Пример #1
0
def operator_exprs():
    """Prepare a list of operator algebra expressions"""
    hs1 = LocalSpace('q1', dimension=2)
    hs2 = LocalSpace('q2', dimension=2)
    A = OperatorSymbol("A", hs=hs1)
    B = OperatorSymbol("B", hs=hs1)
    C = OperatorSymbol("C", hs=hs2)
    a, b = symbols('a, b')
    A_ab = OperatorSymbol("A", a, b, hs=0)
    gamma = symbols('gamma')
    return [
        OperatorSymbol("A", hs=hs1),
        OperatorSymbol("A_1", hs=hs1 * hs2),
        OperatorSymbol("A_1", symbols('alpha'), symbols('beta'), hs=hs1 * hs2),
        A_ab.diff(a, n=2).diff(b),
        A_ab.diff(a, n=2).diff(b).evaluate_at({a: 0}),
        OperatorSymbol("Xi_2", hs=(r'q1', 'q2')),
        OperatorSymbol("Xi_full", hs=1),
        IdentityOperator,
        ZeroOperator,
        Create(hs=1),
        Create(hs=LocalSpace(1, local_identifiers={'Create': 'b'})),
        Destroy(hs=1),
        Destroy(hs=LocalSpace(1, local_identifiers={'Destroy': 'b'})),
        Jz(hs=SpinSpace(1, spin=1)),
        Jz(hs=SpinSpace(1, spin=1, local_identifiers={'Jz': 'Z'})),
        Jplus(hs=SpinSpace(1, spin=1, local_identifiers={'Jplus': 'Jp'})),
        Jminus(hs=SpinSpace(1, spin=1, local_identifiers={'Jminus': 'Jm'})),
        Phase(0.5, hs=1),
        Phase(0.5, hs=LocalSpace(1, local_identifiers={'PhaseCC': 'Ph'})),
        Displace(0.5, hs=1),
        Squeeze(0.5, hs=1),
        LocalSigma('e', 'g', hs=LocalSpace(1, basis=('g', 'e'))),
        LocalSigma('e', 'e', hs=LocalSpace(1, basis=('g', 'e'))),
        A + B,
        A * B,
        A * C,
        2 * A,
        2j * A,
        (1 + 2j) * A,
        gamma**2 * A,
        -(gamma**2) / 2 * A,
        tr(A * C, over_space=hs2),
        Adjoint(A),
        Adjoint(A + B),
        PseudoInverse(A),
        NullSpaceProjector(A),
        A - B,
        2 * A - sqrt(gamma) * (B + C),
        Commutator(A, B),
    ]
Пример #2
0
def test_quantum_symbols_with_symargs():
    """Test properties and behavior of symbols with scalar arguments,
    through the example of an OperatorSymbol"""
    t = IndexedBase('t')
    i = IdxSym('i')
    j = IdxSym('j')
    alpha, beta = symbols('alpha, beta')
    A = OperatorSymbol("A", t[i], (alpha + 1)**2, hs=0)
    assert A.label == 'A'
    assert len(A.args) == 3
    assert A.kwargs == {'hs': LocalSpace('0')}
    assert A._get_instance_key(A.args, A.kwargs) == (
        OperatorSymbol,
        'A',
        t[i],
        (alpha + 1)**2,
        ('hs', A.space),
    )
    A_beta = OperatorSymbol("A", beta, (alpha + 1)**2, hs=0)
    assert A != A_beta
    assert A.substitute({t[i]: beta}) == A_beta
    half = sympy.sympify(1) / 2
    assert A.sym_args == (t[i], (alpha + 1)**2)
    assert A.free_symbols == {symbols('t'), i, t[i], alpha}
    assert len(A.bound_symbols) == 0
    assert A.simplify_scalar(sympy.expand) == OperatorSymbol("A",
                                                             t[i],
                                                             alpha**2 +
                                                             2 * alpha + 1,
                                                             hs=0)
    assert A.diff(beta) == ZeroOperator
    assert A.diff(t[j]) == ZeroOperator
    assert OperatorSymbol("A", t[i], i, j, hs=0).diff(t[j]) == ZeroOperator
    assert A.diff(alpha) == OperatorDerivative(A, derivs=((alpha, 1), ))
    assert A.expand() == A
    series = A.series_expand(t[i], about=beta, order=2)
    assert len(series) == 3
    assert series[0] == OperatorSymbol("A", beta, (alpha + 1)**2, hs=0)
    assert series[2] == half * OperatorDerivative(
        A, derivs=((t[i], 2), ), vals=((t[i], beta), ))