def test_ascii_symbolic_labels(): """Test ascii representation of symbols with symbolic labels""" i = IdxSym('i') j = IdxSym('j') hs0 = LocalSpace(0) hs1 = LocalSpace(1) Psi = IndexedBase('Psi') assert ascii(BasisKet(FockIndex(2 * i), hs=hs0)) == '|2*i>^(0)' assert ascii(KetSymbol(StrLabel(2 * i), hs=hs0)) == '|2*i>^(0)' assert (ascii(KetSymbol(StrLabel(Psi[i, j]), hs=hs0 * hs1)) == '|Psi_ij>^(0*1)') expr = BasisKet(FockIndex(i), hs=hs0) * BasisKet(FockIndex(j), hs=hs1) assert ascii(expr) == '|i,j>^(0*1)' assert ascii(Bra(BasisKet(FockIndex(2 * i), hs=hs0))) == '<2*i|^(0)' assert (ascii(LocalSigma(FockIndex(i), FockIndex(j), hs=hs0)) == '|i><j|^(0)') expr = CoherentStateKet(symbols('alpha'), hs=1).to_fock_representation() assert (ascii(expr) == 'exp(-alpha*conjugate(alpha)/2) * ' '(Sum_{n in H_1} alpha**n/sqrt(n!) * |n>^(1))') tls = SpinSpace(label='s', spin='1/2', basis=('down', 'up')) Sig = IndexedBase('sigma') n = IdxSym('n') Sig_n = OperatorSymbol(StrLabel(Sig[n]), hs=tls) assert ascii(Sig_n, show_hs_label=False) == 'sigma_n'
def test_tex_symbolic_labels(): """Test tex representation of symbols with symbolic labels""" i = IdxSym('i') j = IdxSym('j') hs0 = LocalSpace(0) hs1 = LocalSpace(1) Psi = IndexedBase('Psi') with configure_printing(tex_use_braket=True): assert latex(BasisKet(FockIndex(2 * i), hs=hs0)) == r'\Ket{2 i}^{(0)}' assert latex(KetSymbol(StrLabel(2 * i), hs=hs0)) == r'\Ket{2 i}^{(0)}' assert (latex(KetSymbol(StrLabel(Psi[i, j]), hs=hs0 * hs1)) == r'\Ket{\Psi_{i j}}^{(0 \otimes 1)}') expr = BasisKet(FockIndex(i), hs=hs0) * BasisKet(FockIndex(j), hs=hs1) assert latex(expr) == r'\Ket{i,j}^{(0 \otimes 1)}' assert (latex(Bra(BasisKet(FockIndex(2 * i), hs=hs0))) == r'\Bra{2 i}^{(0)}') assert (latex(LocalSigma(FockIndex(i), FockIndex(j), hs=hs0)) == r'\Ket{i}\!\Bra{j}^{(0)}') alpha = symbols('alpha') expr = CoherentStateKet(alpha, hs=1).to_fock_representation() assert (latex(expr) == r'e^{- \frac{\alpha \overline{\alpha}}{2}} ' r'\left(\sum_{n \in \mathcal{H}_{1}} ' r'\frac{\alpha^{n}}{\sqrt{n!}} \Ket{n}^{(1)}\right)') assert (latex( expr, conjg_style='star') == r'e^{- \frac{\alpha {\alpha}^*}{2}} ' r'\left(\sum_{n \in \mathcal{H}_{1}} ' r'\frac{\alpha^{n}}{\sqrt{n!}} \Ket{n}^{(1)}\right)') tls = SpinSpace(label='s', spin='1/2', basis=('down', 'up')) Sig = IndexedBase('sigma') n = IdxSym('n') Sig_n = OperatorSymbol(StrLabel(Sig[n]), hs=tls) assert latex(Sig_n, show_hs_label=False) == r'\hat{\sigma}_{n}'
def test_evaluate_symbolic_labels(): """Test the behavior of the `substitute` method for evaluation of symbolic labels""" i, j = symbols('i j', cls=IdxSym) A = IndexedBase('A') lbl = FockIndex(i + j) assert lbl.substitute({i: 1, j: 2}) == 3 assert lbl.substitute({i: 1}) == FockIndex(1 + j) assert lbl.substitute({j: 2}) == FockIndex(i + 2) assert lbl.substitute({i: 1}).substitute({j: 2}) == 3 assert lbl.substitute({}) == lbl lbl = StrLabel(A[i, j]) assert lbl.substitute({i: 1, j: 2}) == 'A_12' assert lbl.substitute({i: 1}) == StrLabel(A[1, j]) assert lbl.substitute({j: 