Пример #1
0
    def __init__(self,
                 emin,
                 emax,
                 nchan,
                 apec_root=None,
                 apec_vers="2.0.2",
                 thermal_broad=False):
        if apec_root is None:
            self.cocofile = check_file_location(
                "apec_v%s_coco.fits" % apec_vers, "spectral_files")
            self.linefile = check_file_location(
                "apec_v%s_line.fits" % apec_vers, "spectral_files")
        else:
            self.cocofile = os.path.join(apec_root,
                                         "apec_v%s_coco.fits" % apec_vers)
            self.linefile = os.path.join(apec_root,
                                         "apec_v%s_line.fits" % apec_vers)
        if not os.path.exists(self.cocofile) or not os.path.exists(
                self.linefile):
            raise IOError("Cannot find the APEC files!\n %s\n, %s" %
                          (self.cocofile, self.linefile))
        super(TableApecModel, self).__init__(emin, emax, nchan)
        self.wvbins = hc / self.ebins[::-1].d
        # H, He, and trace elements
        self.cosmic_elem = [
            1, 2, 3, 4, 5, 9, 11, 15, 17, 19, 21, 22, 23, 24, 25, 27, 29, 30
        ]
        # Non-trace metals
        self.metal_elem = [6, 7, 8, 10, 12, 13, 14, 16, 18, 20, 26, 28]
        self.thermal_broad = thermal_broad
        self.A = np.array([
            0.0, 1.00794, 4.00262, 6.941, 9.012182, 10.811, 12.0107, 14.0067,
            15.9994, 18.9984, 20.1797, 22.9898, 24.3050, 26.9815, 28.0855,
            30.9738, 32.0650, 35.4530, 39.9480, 39.0983, 40.0780, 44.9559,
            47.8670, 50.9415, 51.9961, 54.9380, 55.8450, 58.9332, 58.6934,
            63.5460, 65.3800
        ])

        try:
            self.line_handle = _astropy.pyfits.open(self.linefile)
        except IOError:
            mylog.error("LINE file %s does not exist" % self.linefile)
            raise IOError("LINE file %s does not exist" % self.linefile)
        try:
            self.coco_handle = _astropy.pyfits.open(self.cocofile)
        except IOError:
            mylog.error("COCO file %s does not exist" % self.cocofile)
            raise IOError("COCO file %s does not exist" % self.cocofile)

        self.Tvals = self.line_handle[1].data.field("kT")
        self.nT = len(self.Tvals)
        self.dTvals = np.diff(self.Tvals)
        self.minlam = self.wvbins.min()
        self.maxlam = self.wvbins.max()
Пример #2
0
    def from_data_source(cls,
                         data_source,
                         redshift,
                         area,
                         exp_time,
                         source_model,
                         point_sources=False,
                         parameters=None,
                         center=None,
                         dist=None,
                         cosmology=None,
                         velocity_fields=None):
        r"""
        Initialize a :class:`~pyxsim.photon_list.PhotonList` from a yt data
        source. The redshift, collecting area, exposure time, and cosmology
        are stored in the *parameters* dictionary which is passed to the
        *source_model* function.

        Parameters
        ----------
        data_source : :class:`~yt.data_objects.data_containers.YTSelectionContainer`
            The data source from which the photons will be generated.
        redshift : float
            The cosmological redshift for the photons.
        area : float, (value, unit) tuple, :class:`~yt.units.yt_array.YTQuantity`, or :class:`~astropy.units.Quantity`
            The collecting area to determine the number of photons. If units are
            not specified, it is assumed to be in cm^2.
        exp_time : float, (value, unit) tuple, :class:`~yt.units.yt_array.YTQuantity`, or :class:`~astropy.units.Quantity`
            The exposure time to determine the number of photons. If units are
            not specified, it is assumed to be in seconds.
        source_model : :class:`~pyxsim.source_models.SourceModel`
            A source model used to generate the photons.
        point_sources : boolean, optional
            If True, the photons will be assumed to be generated from the exact
            positions of the cells or particles and not smeared around within
            a volume. Default: False
        parameters : dict, optional
            A dictionary of parameters to be passed for the source model to use,
            if necessary.
        center : string or array_like, optional
            The origin of the photon spatial coordinates. Accepts "c", "max", or
            a coordinate. If not specified, pyxsim attempts to use the "center"
            field parameter of the data_source.
        dist : float, (value, unit) tuple, :class:`~yt.units.yt_array.YTQuantity`, or :class:`~astropy.units.Quantity`
            The angular diameter distance, used for nearby sources. This may be
            optionally supplied instead of it being determined from the
            *redshift* and given *cosmology*. If units are not specified, it is
            assumed to be in kpc. To use this, the redshift must be set to zero.
        cosmology : :class:`~yt.utilities.cosmology.Cosmology`, optional
            Cosmological information. If not supplied, we try to get the
            cosmology from the dataset. Otherwise, LCDM with the default yt 
            parameters is assumed.
        velocity_fields : list of fields
            The yt fields to use for the velocity. If not specified, the 
            following will be assumed:
            ['velocity_x', 'velocity_y', 'velocity_z'] for grid datasets
            ['particle_velocity_x', 'particle_velocity_y', 'particle_velocity_z'] for particle datasets

