config.lwf = args.lwf config.lwf_loss = args.lwf_loss config.lwf_weight = args.lwf_weight config.num_old_actions = int(args.num_old_actions) return config def print_config(config): print 'Current config:\n' variables = zip(vars(config).keys(), vars(config).values()) for var, val in sorted(variables): print var + ' = ' + str(val) if __name__ == '__main__': args = parse_args() my_config = modify_config(args) print_config(my_config) with tf.device('/gpu:' + str(args.gpu)): # make env env = gym.make(my_config.env_name) env = wrap_dqn(env) model = NatureQN(env, my_config) model.initialize_eval() model.evaluate() if my_config.record: model.record()
If so, please report your hyperparameters. You'll find the results, log and video recordings of your agent every 250k under the corresponding file in the results folder. A good way to monitor the progress of the training is to use Tensorboard. The starter code writes summaries of different variables. To launch tensorboard, open a Terminal window and run tensorboard --logdir=results/ Then, connect remotely to address-ip-of-the-server:6006 6006 is the default port used by tensorboard. """ if __name__ == '__main__': # make env env = gym.make(config.env_name) env = MaxAndSkipEnv(env, skip=config.skip_frame) env = PreproWrapper(env, prepro=greyscale, shape=(80, 80, 1), overwrite_render=config.overwrite_render) # load model model = NatureQN(env, config) model.initialize() loaded = load_model(model) assert loaded != False, "Loading failed" # evaluate one episode of data model.evaluate(env, 1)