Пример #1
0
    def __init__(self,
                 xgraph,
                 arch,
                 work_dir=os.path.join(os.getcwd(), 'work'),
                 build_dir=os.getcwd(),
                 mode='debug'):

        super(VAICompiler, self).__init__(xgraph)

        if not os.path.isfile(arch):
            raise ValueError("Arch file: {} does not exist".format(arch))

        self.arch = arch


        q_output = self.xgraph.get_quantizer_output()
        self.netcfgs = {q_key: q_output.get_q_file(q_key)
                        for q_key in q_output.keys()}
        assert(len(self.netcfgs) == 1)
        self.work_dir = work_dir

        if not os.path.exists(self.work_dir):
            os.makedirs(self.work_dir)
        self.build_dir = build_dir if build_dir is not None else work_dir
        if not os.path.exists(self.build_dir):
            os.makedirs(self.build_dir)
        self.mode = mode
        self.c_output = CompilerOutput(name=xgraph.get_name())
Пример #2
0
    def __init__(self,
                 xgraph,
                 target,
                 arch,
                 work_dir=os.path.join(os.getcwd(), 'work'),
                 build_dir=None,
                 mode='debug'):

        super(DPUCompiler, self).__init__(xgraph)

        if not os.path.isfile(arch):
            raise ValueError("Arch file: {} does not exist".format(arch))

        warnings.warn("This compilation only works with one network"
                      " configuration at the moment!!")

        q_output = self.xgraph.get_quantizer_output()
        self.netcfgs = {
            q_key: q_output.get_orig_pb(q_key)
            for q_key in q_output.keys()
        }
        self.quant_info = {
            q_key: q_output.get_q_info(q_key)
            for q_key in q_output.keys()
        }
        assert (len(self.netcfgs) == 1)
        self.work_dir = work_dir
        self.build_dir = build_dir if build_dir is not None else work_dir
        self.target = target
        self.arch = arch
        self.mode = mode
        self.c_output = CompilerOutput(name=xgraph.get_name())
Пример #3
0
    def __init__(self,
                 xgraph,
                 arch,
                 meta,
                 cpu_arch='arm64',
                 work_dir=os.path.join(os.getcwd(), 'work'),
                 build_dir=os.getcwd(),
                 mode='debug'):

        super(VAICompiler, self).__init__(xgraph)

        if not os.path.isfile(arch):
            raise ValueError("Arch file: {} does not exist".format(arch))

        if cpu_arch != 'arm64':
            raise ValueError("Unsupported CPU architecture: {}. Supported"
                             " architectures are: 'arm64'")

        warnings.warn("This compilation only works with one network"
                      " configuration at the moment!!")

        q_output = self.xgraph.get_quantizer_output()
        self.netcfgs = {
            q_key: q_output.get_q_file(q_key)
            for q_key in q_output.keys()
        }
        assert (len(self.netcfgs) == 1)
        self.arch = arch
        self.meta = meta
        self.cpu_arch = cpu_arch
        self.work_dir = work_dir
        if not os.path.exists(self.work_dir):
            os.makedirs(self.work_dir)
        self.build_dir = build_dir if build_dir is not None else work_dir
        if not os.path.exists(self.build_dir):
            os.makedirs(self.build_dir)
        self.mode = mode
        self.c_output = CompilerOutput(name=xgraph.get_name())
Пример #4
0
class VAICompiler(XGraphBaseCompiler):