        Examples
        --------
        >>> thermal_model = ThermalSourceModel(apec_model, Zmet=0.3)
        >>> redshift = 0.05
        >>> area = 6000.0 # assumed here in cm**2
        >>> time = 2.0e5 # assumed here in seconds
        >>> sp = ds.sphere("c", (500., "kpc"))
        >>> my_photons = PhotonList.from_data_source(sp, redshift, area,
        ...                                          time, thermal_model)
        """
        ds = data_source.ds

        if parameters is None:
            parameters = {}
        if cosmology is None:
            if hasattr(ds, 'cosmology'):
                cosmo = ds.cosmology
            else:
                cosmo = Cosmology()
        else:
            cosmo = cosmology
        if dist is None:
            if redshift <= 0.0:
                msg = "If redshift <= 0.0, you must specify a distance to the " \
                      "source using the 'dist' argument!"
                mylog.error(msg)
                raise ValueError(msg)
            D_A = cosmo.angular_diameter_distance(0.0,
                                                  redshift).in_units("Mpc")
        else:
            D_A = parse_value(dist, "kpc")
            if redshift > 0.0:
                mylog.warning("Redshift must be zero for nearby sources. "
                              "Resetting redshift to 0.0.")
                redshift = 0.0

        if isinstance(center, string_types):
            if center == "center" or center == "c":
                parameters["center"] = ds.domain_center
            elif center == "max" or center == "m":
                parameters["center"] = ds.find_max("density")[-1]
        elif iterable(center):
            if isinstance(center, YTArray):
                parameters["center"] = center.in_units("code_length")
            elif isinstance(center, tuple):
                if center[0] == "min":
                    parameters["center"] = ds.find_min(center[1])[-1]
                elif center[0] == "max":
                    parameters["center"] = ds.find_max(center[1])[-1]
                else:
                    raise RuntimeError
            else:
                parameters["center"] = ds.arr(center, "code_length")
        elif center is None:
            if hasattr(data_source, "left_edge"):
                parameters["center"] = 0.5 * (data_source.left_edge +
                                              data_source.right_edge)
            else:
                parameters["center"] = data_source.get_field_parameter(
                    "center")

        parameters["fid_exp_time"] = parse_value(exp_time, "s")
        parameters["fid_area"] = parse_value(area, "cm**2")
        parameters["fid_redshift"] = redshift
        parameters["fid_d_a"] = D_A
        parameters["hubble"] = cosmo.hubble_constant
        parameters["omega_matter"] = cosmo.omega_matter
        parameters["omega_lambda"] = cosmo.omega_lambda

        if redshift > 0.0:
            mylog.info(
                "Cosmology: h = %g, omega_matter = %g, omega_lambda = %g" %
                (cosmo.hubble_constant, cosmo.omega_matter,
                 cosmo.omega_lambda))
        else:
            mylog.info("Observing local source at distance %s." % D_A)

        D_A = parameters["fid_d_a"].in_cgs()
        dist_fac = 1.0 / (4. * np.pi * D_A.value * D_A.value *
                          (1. + redshift)**2)
        spectral_norm = parameters["fid_area"].v * parameters[
            "fid_exp_time"].v * dist_fac

        source_model.setup_model(data_source, redshift, spectral_norm)

        p_fields, v_fields, w_field = determine_fields(
            ds, source_model.source_type, point_sources)

        if velocity_fields is not None:
            v_fields = velocity_fields

        if p_fields[0] == ("index", "x"):
            parameters["data_type"] = "cells"
        else:
            parameters["data_type"] = "particles"

        citer = data_source.chunks([], "io")

        photons = defaultdict(list)

        for chunk in parallel_objects(citer):

            chunk_data = source_model(chunk)

            if chunk_data is not None:
                ncells, number_of_photons, idxs, energies = chunk_data
                photons["num_photons"].append(number_of_photons)
                photons["energy"].append(energies)
                photons["pos"].append(
                    np.array([
                        chunk[p_fields[0]].d[idxs], chunk[p_fields[1]].d[idxs],
                        chunk[p_fields[2]].d[idxs]
                    ]))
                photons["vel"].append(
                    np.array([
                        chunk[v_fields[0]].d[idxs], chunk[v_fields[1]].d[idxs],
                        chunk[v_fields[2]].d[idxs]
                    ]))
                if w_field is None:
                    photons["dx"].append(np.zeros(ncells))
                else:
                    photons["dx"].append(chunk[w_field].d[idxs])

        source_model.cleanup_model()

        photon_units = {
            "pos": ds.field_info[p_fields[0]].units,
            "vel": ds.field_info[v_fields[0]].units,
            "energy": "keV"
        }
        if w_field is None:
            photon_units["dx"] = "kpc"
        else:
            photon_units["dx"] = ds.field_info[w_field].units

        concatenate_photons(ds, photons, photon_units)

        c = parameters["center"].to("kpc")

        if sum(ds.periodicity) > 0:
            # Fix photon coordinates for regions crossing a periodic boundary
            dw = ds.domain_width.to("kpc")
            le, re = find_object_bounds(data_source)
            for i in range(3):
                if ds.periodicity[i] and photons["pos"].shape[0] > 0:
                    tfl = photons["pos"][:, i] < le[i]
                    tfr = photons["pos"][:, i] > re[i]
                    photons["pos"][tfl, i] += dw[i]
                    photons["pos"][tfr, i] -= dw[i]

        # Re-center all coordinates
        if photons["pos"].shape[0] > 0:
            photons["pos"] -= c

        mylog.info("Finished generating photons.")
        mylog.info("Number of photons generated: %d" %
                   int(np.sum(photons["num_photons"])))
        mylog.info("Number of cells with photons: %d" % photons["dx"].size)

        return cls(photons, parameters, cosmo)
Пример #3
0
    def write_simput_file(self, prefix, clobber=False, emin=None, emax=None):
        r"""
        Write events to a SIMPUT file that may be read by the SIMX instrument
        simulator.

