range(0,max(Ndoses-1,1)):
            tperiod0 = self.drugSource.parsedDoseList[ndose].t0
            if ndose+1<Ndoses:
                tperiodF = self.drugSource.parsedDoseList[ndose+1].t0-self.model.deltaT
            else:
                tperiodF =  np.max(t)-1
            idx0 = find_nearest(t,tperiod0)
            idxF = find_nearest(t,tperiodF)

            AUC0t = 0
            AUMC0t = 0
            t0 = t[idx0+1]
            for idx in range(idx0,idxF+1):
                dt = (t[idx+1]-t[idx])
                if C[idx+1]>=C[idx]: # Trapezoidal in the raise
                    AUC0t  += 0.5*dt*(C[idx]+C[idx+1])
                    AUMC0t += 0.5*dt*(C[idx]*t[idx]+C[idx+1]*t[idx+1])
                else: # Log-trapezoidal in the decay
                    decrement = C[idx]/C[idx+1]
                    K = math.log(decrement)
                    B = K/dt
                    AUC0t  += dt*(C[idx]-C[idx+1])/K
                    AUMC0t += (C[idx]*(t[idx]-tperiod0)-C[idx+1]*(t[idx+1]-tperiod0))/B-(C[idx+1]-C[idx])/(B*B)

                if idx==idx0:
                    Cmax=C[idx]
                    Tmax=t[idx]-t0
                    Cmin=C[idx]
                    Tmin=t[idx]-t0
                else:
                    if C[idx]<Cmin:
                        Cmin=C[idx]
                        Tmin=t[idx]-t0
                    elif C[idx]>Cmax:
                        Cmax=C[idx]
                        Tmax=t[idx]-t0
                        if ndose==0:
                            Cmin=C[idx]
                            Tmin=t[idx]-t0
            AUClist.append(AUC0t)
            AUMClist.append(AUMC0t)
            Cminlist.append(Cmin)
            Cmaxlist.append(Cmax)
            Tmaxlist.append(Tmax)
            Tminlist.append(Tmin)
            Cavglist.append(AUC0t/(t[idxF]-t[idx0]))

        print("Fluctuation = Cmax/Cmin")
        print("Accumulation(1) = Cavg(n)/Cavg(1) %")
        print("Accumulation(n) = Cavg(n)/Cavg(n-1) %")
        print("Steady state fraction(n) = Cavg(n)/Cavg(last) %")
        for ndose in range(0,len(AUClist)):
            fluctuation = Cmaxlist[ndose]/Cminlist[ndose]
            if ndose>0:
                accumn = Cavglist[ndose]/Cavglist[ndose-1]
            else:
                accumn = 0
            print("Dose #%d: Cavg= %f [%s] Cmin= %f [%s] Tmin= %d [min] Cmax= %f [%s] Tmax= %d [min] Fluct= %f %% Accum(1)= %f %% Accum(n)= %f %% SSFrac(n)= %f %% AUC= %f [%s] AUMC= %f [%s]"%\
                  (ndose+1,Cavglist[ndose], strUnit(self.Cunits.unit), Cminlist[ndose],strUnit(self.Cunits.unit), int(Tminlist[ndose]), Cmaxlist[ndose], strUnit(self.Cunits.unit),
                   int(Tmaxlist[ndose]), fluctuation*100, Cavglist[ndose]/Cavglist[0]*100, accumn*100, Cavglist[ndose]/Cavglist[-1]*100, AUClist[ndose],strUnit(self.AUCunits),
                   AUMClist[ndose],strUnit(self.AUMCunits)))

        self.AUC0t = AUClist[-1]
        self.AUMC0t = AUMClist[-1]
        self.MRT = self.AUMC0t/self.AUC0t
        self.Cmin = Cminlist[-1]
        self.Cmax = Cmaxlist[-1]
        self.Cavg = Cavglist[-1]
        self.fluctuation = self.Cmax/self.Cmin
        self.percentageAccumulation = Cavglist[-1]/Cavglist[0]

        print("   AUC0t=%f [%s]"%(self.AUC0t,strUnit(self.AUCunits)))
        print("   AUMC0t=%f [%s]"%(self.AUMC0t,strUnit(self.AUMCunits)))
        print("   MRT=%f [min]"%self.MRT)
Пример #18
0
    def runFit(self, predictor, avgParameters, confidenceInterval):
        self.scaleModel = PKPDAllometricScale()
        self.scaleModel.confidence = float(self.confidenceInterval.get())
        self.scaleModel.predictor = self.predictor.get()

        if self.allometricParameters.get().strip()!="":
            for token in self.allometricParameters.get().split(','):
                self.scaleModel.scaled_vars.append(token.strip())
        if self.avgParameters.get().strip()!="":
            for token in self.avgParameters.get().split(','):
                self.scaleModel.averaged_vars.append(token.strip())