    """ Vitis-AI compiler wrapper for DPUCAHX8H """

    xgraph_partitioner = XGraphPartitioner()
    xgraph_factory = XGraphFactory()

    def __init__(self,
                 xgraph,
                 arch,
                 work_dir=os.path.join(os.getcwd(), 'work'),
                 build_dir=os.getcwd(),
                 mode='debug'):

        super(VAICompiler, self).__init__(xgraph)

        if not os.path.isfile(arch):
            raise ValueError("Arch file: {} does not exist".format(arch))

        self.arch = arch


        q_output = self.xgraph.get_quantizer_output()
        self.netcfgs = {q_key: q_output.get_q_file(q_key)
                        for q_key in q_output.keys()}
        assert(len(self.netcfgs) == 1)
        self.work_dir = work_dir

        if not os.path.exists(self.work_dir):
            os.makedirs(self.work_dir)
        self.build_dir = build_dir if build_dir is not None else work_dir
        if not os.path.exists(self.build_dir):
            os.makedirs(self.build_dir)
        self.mode = mode
        self.c_output = CompilerOutput(name=xgraph.get_name())
        

    def compile(self) -> None:
        """ Start DPUCAHX8H compilation """

        net_name = list(self.netcfgs.keys())[0]
        netcfg = list(self.netcfgs.values())[0]

        # We only handle one partition at the moment
        Xp = VAICompiler.xgraph_partitioner\
            .get_subgraphs(self.xgraph)[0]
        subxg_layers = Xp.subgraph_data
        xgraph = VAICompiler.xgraph_factory.build_from_xlayer(subxg_layers)
        # assert xgraph.get_name() == net_name

        input_names = xgraph.get_input_names()
        input_shapes = [xgraph.get(in_name).shapes[:]
                        for in_name in input_names]
        output_names = list(Xp.attrs['__top_tensors'].keys()) # xgraph.get_output_names()
        output_shapes = [xgraph.get(out_name).shapes[:]
                         for out_name in output_names]

        if len(input_names) > 1:
            raise NotImplementedError("VAICompiler only handles models with"
                                      " one input at the moment but found: {}"
                                      .format(len(input_names)))

        netcfg=netcfg.replace('deploy_model.pb', 'quantize_eval_model.pb')
        command = """
        vai_c_tensorflow \
            --frozen_pb {} \
            --arch {} \
            --output_dir {} \
            --net_name {} \
            --options "{}"
        """.format(netcfg, self.arch, self.build_dir, net_name, str(dict()))

        logger.info("Command: {}".format(command))

        process = subprocess.Popen(command,
                                   shell=True,
                                   cwd=FILE_PATH,
                                   stdout=subprocess.PIPE)

        output, error = process.communicate()
        logger.debug("{} {}".format(output, error))


        if error is not None:
            error = error.decode('utf-8')
            raise ValueError(error)

        in_map = {in_name: in_name for in_name in input_names}
        out_map = {out_name: out_name for out_name in output_names}
        self.c_output.add(net_name, ['libvart-runner.so'], in_map, out_map)
        self.xgraph.set_compiler_output(self.c_output)

        # TODO
        self.xgraph.meta_attrs['compiled'] = True
        self.xgraph.meta_attrs['compiler_libs'] = ['libvart-runner.so']
        self.xgraph.meta_attrs['compiler_in_map'] = in_map
        self.xgraph.meta_attrs['compiler_out_map'] = out_map

        return self.xgraph
Пример #5
0
class VAICompiler(XGraphBaseCompiler):

    """ Vitis-AI compiler wrapper for DPUCZDX8G """

    xgraph_partitioner = XGraphPartitioner()
    xgraph_factory = XGraphFactory()

    def __init__(self,
                 xgraph,
                 arch,
                 meta,
                 dcf,
                 cpu_arch='arm64',
                 work_dir=os.path.join(os.getcwd(), 'work'),
                 build_dir=os.getcwd(),
                 mode='debug'):

        super(VAICompiler, self).__init__(xgraph)

        if not os.path.isfile(arch):
            raise ValueError("Arch file: {} does not exist".format(arch))

        if cpu_arch != 'arm64':
            raise ValueError("Unsupported CPU architecture: {}. Supported"
                             " architectures are: 'arm64'")