        Parameters
        ----------
        prefix : string
            The filename prefix.
        clobber : boolean, optional
            Set to True to overwrite previous files.
        e_min : float, optional
            The minimum energy of the photons to save in keV.
        e_max : float, optional
            The maximum energy of the photons to save in keV.
        """
        pyfits = _astropy.pyfits
        if isinstance(self.parameters["Area"], string_types):
             mylog.error("Writing SIMPUT files is only supported if you didn't convolve with responses.")
             raise TypeError("Writing SIMPUT files is only supported if you didn't convolve with responses.")

        if emin is None:
            emin = self["eobs"].min().value
        if emax is None:
            emax = self["eobs"].max().value

        idxs = np.logical_and(self["eobs"].d >= emin, self["eobs"].d <= emax)
        flux = np.sum(self["eobs"][idxs].in_units("erg")) / \
               self.parameters["ExposureTime"]/self.parameters["Area"]

        col1 = pyfits.Column(name='ENERGY', format='E', array=self["eobs"][idxs].d)
        col2 = pyfits.Column(name='RA', format='D', array=self["xsky"][idxs].d)
        col3 = pyfits.Column(name='DEC', format='D', array=self["ysky"][idxs].d)

        coldefs = pyfits.ColDefs([col1, col2, col3])

        tbhdu = pyfits.BinTableHDU.from_columns(coldefs)
        tbhdu.name = "PHLIST"

        tbhdu.header["HDUCLASS"] = "HEASARC/SIMPUT"
        tbhdu.header["HDUCLAS1"] = "PHOTONS"
        tbhdu.header["HDUVERS"] = "1.1.0"
        tbhdu.header["EXTVER"] = 1
        tbhdu.header["REFRA"] = 0.0
        tbhdu.header["REFDEC"] = 0.0
        tbhdu.header["TUNIT1"] = "keV"
        tbhdu.header["TUNIT2"] = "deg"
        tbhdu.header["TUNIT3"] = "deg"

        phfile = prefix+"_phlist.fits"

        tbhdu.writeto(phfile, clobber=clobber)

        col1 = pyfits.Column(name='SRC_ID', format='J', array=np.array([1]).astype("int32"))
        col2 = pyfits.Column(name='RA', format='D', array=np.array([0.0]))
        col3 = pyfits.Column(name='DEC', format='D', array=np.array([0.0]))
        col4 = pyfits.Column(name='E_MIN', format='D', array=np.array([float(emin)]))
        col5 = pyfits.Column(name='E_MAX', format='D', array=np.array([float(emax)]))
        col6 = pyfits.Column(name='FLUX', format='D', array=np.array([flux.value]))
        col7 = pyfits.Column(name='SPECTRUM', format='80A', array=np.array([phfile+"[PHLIST,1]"]))
        col8 = pyfits.Column(name='IMAGE', format='80A', array=np.array([phfile+"[PHLIST,1]"]))
        col9 = pyfits.Column(name='SRC_NAME', format='80A', array=np.array(["yt_src"]))

        coldefs = pyfits.ColDefs([col1, col2, col3, col4, col5, col6, col7, col8, col9])

        wrhdu = pyfits.BinTableHDU.from_columns(coldefs)
        wrhdu.name = "SRC_CAT"

        wrhdu.header["HDUCLASS"] = "HEASARC"
        wrhdu.header["HDUCLAS1"] = "SIMPUT"
        wrhdu.header["HDUCLAS2"] = "SRC_CAT"
        wrhdu.header["HDUVERS"] = "1.1.0"
        wrhdu.header["RADECSYS"] = "FK5"
        wrhdu.header["EQUINOX"] = 2000.0
        wrhdu.header["TUNIT2"] = "deg"
        wrhdu.header["TUNIT3"] = "deg"
        wrhdu.header["TUNIT4"] = "keV"
        wrhdu.header["TUNIT5"] = "keV"
        wrhdu.header["TUNIT6"] = "erg/s/cm**2"

        simputfile = prefix+"_simput.fits"

        wrhdu.writeto(simputfile, clobber=clobber)
Пример #4
0
    def from_data_source(cls, data_source, redshift, area,
                         exp_time, source_model, point_sources=False,
                         parameters=None, center=None, dist=None, 
                         cosmology=None, velocity_fields=None):
        r"""
        Initialize a :class:`~pyxsim.photon_list.PhotonList` from a yt data
        source. The redshift, collecting area, exposure time, and cosmology
        are stored in the *parameters* dictionary which is passed to the
        *source_model* function.

