Пример #1
0
def core_metrics(table: biom.Table, phylogeny: skbio.TreeNode,
                 sampling_depth: int) -> (pd.Series,
                                          pd.Series,
                                          pd.Series,
                                          pd.Series,
                                          skbio.DistanceMatrix,
                                          skbio.DistanceMatrix,
                                          skbio.DistanceMatrix,
                                          skbio.DistanceMatrix,
                                          skbio.OrdinationResults,
                                          skbio.OrdinationResults,
                                          skbio.OrdinationResults,
                                          skbio.OrdinationResults):
    rarefied_table = rarefy(table=table, sampling_depth=sampling_depth)

    faith_pd_vector = alpha_phylogenetic(
        table=rarefied_table, phylogeny=phylogeny, metric='faith_pd')
    observed_otus_vector = alpha(table=rarefied_table, metric='observed_otus')
    shannon_vector = alpha(table=rarefied_table, metric='shannon')
    evenness_vector = alpha(table=rarefied_table, metric='pielou_e')

    unweighted_unifrac_distance_matrix = beta_phylogenetic(
        table=rarefied_table, phylogeny=phylogeny, metric='unweighted_unifrac')
    weighted_unifrac_distance_matrix = beta_phylogenetic(
        table=rarefied_table, phylogeny=phylogeny, metric='weighted_unifrac')
    jaccard_distance_matrix = beta(table=rarefied_table, metric='jaccard')
    bray_curtis_distance_matrix = beta(
        table=rarefied_table, metric='braycurtis')

    unweighted_unifrac_pcoa_results = pcoa(
        distance_matrix=unweighted_unifrac_distance_matrix)
    weighted_unifrac_pcoa_results = pcoa(
        distance_matrix=weighted_unifrac_distance_matrix)
    jaccard_pcoa_results = pcoa(distance_matrix=jaccard_distance_matrix)
    bray_curtis_pcoa_results = pcoa(
        distance_matrix=bray_curtis_distance_matrix)

    return (
        faith_pd_vector, observed_otus_vector, shannon_vector, evenness_vector,
        unweighted_unifrac_distance_matrix, weighted_unifrac_distance_matrix,
        jaccard_distance_matrix, bray_curtis_distance_matrix,
        unweighted_unifrac_pcoa_results, weighted_unifrac_pcoa_results,
        jaccard_pcoa_results, bray_curtis_pcoa_results
    )
Пример #2
0
    def test_parallel_beta(self):
        t = Table(np.array([[0, 1, 3], [1, 1, 2]]),
                  ['O1', 'O2'],
                  ['S1', 'S2', 'S3'])
        parallel = beta(table=t, metric='braycurtis', n_jobs=-1)
        single_thread = beta(table=t, metric='braycurtis', n_jobs=1)
        # expected computed with scipy.spatial.distance.braycurtis
        expected = skbio.DistanceMatrix([[0.0000000, 0.3333333, 0.6666667],
                                         [0.3333333, 0.0000000, 0.4285714],
                                         [0.6666667, 0.4285714, 0.0000000]],
                                        ids=['S1', 'S2', 'S3'])

        self.assertEqual(parallel.ids, expected.ids)
        self.assertEqual(single_thread.ids, expected.ids)
        for id1 in parallel.ids:
            for id2 in parallel.ids:
                npt.assert_almost_equal(parallel[id1, id2], expected[id1, id2])
        for id1 in single_thread.ids:
            for id2 in single_thread.ids:
                npt.assert_almost_equal(single_thread[id1, id2],
                                        expected[id1, id2])
Пример #3
0
    def test_beta_canberra_adkins(self):
        t = Table(np.array([[0, 0], [0, 1], [1, 2]]),
                  ['O1', 'O2', 'O3'],
                  ['S1', 'S2'])
        d = (1. / 2.) * sum([abs(0. - 1.) / (0. + 1.),
                             abs(1. - 2.) / (1. + 2.)])
        expected = skbio.DistanceMatrix(np.array([[0.0, d], [d, 0.0]]),
                                        ids=['S1', 'S2'])
        actual = beta(table=t, metric='canberra_adkins')

        self.assertEqual(actual.ids, expected.ids)
        for id1 in actual.ids:
            for id2 in actual.ids:
                npt.assert_almost_equal(actual[id1, id2], expected[id1, id2])
Пример #4
0
    def test_aitchison(self):
        t = Table(np.array([[0, 1, 3], [1, 1, 2]]),
                  ['O1', 'O2'],
                  ['S1', 'S2', 'S3'])
        actual = beta(table=t, metric='aitchison')
        expected = skbio.DistanceMatrix([[0.0000000, 0.4901290, 0.6935510],
                                         [0.4901290, 0.0000000, 0.2034219],
                                         [0.6935510, 0.2034219, 0.0000000]],
                                        ids=['S1', 'S2', 'S3'])

        self.assertEqual(actual.ids, expected.ids)
        for id1 in actual.ids:
            for id2 in actual.ids:
                npt.assert_almost_equal(actual[id1, id2], expected[id1, id2])
Пример #5
0
    def test_beta(self):
        t = Table(np.array([[0, 1, 3], [1, 1, 2]]),
                  ['O1', 'O2'],
                  ['S1', 'S2', 'S3'])
        actual = beta(table=t, metric='braycurtis')
        # expected computed with scipy.spatial.distance.braycurtis
        expected = skbio.DistanceMatrix([[0.0000000, 0.3333333, 0.6666667],
                                         [0.3333333, 0.0000000, 0.4285714],
                                         [0.6666667, 0.4285714, 0.0000000]],
                                        ids=['S1', 'S2', 'S3'])

        self.assertEqual(actual.ids, expected.ids)
        for id1 in actual.ids:
            for id2 in actual.ids:
                npt.assert_almost_equal(actual[id1, id2], expected[id1, id2])
Пример #6
0
 def test_beta_unknown_metric(self):
     t = Table(np.array([[0, 1, 3], [1, 1, 2]]),
               ['O1', 'O2'],
               ['S1', 'S2', 'S3'])
     with self.assertRaises(ValueError):
         beta(table=t, metric='not-a-metric')
Пример #7
0
 def test_beta_phylo_metric(self):
     t = Table(np.array([[0, 1, 3], [1, 1, 2]]),
               ['O1', 'O2'],
               ['S1', 'S2', 'S3'])
     with self.assertRaises(ValueError):
         beta(table=t, metric='unweighted_unifrac')
Пример #8
0
    def test_beta_empty_table(self):
        t = Table(np.array([]), [], [])

        with self.assertRaisesRegex(ValueError, 'empty'):
            beta(table=t, metric='braycurtis')
Пример #9
0
 def test_beta_unknown_metric(self):
     t = Table(np.array([[0, 1, 3], [1, 1, 2]]), ['O1', 'O2'],
               ['S1', 'S2', 'S3'])
     with self.assertRaises(ValueError):
         beta(table=t, metric='not-a-metric')
Пример #10
0
 def test_beta_phylo_metric(self):
     t = Table(np.array([[0, 1, 3], [1, 1, 2]]), ['O1', 'O2'],
               ['S1', 'S2', 'S3'])
     with self.assertRaises(ValueError):
         beta(table=t, metric='unweighted_unifrac')