        q_output = self.xgraph.get_quantizer_output()
        self.netcfgs = {q_key: q_output.get_q_file(q_key)
                        for q_key in q_output.keys()}
        assert(len(self.netcfgs) == 1)
        self.arch = arch
        self.meta = meta
        self.dcf = dcf
        self.cpu_arch = cpu_arch
        self.work_dir = work_dir

        if not os.path.exists(self.work_dir):
            os.makedirs(self.work_dir)
        self.build_dir = build_dir if build_dir is not None else work_dir
        if not os.path.exists(self.build_dir):
            os.makedirs(self.build_dir)
        self.mode = mode
        self.c_output = CompilerOutput(name=xgraph.get_name())
        

    def compile(self) -> None:
        """ Start DPUv2 compilation """

        net_name = list(self.netcfgs.keys())[0]
        netcfg = list(self.netcfgs.values())[0]

        # We only handle one partition at the moment
        Xp = VAICompiler.xgraph_partitioner\
            .get_subgraphs(self.xgraph)[0]
        subxg_layers = Xp.subgraph_data
        xgraph = VAICompiler.xgraph_factory.build_from_xlayer(subxg_layers)
        # assert xgraph.get_name() == net_name

        input_names = xgraph.get_input_names()
        input_shapes = [xgraph.get(in_name).shapes[:]
                        for in_name in input_names]
        output_names = list(Xp.attrs['__top_tensors'].keys()) # xgraph.get_output_names()
        output_shapes = [xgraph.get(out_name).shapes[:]
                         for out_name in output_names]

        if len(input_names) > 1:
            raise NotImplementedError("VAICompiler only handles models with"
                                      " one input at the moment but found: {}"
                                      .format(len(input_names)))

        #command = """
        #vai_c_tensorflow \
        #    --frozen_pb {} \
        #    --arch {} \
        #    --output_dir {} \
        #    --net_name {} \
        #    --options "{}"
        #""".format(netcfg, self.arch, self.work_dir, net_name, str(dict()))
        # import pdb; pdb.set_trace()

        command = """
        dnnc-dpuv2 --parser tensorflow\
            --frozen_pb {} \
            --cpu_arch {} \
            --output_dir {} \
            --net_name {} \
            --dcf {}
        """.format(netcfg, self.cpu_arch, self.work_dir, net_name, self.dcf)


        logger.info("Command: {}".format(command))

        process = subprocess.Popen(command,
                                   shell=True,
                                   cwd=FILE_PATH,
                                   stdout=subprocess.PIPE)

        output, error = process.communicate()
        logger.debug("{} {}".format(output, error))

        if output is not None:
            output = output.decode('utf-8')

            logger.info("Output: {}".format(output))
            logger.info("Output names: {}".format(output_names))

            do = DNNCOutput(str(repr(output)))

            dpu_input_nodes = do.get_input_nodes()
            dpu_output_nodes = do.get_output_nodes()
            dpu_output_nodes_on_shapes = do.get_output_nodes_on_shapes()

            in_shapes_log = ["{}*{}*{}".format(ishape[1], ishape[2], ishape[3])
                             for ishape in input_shapes]
            out_shapes_log = ["{}*{}*{}".format(os[1], os[2], os[3])
                              for os in output_shapes]

            in_map = {in_name: in_name + ':0' for in_name, _ in zip(input_names, in_shapes_log)}
            out_map = {}

            for out_name, out_shape_str in zip(output_names, out_shapes_log):
                # DNNC changes naming
                dnnc_out_name = do.get_dnnc_str(out_name)
                if dnnc_out_name in dpu_output_nodes:
                    out_map[out_name] = dpu_output_nodes[dnnc_out_name]
                # out_name: dpu_output_nodes[out_shape_str] + ':0'
                else:
                    assert len(dpu_output_nodes_on_shapes) == len(output_names),\
                        "Can't retrieve right out tensor names from DNNC compiler output"
                    out_map[out_name] = dpu_output_nodes_on_shapes[out_shape_str]