        Parameters
        ----------
        data_source : :class:`~yt.data_objects.data_containers.YTSelectionContainer`
            The data source from which the photons will be generated.
        redshift : float
            The cosmological redshift for the photons.
        area : float, (value, unit) tuple, :class:`~yt.units.yt_array.YTQuantity`, or :class:`~astropy.units.Quantity`
            The collecting area to determine the number of photons. If units are
            not specified, it is assumed to be in cm^2.
        exp_time : float, (value, unit) tuple, :class:`~yt.units.yt_array.YTQuantity`, or :class:`~astropy.units.Quantity`
            The exposure time to determine the number of photons. If units are
            not specified, it is assumed to be in seconds.
        source_model : :class:`~pyxsim.source_models.SourceModel`
            A source model used to generate the photons.
        point_sources : boolean, optional
            If True, the photons will be assumed to be generated from the exact
            positions of the cells or particles and not smeared around within
            a volume. Default: False
        parameters : dict, optional
            A dictionary of parameters to be passed for the source model to use,
            if necessary.
        center : string or array_like, optional
            The origin of the photon spatial coordinates. Accepts "c", "max", or
            a coordinate. If not specified, pyxsim attempts to use the "center"
            field parameter of the data_source.
        dist : float, (value, unit) tuple, :class:`~yt.units.yt_array.YTQuantity`, or :class:`~astropy.units.Quantity`
            The angular diameter distance, used for nearby sources. This may be
            optionally supplied instead of it being determined from the
            *redshift* and given *cosmology*. If units are not specified, it is
            assumed to be in kpc. To use this, the redshift must be set to zero.
        cosmology : :class:`~yt.utilities.cosmology.Cosmology`, optional
            Cosmological information. If not supplied, we try to get the
            cosmology from the dataset. Otherwise, LCDM with the default yt 
            parameters is assumed.
        velocity_fields : list of fields
            The yt fields to use for the velocity. If not specified, the 
            following will be assumed:
            ['velocity_x', 'velocity_y', 'velocity_z'] for grid datasets
            ['particle_velocity_x', 'particle_velocity_y', 'particle_velocity_z'] for particle datasets

        Examples
        --------
        >>> thermal_model = ThermalSourceModel(apec_model, Zmet=0.3)
        >>> redshift = 0.05
        >>> area = 6000.0 # assumed here in cm**2
        >>> time = 2.0e5 # assumed here in seconds
        >>> sp = ds.sphere("c", (500., "kpc"))
        >>> my_photons = PhotonList.from_data_source(sp, redshift, area,
        ...                                          time, thermal_model)
        """
        ds = data_source.ds

        if parameters is None:
            parameters = {}
        if cosmology is None:
            if hasattr(ds, 'cosmology'):
                cosmo = ds.cosmology
            else:
                cosmo = Cosmology()
        else:
            cosmo = cosmology
        if dist is None:
            if redshift <= 0.0:
                msg = "If redshift <= 0.0, you must specify a distance to the " \
                      "source using the 'dist' argument!"
                mylog.error(msg)
                raise ValueError(msg)
            D_A = cosmo.angular_diameter_distance(0.0, redshift).in_units("Mpc")
        else:
            D_A = parse_value(dist, "kpc")
            if redshift > 0.0:
                mylog.warning("Redshift must be zero for nearby sources. "
                              "Resetting redshift to 0.0.")
                redshift = 0.0

        if isinstance(center, string_types):
            if center == "center" or center == "c":
                parameters["center"] = ds.domain_center
            elif center == "max" or center == "m":
                parameters["center"] = ds.find_max("density")[-1]
        elif iterable(center):
            if isinstance(center, YTArray):
                parameters["center"] = center.in_units("code_length")
            elif isinstance(center, tuple):
                if center[0] == "min":
                    parameters["center"] = ds.find_min(center[1])[-1]
                elif center[0] == "max":
                    parameters["center"] = ds.find_max(center[1])[-1]
                else:
                    raise RuntimeError
            else:
                parameters["center"] = ds.arr(center, "code_length")
        elif center is None:
            if hasattr(data_source, "left_edge"):
                parameters["center"] = 0.5*(data_source.left_edge+data_source.right_edge)
            else:
                parameters["center"] = data_source.get_field_parameter("center")

        parameters["fid_exp_time"] = parse_value(exp_time, "s")
        parameters["fid_area"] = parse_value(area, "cm**2")
        parameters["fid_redshift"] = redshift
        parameters["fid_d_a"] = D_A
        parameters["hubble"] = cosmo.hubble_constant
        parameters["omega_matter"] = cosmo.omega_matter
        parameters["omega_lambda"] = cosmo.omega_lambda

        if redshift > 0.0:
            mylog.info("Cosmology: h = %g, omega_matter = %g, omega_lambda = %g" %
                       (cosmo.hubble_constant, cosmo.omega_matter, cosmo.omega_lambda))
        else:
            mylog.info("Observing local source at distance %s." % D_A)

        D_A = parameters["fid_d_a"].in_cgs()
        dist_fac = 1.0/(4.*np.pi*D_A.value*D_A.value*(1.+redshift)**2)
        spectral_norm = parameters["fid_area"].v*parameters["fid_exp_time"].v*dist_fac

        source_model.setup_model(data_source, redshift, spectral_norm)

        p_fields, v_fields, w_field = determine_fields(ds,
                                                       source_model.source_type,
                                                       point_sources)

        if velocity_fields is not None:
            v_fields = velocity_fields

        if p_fields[0] == ("index", "x"):
            parameters["data_type"] = "cells"
        else:
            parameters["data_type"] = "particles"

        citer = data_source.chunks([], "io")

        photons = defaultdict(list)

        for chunk in parallel_objects(citer):

            chunk_data = source_model(chunk)