2}) == StrLabel(A[i, 2]) assert lbl.substitute({i: 1}).substitute({j: 2}) == 'A_12' assert lbl.substitute({}) == lbl hs = SpinSpace('s', spin=3) lbl = SpinIndex(i + j, hs) assert lbl.substitute({i: 1, j: 2}) == '+3' assert lbl.substitute({i: 1}) == SpinIndex(1 + j, hs) assert lbl.substitute({j: 2}) == SpinIndex(i + 2, hs) assert lbl.substitute({i: 1}).substitute({j: 2}) == '+3' assert lbl.substitute({}) == lbl hs = SpinSpace('s', spin='3/2') lbl = SpinIndex((i + j) / 2, hs=hs) assert lbl.substitute({i: 1, j: 2}) == '+3/2' assert lbl.substitute({i: 1}) == SpinIndex((1 + j) / 2, hs) assert lbl.substitute({j: 2}) == SpinIndex((i + 2) / 2, hs) assert lbl.substitute({i: 1}).substitute({j: 2}) == '+3/2' assert lbl.substitute({}) == lbl
def test_indexed_hs_not_disjoint(): i, j = symbols('i, j', cls=IdxSym) hs_i = LocalSpace(StrLabel(i)) hs_j = LocalSpace(StrLabel(j)) assert not hs_i.isdisjoint(hs_i) assert not hs_i.isdisjoint(hs_j) expr = Create(hs=hs_j) * Destroy(hs=hs_i) assert expr.args == (Create(hs=hs_j), Destroy(hs=hs_i))
def test_quantum_symbols_with_indexedhs(): """Test the free_symbols method for objects that have a Hilbert space with a sybmolic label, for the example of an OperatorSymbol""" i, j = symbols('i, j', cls=IdxSym) hs_i = LocalSpace(StrLabel(i)) hs_j = LocalSpace(StrLabel(j)) A = OperatorSymbol("A", hs=hs_i * hs_j) assert A.free_symbols == {i, j} expr = Create(hs=hs_i) * Destroy(hs=hs_i) assert expr.free_symbols == { i, }
def test_indexed_sum_over_scalartimes(): """Test ScalarIndexedSum over a term that is an ScalarTimes instance""" i, j = symbols('i, j', cls=IdxSym) hs = LocalSpace(1, dimension=2) Psi_i = KetSymbol(StrLabel(IndexedBase('Psi')[i]), hs=hs) Psi_j = KetSymbol(StrLabel(IndexedBase('Psi')[j]), hs=hs) term = KroneckerDelta(i, j) * BraKet(Psi_i, Psi_j) assert isinstance(term, ScalarTimes) i_range = IndexOverFockSpace(i, hs) j_range = IndexOverFockSpace(j, hs) sum = ScalarIndexedSum.create(term, ranges=(i_range, j_range)) assert sum == hs.dimension
def test_sum_instantiator(): """Test use of Sum instantiator.""" i = IdxSym('i') j = IdxSym('j') ket_i = BasisKet(FockIndex(i), hs=0) ket_j = BasisKet(FockIndex(j), hs=0) A_i = OperatorSymbol(StrLabel(IndexedBase('A')[i]), hs=0) hs0 = LocalSpace('0') sum = Sum(i)(ket_i) ful = KetIndexedSum(ket_i, ranges=IndexOverFockSpace(i, hs=hs0)) assert sum == ful assert sum == Sum(i, hs0)(ket_i) assert sum == Sum(i, hs=hs0)(ket_i) sum = Sum(i, 1, 10)(ket_i) ful = KetIndexedSum(ket_i, ranges=IndexOverRange(i, 1, 10)) assert sum == ful assert sum == Sum(i, 1, 10, 1)(ket_i) assert sum == Sum(i, 1, to=10, step=1)(ket_i) assert sum == Sum(i, 1, 10, step=1)(ket_i) sum = Sum(i, (1, 2, 3))(ket_i) ful = KetIndexedSum(ket_i, ranges=IndexOverList(i, (1, 2, 3))) assert sum == KetIndexedSum(ket_i, ranges=IndexOverList(i, (1, 2, 3))) assert sum == Sum(i, [1, 2, 3])(ket_i) sum = Sum(i)(Sum(j)(ket_i * ket_j.dag())) ful = OperatorIndexedSum( ket_i * ket_j.dag(), ranges=(IndexOverFockSpace(i, hs0), IndexOverFockSpace(j, hs0)), ) assert sum == ful