            logger.info("DPU kernel in_map: {}".format(in_map))
            logger.info("DPU kernel out_map: {}".format(out_map))

        if error is not None:
            error = error.decode('utf-8')
            raise ValueError(error)

        logger.info("VAI_C Output: {}".format(output))
        logger.info("VAI_C Error: {}".format(error))

        logger.debug("CROSS COMPILATION")
        command = """
        aarch64-linux-gnu-gcc -fPIC -shared {}/dpu_{}.elf -o {}/libdpumodel{}.so
        """.format(self.work_dir, net_name, self.work_dir, net_name)

        logger.debug("Command: {}".format(command))

        process = subprocess.Popen(command.split(),
                                   cwd=FILE_PATH,
                                   stdout=subprocess.PIPE)
        output, error = process.communicate()

        if output is not None:
            output = output.decode('utf-8')
        if error is not None:
            error = error.decode('utf-8')
            raise ValueError(error)

        logger.debug("Output: {}".format(output))
        logger.debug("Error: {}".format(error))

        lib_file = "{}/libdpumodel{}.so".format(self.work_dir, net_name)
        to_lib_file = "{}/libdpumodel{}.so".format(self.build_dir, net_name)
        shutil.move(lib_file, to_lib_file)

        # meta_file = "{}/meta.json".format(self.work_dir)
        self.meta["vitis_dpu_kernel"] = net_name
        to_meta_file = "{}/meta.json".format(self.build_dir)
        # shutil.move(meta_file, to_meta_file)

        with open(to_meta_file, 'w') as f:
            json.dump(self.meta, f)

        self.c_output.add(net_name, [to_lib_file], in_map, out_map)

        self.xgraph.set_compiler_output(self.c_output)

        return self.xgraph
Пример #6
0
class DPUCompiler(XGraphBaseCompiler):
    """ TODO """
    xgraph_partitioner = XGraphPartitioner()
    xgraph_factory = XGraphFactory()
    tf_generator = TfGenerator()

    def __init__(self,
                 xgraph,
                 target,
                 arch,
                 work_dir=os.path.join(os.getcwd(), 'work'),
                 build_dir=None,
                 mode='debug'):

        super(DPUCompiler, self).__init__(xgraph)

        if not os.path.isfile(arch):
            raise ValueError("Arch file: {} does not exist".format(arch))

        warnings.warn("This compilation only works with one network"
                      " configuration at the moment!!")

        q_output = self.xgraph.get_quantizer_output()
        self.netcfgs = {
            q_key: q_output.get_orig_pb(q_key)
            for q_key in q_output.keys()
        }
        self.quant_info = {
            q_key: q_output.get_q_info(q_key)
            for q_key in q_output.keys()
        }
        assert (len(self.netcfgs) == 1)
        self.work_dir = work_dir
        self.build_dir = build_dir if build_dir is not None else work_dir
        self.target = target
        self.arch = arch
        self.mode = mode
        self.c_output = CompilerOutput(name=xgraph.get_name())

    def Getopts(self, input_shapes):
        return {
            "maximumasrelu": True,
            "pipelineconvmaxpool": False,
            "bytesperpixels": 1,
            "dsp": 96,
            "memory": 9,
            "ddr": "256",
            "cpulayermustgo": True,
            "forceweightsfullyconnected": True,
            "mixmemorystrategy": True,
            "maximumasrelu": True,
            "pipelineconvmaxpool": True,
            'bridges': ['bytype', 'Concat'],
            "usedeephi": True,
            'placeholdershape': input_shapes
        }

    def compile(self):
        # type: () -> None
        """ """
        layout_transform_pass = \
            XGraphLayoutTransformationPass('NHWC', target=self.target)
        self.xgraph = layout_transform_pass.execute(self.xgraph,
                                                    subgraphs_only=False)