            if chunk_data is not None:
                ncells, number_of_photons, idxs, energies = chunk_data
                photons["num_photons"].append(number_of_photons)
                photons["energy"].append(energies)
                photons["pos"].append(np.array([chunk[p_fields[0]].d[idxs],
                                                chunk[p_fields[1]].d[idxs],
                                                chunk[p_fields[2]].d[idxs]]))
                photons["vel"].append(np.array([chunk[v_fields[0]].d[idxs],
                                                chunk[v_fields[1]].d[idxs],
                                                chunk[v_fields[2]].d[idxs]]))
                if w_field is None:
                    photons["dx"].append(np.zeros(ncells))
                else:
                    photons["dx"].append(chunk[w_field].d[idxs])

        source_model.cleanup_model()

        photon_units = {"pos": ds.field_info[p_fields[0]].units,
                        "vel": ds.field_info[v_fields[0]].units,
                        "energy": "keV"}
        if w_field is None:
            photon_units["dx"] = "kpc"
        else:
            photon_units["dx"] = ds.field_info[w_field].units

        concatenate_photons(ds, photons, photon_units)

        c = parameters["center"].to("kpc")

        if sum(ds.periodicity) > 0:
            # Fix photon coordinates for regions crossing a periodic boundary
            dw = ds.domain_width.to("kpc")
            le, re = find_object_bounds(data_source)
            for i in range(3):
                if ds.periodicity[i] and photons["pos"].shape[0] > 0:
                    tfl = photons["pos"][:,i] < le[i]
                    tfr = photons["pos"][:,i] > re[i]
                    photons["pos"][tfl,i] += dw[i]
                    photons["pos"][tfr,i] -= dw[i]

        # Re-center all coordinates
        if photons["pos"].shape[0] > 0:
            photons["pos"] -= c

        mylog.info("Finished generating photons.")
        mylog.info("Number of photons generated: %d" % int(np.sum(photons["num_photons"])))
        mylog.info("Number of cells with photons: %d" % photons["dx"].size)

        return cls(photons, parameters, cosmo)
Пример #5
0
    def project_photons(self,
                        normal,
                        area_new=None,
                        exp_time_new=None,
                        redshift_new=None,
                        dist_new=None,
                        absorb_model=None,
                        sky_center=None,
                        no_shifting=False,
                        north_vector=None,
                        prng=None):
        r"""
        Projects photons onto an image plane given a line of sight.
        Returns a new :class:`~pyxsim.event_list.EventList`.

        Parameters
        ----------
        normal : character or array-like
            Normal vector to the plane of projection. If "x", "y", or "z", will
            assume to be along that axis (and will probably be faster). Otherwise,
            should be an off-axis normal vector, e.g [1.0, 2.0, -3.0]
        area_new : float, (value, unit) tuple, or :class:`~yt.units.yt_array.YTQuantity`, optional
            New value for the (constant) collecting area of the detector. If
            units are not specified, is assumed to be in cm**2.
        exp_time_new : float, (value, unit) tuple, or :class:`~yt.units.yt_array.YTQuantity`, optional
            The new value for the exposure time. If units are not specified
            it is assumed to be in seconds.
        redshift_new : float, optional
            The new value for the cosmological redshift.
        dist_new : float, (value, unit) tuple, or :class:`~yt.units.yt_array.YTQuantity`, optional
            The new value for the angular diameter distance, used for nearby sources.
            This may be optionally supplied instead of it being determined from the
            cosmology. If units are not specified, it is assumed to be in Mpc. To use this, the
            redshift must be zero.
        absorb_model : :class:`~pyxsim.spectral_models.AbsorptionModel`
            A model for foreground galactic absorption.
        sky_center : array-like, optional
            Center RA, Dec of the events in degrees.
        no_shifting : boolean, optional
            If set, the photon energies will not be Doppler shifted.
        north_vector : a sequence of floats
            A vector defining the "up" direction. This option sets the orientation of
            the plane of projection. If not set, an arbitrary grid-aligned north_vector
            is chosen. Ignored in the case where a particular axis (e.g., "x", "y", or
            "z") is explicitly specified.
        prng : :class:`~numpy.random.RandomState` object or :mod:`~numpy.random`, optional
            A pseudo-random number generator. Typically will only be specified
            if you have a reason to generate the same set of random numbers, such as for a
            test. Default is the :mod:`numpy.random` module.

        Examples
        --------
        >>> L = np.array([0.1,-0.2,0.3])
        >>> events = my_photons.project_photons(L, area_new=10000.,
        ...                                     redshift_new=0.05)
        """

        if prng is None:
            prng = np.random

        if redshift_new is not None and dist_new is not None:
            mylog.error("You may specify a new redshift or distance, " +
                        "but not both!")

        if sky_center is None:
            sky_center = YTArray([30., 45.], "degree")
        else:
            sky_center = YTArray(sky_center, "degree")

        dx = self.photons["dx"].d
        if isinstance(normal, string_types):
            # if on-axis, just use the maximum width of the plane perpendicular
            # to that axis
            w = self.parameters["Width"].copy()
            w["xyz".index(normal)] = 0.0
            ax_idx = np.argmax(w)
        else:
            # if off-axis, just use the largest width to make sure we get everything
            ax_idx = np.argmax(self.parameters["Width"])
        nx = self.parameters["Dimension"][ax_idx]
        dx_min = (self.parameters["Width"] /
                  self.parameters["Dimension"])[ax_idx]

        if not isinstance(normal, string_types):
            L = np.array(normal)
            orient = Orientation(L, north_vector=north_vector)
            x_hat = orient.unit_vectors[0]
            y_hat = orient.unit_vectors[1]
            z_hat = orient.unit_vectors[2]