        X=[]
        Y={}
        for varName in self.scaleModel.scaled_vars+self.scaleModel.averaged_vars:
            Y[varName]=[]

        for experimentPtr in self.inputExps:
            # Load experiment
            experiment = PKPDExperiment()
            experiment.load(experimentPtr.get().fnPKPD)

            # Get the first sample
            sample = experiment.samples.values()[0]

            # Extract X
            retval = sample.getDescriptorValue(self.predictor.get())
            if retval:
                X.append(float(retval))
            else:
                raise Exception("Cannot find %s in %s"%(self.predictor.get(),experiment.fnPKPD))

            # Extract Y
            for varName in self.scaleModel.scaled_vars+self.scaleModel.averaged_vars:
                retval = sample.getDescriptorValue(varName)
                if retval:
                    Y[varName].append(float(retval))
                else:
                    raise Exception("Cannot find %s in %s"%(varName,experiment.fnPKPD))

        self.scaleModel.predictorUnits = strUnit(experiment.variables[self.predictor.get()].units.unit)
        varList = []
        for varName in self.scaleModel.scaled_vars:
            varList.append((varName,strUnit(experiment.variables[varName].units.unit)))
        self.scaleModel.scaled_vars = copy.copy(varList)
        varList = []
        for varName in self.scaleModel.averaged_vars:
            varList.append((varName,strUnit(experiment.variables[varName].units.unit)))
        self.scaleModel.averaged_vars = copy.copy(varList)

        print("X: %s"%str(X))
        logx=np.log10(np.asarray(X))
        self.scaleModel.X = X
        self.scaleModel.Y = Y

        fhSummary=open(self._getPath("summary.txt"),"w")
        fhSummary.write("Predictor variable: %s\n"%self.predictor.get())
        fhSummary.write("Parameters to average: %s\n"%self.avgParameters.get())
        fhSummary.write("Confidence interval: %f\n"%self.confidenceInterval.get())
        for varName, varUnits in self.scaleModel.scaled_vars:
            print("%s: %s"%(varName,str(Y[varName])))
            y = np.asarray(Y[varName])
            logy = np.log10(y)

            A=np.ones((logx.size,2))
            A[:,0]=logx.T
            F=np.linalg.inv(np.dot(A.T,A))
            p = np.dot(F,np.dot(A.T,logy.T))
            logyPredicted=np.dot(A,p)
            e=logy-logyPredicted
            sigma2=np.var(e)
            V=sigma2*F

            # We manually implement the regression because np.polyfit has an unbiased estimator of V that
            # does not work well with 4 samples
            # p, V = np.polyfit(logx, logy, 1, cov=True)
            # e = logy - logyPredicted
            R2 = (1 - np.var(e) / np.var(logy))

            from scipy.stats import norm
            nstd = norm.ppf(1-(1-self.scaleModel.confidence/100)/2)
            perr = np.sqrt(np.diag(V))
            lowerBound = p - nstd * perr
            upperBound = p + nstd * perr

            # Back to natural units
            p[1]=math.pow(10.0,p[1])
            lowerBound[1]=math.pow(10.0,lowerBound[1])
            upperBound[1]=math.pow(10.0,upperBound[1])

            self.scaleModel.models[varName] = [p[1],p[0]]
            self.scaleModel.qualifiers[varName] = [R2,lowerBound[1],upperBound[1],lowerBound[0],upperBound[0]]
            self.doublePrint(fhSummary,
                "%s=(%f)*%s^(%f) R2=%f %f%% Confidence intervals (y=k*x^a): k=[%f,%f] a=[%f,%f]; %s" % \
                (varName, p[1], self.predictor, p[0], R2, self.confidenceInterval, lowerBound[1],upperBound[1],lowerBound[0],upperBound[0],
                 varUnits))

        for varName, varUnits in self.scaleModel.averaged_vars:
            print("%s: %s"%(varName,str(Y[varName])))
            y = np.asarray(Y[varName])
            self.scaleModel.models[varName] = [np.mean(y)]
            self.scaleModel.qualifiers[varName] = [np.std(y)]
            self.doublePrint(fhSummary,
                             "%s avg=%f std=%f; %s"%(varName,self.scaleModel.models[varName][0],self.scaleModel.qualifiers[varName][0],varUnits))

        fhSummary.close()
        self.scaleModel.write(self._getPath("allometricScale.pkpd"))