        # netcfg = list(self.netcfgs.values())[0]  # orig pb file
        quant_info_file = list(self.quant_info.values())[0]  # quant info file

        subxg_layers = DPUCompiler.xgraph_partitioner\
            .get_subgraphs(self.xgraph)[0].subgraph_data
        xgraph = DPUCompiler.xgraph_factory.build_from_xlayer(subxg_layers)
        net_name = list(self.netcfgs.keys())[0]
        fs = DPUCompiler.tf_generator.generate(xgraph,
                                               'graph',
                                               subgraphs_only=True,
                                               layout='NHWC',
                                               batch_size=1,
                                               placeholder=True,
                                               out_dir=self.work_dir)
        netcfg = list(fs.values())[0]

        input_names = xgraph.get_input_names()
        input_shapes = [
            xgraph.get(in_name).shapes.tolist()[:] for in_name in input_names
        ]
        output_names = xgraph.get_output_names()
        output_shapes = [
            xgraph.get(out_name).shapes.tolist()[:]
            for out_name in output_names
        ]
        if len(input_names) > 1:
            raise NotImplementedError(
                "DPUCompiler only handles models with"
                " one input at the moment but found: {}".format(
                    len(input_names)))
        opt_input_shapes = {
            in_name: [e if e != -1 else 1 for e in input_shape]
            for in_name, input_shape in zip(input_names, input_shapes)
        }
        opts = self.Getopts(opt_input_shapes)
        if not os.path.isfile(quant_info_file):
            raise ValueError(
                "quant file: {} does not exist".format(quant_info_file))
        opts['quant_cfgfile'] = quant_info_file
        opts = str(opts)
        command = """
            vai_c_tensorflow \
            --frozen_pb {} \
            --arch {} \
            --output_dir {} \
            --net_name {}\
            --options "{}"
        """.format(netcfg, self.arch, self.build_dir, 'compiler', opts)
        logger.info("command: {}".format(command))
        process = subprocess.Popen(command,
                                   shell=True,
                                   cwd=FILE_PATH,
                                   stdout=subprocess.PIPE)
        output, error = process.communicate()
        if output is not None:
            output = output.decode('utf-8')
            if 'SUCCESSFUL COMPILATION' not in output:
                logger.info(output)
                raise ValueError('compiler is failed. Please see the log for'
                                 ' more details')
        if error is not None:
            error = error.decode('utf-8')
            # raise ValueError(error)

        logger.debug("Output: {}".format(output))
        logger.debug("Error: {}".format(error))
        compiler_json_file = self.build_dir + '/compiler.json'
        with open(compiler_json_file) as json_file:
            json_graph = json.load(json_file)
        graph_inputs = json_graph["inputs"]
        graph_outputs = json_graph["outputs"]
        logger.debug("{} {}".format(input_names, graph_inputs))
        logger.debug("{} {}".format(output_names, graph_outputs))

        in_map = {in_name: in_name for in_name in input_names}
        out_node_merged = []
        out_nodes = [
            graph_output['previous_layers'][0]
            for graph_output in graph_outputs
        ]
        for i in range(len(out_nodes)):
            out_node_merged.append([
                layer['merged'][-1] for layer in json_graph['network']
                if layer['name'] == out_nodes[i]
            ][0])
        in_map = {in_name: in_name for in_name in input_names}
        out_map = {out_name: t for out_name, t in zip(output_names, out_nodes)}
        #out_map = {out_name: out_name for out_name in output_names}

        self.c_output.add(net_name, ['dpuv1lib.so'], in_map, out_map)
        self.xgraph.set_compiler_output(self.c_output)

        # TODO
        self.xgraph.meta_attrs['compiled'] = True
        self.xgraph.meta_attrs['compiler_libs'] = ['dpuv1lib.so']
        self.xgraph.meta_attrs['compiler_in_map'] = in_map
        self.xgraph.meta_attrs['compiler_out_map'] = out_map

        return self.xgraph