        n_ph = self.photons["NumberOfPhotons"]
        n_ph_tot = n_ph.sum()

        parameters = {}

        zobs0 = self.parameters["FiducialRedshift"]
        D_A0 = self.parameters["FiducialAngularDiameterDistance"]
        scale_factor = 1.0

        if (exp_time_new is None and area_new is None and redshift_new is None
                and dist_new is None):
            my_n_obs = n_ph_tot
            zobs = zobs0
            D_A = D_A0
        else:
            if exp_time_new is None:
                Tratio = 1.
            else:
                exp_time_new = parse_value(exp_time_new, "s")
                Tratio = exp_time_new / self.parameters["FiducialExposureTime"]
            if area_new is None:
                Aratio = 1.
            else:
                area_new = parse_value(area_new, "cm**2")
                Aratio = area_new / self.parameters["FiducialArea"]
            if redshift_new is None and dist_new is None:
                Dratio = 1.
                zobs = zobs0
                D_A = D_A0
            else:
                if dist_new is not None:
                    if redshift_new is not None and redshift_new > 0.0:
                        mylog.warning(
                            "Redshift must be zero for nearby sources. Resetting redshift to 0.0."
                        )
                        zobs = 0.0
                    D_A = parse_value(dist_new, "Mpc")
                else:
                    zobs = redshift_new
                    D_A = self.cosmo.angular_diameter_distance(
                        0.0, zobs).in_units("Mpc")
                    scale_factor = (1. + zobs0) / (1. + zobs)
                Dratio = D_A0*D_A0*(1.+zobs0)**3 / \
                         (D_A*D_A*(1.+zobs)**3)
            fak = Aratio * Tratio * Dratio
            if fak > 1:
                raise ValueError(
                    "This combination of requested parameters results in "
                    "%g%% more photons collected than are " % (100. *
                                                               (fak - 1.)) +
                    "available in the sample. Please reduce the collecting "
                    "area, exposure time, or increase the distance/redshift "
                    "of the object. Alternatively, generate a larger sample "
                    "of photons.")
            my_n_obs = np.int64(n_ph_tot * fak)

        Nn = 4294967294
        if my_n_obs == n_ph_tot:
            if my_n_obs <= Nn:
                idxs = np.arange(my_n_obs, dtype='uint32')
            else:
                idxs = np.arange(my_n_obs, dtype='uint64')
        else:
            if n_ph_tot <= Nn:
                idxs = np.arange(n_ph_tot, dtype='uint32')
                prng.shuffle(idxs)
                idxs = idxs[:my_n_obs]
            else:
                Nc = np.int32(n_ph_tot / Nn)
                idxs = np.zeros(my_n_obs, dtype=np.uint64)
                Nup = np.uint32(my_n_obs / Nc)
                for i in range(Nc + 1):
                    if (i + 1) * Nc < n_ph_tot:
                        idtm = np.arange(i * Nc, (i + 1) * Nc, dtype='uint64')
                        Nupt = Nup
                    else:
                        idtm = np.arange(i * Nc, n_ph_tot, dtype='uint64')
                        Nupt = my_n_obs - i * Nup
                    prng.shuffle(idtm)
                    idxs[i * Nup, i * Nup + Nupt] = idtm[:Nupt]
                    del (idtm)
            # idxs = prng.permutation(n_ph_tot)[:my_n_obs].astype("int64")
        obs_cells = np.searchsorted(self.p_bins, idxs, side='right') - 1
        delta = dx[obs_cells]

        if isinstance(normal, string_types):

            if self.parameters["DataType"] == "cells":
                xsky = prng.uniform(low=-0.5, high=0.5, size=my_n_obs)
                ysky = prng.uniform(low=-0.5, high=0.5, size=my_n_obs)
            elif self.parameters["DataType"] == "particles":
                xsky = prng.normal(loc=0.0, scale=1.0, size=my_n_obs)
                ysky = prng.normal(loc=0.0, scale=1.0, size=my_n_obs)
            xsky *= delta
            ysky *= delta
            xsky += self.photons[axes_lookup[normal][0]].d[obs_cells]
            ysky += self.photons[axes_lookup[normal][1]].d[obs_cells]

            if not no_shifting:
                vz = self.photons["v%s" % normal]

        else:

            if self.parameters["DataType"] == "cells":
                x = prng.uniform(low=-0.5, high=0.5, size=my_n_obs)
                y = prng.uniform(low=-0.5, high=0.5, size=my_n_obs)
                z = prng.uniform(low=-0.5, high=0.5, size=my_n_obs)
            elif self.parameters["DataType"] == "particles":
                x = prng.normal(loc=0.0, scale=1.0, size=my_n_obs)
                y = prng.normal(loc=0.0, scale=1.0, size=my_n_obs)
                z = prng.normal(loc=0.0, scale=1.0, size=my_n_obs)

            if not no_shifting:
                vz = self.photons["vx"]*z_hat[0] + \
                     self.photons["vy"]*z_hat[1] + \
                     self.photons["vz"]*z_hat[2]

            x *= delta
            y *= delta
            z *= delta
            x += self.photons["x"].d[obs_cells]
            y += self.photons["y"].d[obs_cells]
            z += self.photons["z"].d[obs_cells]

            xsky = x * x_hat[0] + y * x_hat[1] + z * x_hat[2]
            ysky = x * y_hat[0] + y * y_hat[1] + z * y_hat[2]

        del (delta)
        if no_shifting:
            eobs = self.photons["Energy"][idxs]
        else:
            # shift = -vz.in_cgs()/clight
            # shift = np.sqrt((1.-shift)/(1.+shift))
            # eobs = self.photons["Energy"][idxs]*shift[obs_cells]
            shift = -vz[obs_cells].in_cgs() / clight
            shift = np.sqrt((1. - shift) / (1. + shift))
            eobs = self.photons["Energy"][idxs]
            eobs *= shift
            del (shift)
        eobs *= scale_factor

        if absorb_model is None:
            detected = np.ones(eobs.shape, dtype='bool')
        else:
            detected = absorb_model.absorb_photons(eobs, prng=prng)

        events = {}

        dtheta = YTQuantity(np.rad2deg(dx_min / D_A), "degree")

        events["xpix"] = xsky[detected] / dx_min.v + 0.5 * (nx + 1)
        events["ypix"] = ysky[detected] / dx_min.v + 0.5 * (nx + 1)
        events["eobs"] = eobs[detected]

        events = comm.par_combine_object(events, datatype="dict", op="cat")

        num_events = len(events["xpix"])

        if comm.rank == 0:
            mylog.info("Total number of observed photons: %d" % num_events)

        if exp_time_new is None:
            parameters["ExposureTime"] = self.parameters[
                "FiducialExposureTime"]
        else:
            parameters["ExposureTime"] = exp_time_new
        if area_new is None:
            parameters["Area"] = self.parameters["FiducialArea"]
        else:
            parameters["Area"] = area_new
        parameters["Redshift"] = zobs
        parameters["AngularDiameterDistance"] = D_A.in_units("Mpc")
        parameters["sky_center"] = sky_center
        parameters["pix_center"] = np.array([0.5 * (nx + 1)] * 2)
        parameters["dtheta"] = dtheta

        return EventList(events, parameters)
Пример #6
0
    def from_data_source(cls,
                         data_source,
                         redshift,
                         area,
                         exp_time,
                         source_model,
                         parameters=None,
                         center=None,
                         dist=None,
                         cosmology=None,
                         velocity_fields=None):
        r"""
        Initialize a :class:`~pyxsim.photon_list.PhotonList` from a yt data source.
        The redshift, collecting area, exposure time, and cosmology are stored in the
        *parameters* dictionary which is passed to the *source_model* function.

        Parameters
        ----------
        data_source : :class:`~yt.data_objects.data_containers.YTSelectionContainer`
            The data source from which the photons will be generated.
        redshift : float
            The cosmological redshift for the photons.
        area : float, (value, unit) tuple, or :class:`~yt.units.yt_array.YTQuantity`.
            The collecting area to determine the number of photons. If units are
            not specified, it is assumed to be in cm^2.
        exp_time : float, (value, unit) tuple, or :class:`~yt.units.yt_array.YTQuantity`.
            The exposure time to determine the number of photons. If units are
            not specified, it is assumed to be in seconds.
        source_model : :class:`~pyxsim.source_models.SourceModel`
            A source model used to generate the photons.
        parameters : dict, optional
            A dictionary of parameters to be passed for the source model to use, if necessary.
        center : string or array_like, optional
            The origin of the photon spatial coordinates. Accepts "c", "max", or a coordinate.
            If not specified, pyxsim attempts to use the "center" field parameter of the data_source.
        dist : float, (value, unit) tuple, or :class:`~yt.units.yt_array.YTQuantity`, optional
            The angular diameter distance, used for nearby sources. This may be
            optionally supplied instead of it being determined from the *redshift*
            and given *cosmology*. If units are not specified, it is assumed to be
            in Mpc. To use this, the redshift must be set to zero.
        cosmology : :class:`~yt.utilities.cosmology.Cosmology`, optional
            Cosmological information. If not supplied, we try to get
            the cosmology from the dataset. Otherwise, LCDM with
            the default yt parameters is assumed.
        velocity_fields : list of fields
            The yt fields to use for the velocity. If not specified, the following will
            be assumed:
            ['velocity_x', 'velocity_y', 'velocity_z'] for grid datasets
            ['particle_velocity_x', 'particle_velocity_y', 'particle_velocity_z'] for particle datasets

        Examples
        --------
        >>> thermal_model = ThermalSourceModel(apec_model, Zmet=0.3)
        >>> redshift = 0.05
        >>> area = 6000.0 # assumed here in cm**2
        >>> time = 2.0e5 # assumed here in seconds
        >>> sp = ds.sphere("c", (500., "kpc"))
        >>> my_photons = PhotonList.from_data_source(sp, redshift, area,
        ...                                          time, thermal_model)
        """
        ds = data_source.ds

        if parameters is None:
            parameters = {}
        if cosmology is None:
            if hasattr(ds, 'cosmology'):
                cosmo = ds.cosmology
            else:
                cosmo = Cosmology()
        else:
            cosmo = cosmology
        mylog.info(
            "Cosmology: h = %g, omega_matter = %g, omega_lambda = %g" %
            (cosmo.hubble_constant, cosmo.omega_matter, cosmo.omega_lambda))
        if dist is None:
            if redshift <= 0.0:
                msg = "If redshift <= 0.0, you must specify a distance to the source using the 'dist' argument!"
                mylog.error(msg)
                raise ValueError(msg)
            D_A = cosmo.angular_diameter_distance(0.0,
                                                  redshift).in_units("Mpc")
        else:
            D_A = parse_value(dist, "Mpc")
            if redshift > 0.0:
                mylog.warning(
                    "Redshift must be zero for nearby sources. Resetting redshift to 0.0."
                )
                redshift = 0.0

        if center == "center" or center == "c":
            parameters["center"] = ds.domain_center
        elif center == "max" or center == "m":
            parameters["center"] = ds.find_max("density")[-1]
        elif iterable(center):
            if isinstance(center, YTArray):
                parameters["center"] = center.in_units("code_length")
            elif isinstance(center, tuple):
                if center[0] == "min":
                    parameters["center"] = ds.find_min(center[1])[-1]
                elif center[0] == "max":
                    parameters["center"] = ds.find_max(center[1])[-1]
                else:
                    raise RuntimeError
            else:
                parameters["center"] = ds.arr(center, "code_length")
        elif center is None:
            parameters["center"] = data_source.get_field_parameter("center")

        parameters["FiducialExposureTime"] = parse_value(exp_time, "s")
        parameters["FiducialArea"] = parse_value(area, "cm**2")
        parameters["FiducialRedshift"] = redshift
        parameters["FiducialAngularDiameterDistance"] = D_A
        parameters["HubbleConstant"] = cosmo.hubble_constant
        parameters["OmegaMatter"] = cosmo.omega_matter
        parameters["OmegaLambda"] = cosmo.omega_lambda

        D_A = parameters["FiducialAngularDiameterDistance"].in_cgs()
        dist_fac = 1.0 / (4. * np.pi * D_A.value * D_A.value *
                          (1. + redshift)**2)
        spectral_norm = parameters["FiducialArea"].v * parameters[
            "FiducialExposureTime"].v * dist_fac

        source_model.setup_model(data_source, redshift, spectral_norm)

        p_fields, v_fields, w_field = determine_fields(
            ds, source_model.source_type)

        if velocity_fields is not None:
            v_fields = velocity_fields

        if p_fields[0] == ("index", "x"):
            parameters["DataType"] = "cells"
        else:
            parameters["DataType"] = "particles"

        if hasattr(data_source, "left_edge"):
            # Region or grid
            le = data_source.left_edge
            re = data_source.right_edge
        elif hasattr(data_source,
                     "radius") and not hasattr(data_source, "height"):
            # Sphere
            le = -data_source.radius + data_source.center
            re = data_source.radius + data_source.center
        else:
            # Compute rough boundaries of the object
            # DOES NOT WORK for objects straddling periodic
            # boundaries yet
            if sum(ds.periodicity) > 0:
                mylog.warning("You are using a region that is not currently "
                              "supported for straddling periodic boundaries. "
                              "Check to make sure that this is not the case.")
            le = ds.arr(np.zeros(3), "code_length")
            re = ds.arr(np.zeros(3), "code_length")
            for i, ax in enumerate(p_fields):
                le[i], re[i] = data_source.quantities.extrema(ax)

        dds_min = get_smallest_dds(ds, parameters["DataType"])
        le = np.rint((le - ds.domain_left_edge) /
                     dds_min) * dds_min + ds.domain_left_edge
        re = ds.domain_right_edge - np.rint(
            (ds.domain_right_edge - re) / dds_min) * dds_min
        width = re - le
        parameters["Dimension"] = np.rint(width / dds_min).astype("int")
        parameters["Width"] = parameters["Dimension"] * dds_min.in_units("kpc")

        citer = data_source.chunks([], "io")

        photons = defaultdict(list)

        for chunk in parallel_objects(citer):

            chunk_data = source_model(chunk)

            if chunk_data is not None:
                number_of_photons, idxs, energies = chunk_data
                photons["NumberOfPhotons"].append(number_of_photons)
                photons["Energy"].append(ds.arr(energies, "keV"))
                photons["x"].append(chunk[p_fields[0]][idxs].in_units("kpc"))
                photons["y"].append(chunk[p_fields[1]][idxs].in_units("kpc"))
                photons["z"].append(chunk[p_fields[2]][idxs].in_units("kpc"))
                photons["vx"].append(chunk[v_fields[0]][idxs].in_units("km/s"))
                photons["vy"].append(chunk[v_fields[1]][idxs].in_units("km/s"))
                photons["vz"].append(chunk[v_fields[2]][idxs].in_units("km/s"))
                if w_field is None:
                    photons["dx"].append(ds.arr(np.zeros(len(idxs)), "kpc"))
                else:
                    photons["dx"].append(chunk[w_field][idxs].in_units("kpc"))

        source_model.cleanup_model()

        concatenate_photons(photons)

        # Translate photon coordinates to the source center
        # Fix photon coordinates for regions crossing a periodic boundary
        dw = ds.domain_width.to("kpc")
        for i, ax in enumerate("xyz"):
            if ds.periodicity[i] and len(photons[ax]) > 0:
                tfl = photons[ax] < le[i].to('kpc')
                tfr = photons[ax] > re[i].to('kpc')
                photons[ax][tfl] += dw[i]
                photons[ax][tfr] -= dw[i]
            photons[ax] -= parameters["center"][i].in_units("kpc")

        mylog.info("Finished generating photons.")
        mylog.info("Number of photons generated: %d" %
                   int(np.sum(photons["NumberOfPhotons"])))
        mylog.info("Number of cells with photons: %d" % len(photons["x"]))

        return cls(photons, parameters, cosmo)