def test_unicode_hilbert_elements(): """Test the unicode representation of "atomic" Hilbert space algebra elements""" assert unicode(LocalSpace(1)) == 'ℌ₁' assert unicode(LocalSpace(1, dimension=2)) == 'ℌ₁' assert unicode(LocalSpace(1, basis=('g', 'e'))) == 'ℌ₁' assert unicode(LocalSpace('local')) == 'ℌ_local' assert unicode(LocalSpace('kappa')) == 'ℌ_κ' assert unicode(TrivialSpace) == 'ℌ_null' assert unicode(FullSpace) == 'ℌ_total' assert unicode(LocalSpace(StrLabel(IdxSym('i')))) == 'ℌ_i'
def test_tex_hilbert_elements(): """Test the tex representation of "atomic" Hilbert space algebra elements""" assert latex(LocalSpace(1)) == r'\mathcal{H}_{1}' assert latex(LocalSpace(1, dimension=2)) == r'\mathcal{H}_{1}' assert latex(LocalSpace(1, basis=(r'g', 'e'))) == r'\mathcal{H}_{1}' assert latex(LocalSpace('local')) == r'\mathcal{H}_{\text{local}}' assert latex(LocalSpace('kappa')) == r'\mathcal{H}_{\kappa}' assert latex(TrivialSpace) == r'\mathcal{H}_{\text{null}}' assert latex(FullSpace) == r'\mathcal{H}_{\text{total}}' assert latex(LocalSpace(StrLabel(IdxSym('i')))) == r'\mathcal{H}_{i}'
def test_two_hs_symbol_sum(): """Test sum_{ij} a_{ij} Psi_{ij}""" i = IdxSym('i') j = IdxSym('j') a = IndexedBase('a') hs1 = LocalSpace('1', dimension=3) hs2 = LocalSpace('2', dimension=3) hs = hs1 * hs2 Psi = IndexedBase('Psi') a_ij = a[i, j] Psi_ij = Psi[i, j] KetPsi_ij = KetSymbol(StrLabel(Psi_ij), hs=hs) term = a_ij * KetPsi_ij expr1 = KetIndexedSum( term, ranges=(IndexOverFockSpace(i, hs=hs1), IndexOverFockSpace(j, hs=hs2)), ) expr2 = KetIndexedSum(term, ranges=(IndexOverRange(i, 0, 2), IndexOverRange(j, 0, 2))) assert expr1.term.free_symbols == set( [i, j, symbols('a'), symbols('Psi'), a_ij, Psi_ij]) assert expr1.free_symbols == set( [symbols('a'), symbols('Psi'), a_ij, Psi_ij]) assert expr1.variables == [i, j] assert ( ascii(expr1) == 'Sum_{i in H_1} Sum_{j in H_2} a_ij * |Psi_ij>^(1*2)') assert unicode(expr1) == '∑_{i ∈ ℌ₁} ∑_{j ∈ ℌ₂} a_ij |Ψ_ij⟩^(1⊗2)' assert (latex(expr1) == r'\sum_{i \in \mathcal{H}_{1}} \sum_{j \in \mathcal{H}_{2}} ' r'a_{i j} \left\lvert \Psi_{i j} \right\rangle^{(1 \otimes 2)}') assert ascii(expr2) == 'Sum_{i,j=0}^{2} a_ij * |Psi_ij>^(1*2)' assert unicode(expr2) == '∑_{i,j=0}^{2} a_ij |Ψ_ij⟩^(1⊗2)' assert (latex(expr2) == r'\sum_{i,j=0}^{2} a_{i j} ' r'\left\lvert \Psi_{i j} \right\rangle^{(1 \otimes 2)}') assert expr1.doit() == expr2.doit() assert expr1.doit() == KetPlus( a[0, 0] * KetSymbol('Psi_00', hs=hs), a[0, 1] * KetSymbol('Psi_01', hs=hs), a[0, 2] * KetSymbol('Psi_02', hs=hs), a[1, 0] * KetSymbol('Psi_10', hs=hs), a[1, 1] * KetSymbol('Psi_11', hs=hs), a[1, 2] * KetSymbol('Psi_12', hs=hs), a[2, 0] * KetSymbol('Psi_20', hs=hs), a[2, 1] * KetSymbol('Psi_21', hs=hs), a[2, 2] * KetSymbol('Psi_22', hs=hs), )
def test_ascii_hilbert_elements(): """Test the ascii representation of "atomic" Hilbert space algebra elements""" assert ascii(LocalSpace(1)) == 'H_1' assert ascii(LocalSpace(1, dimension=2)) == 'H_1' assert ascii(LocalSpace(1, basis=('g', 'e'))) == 'H_1' assert ascii(LocalSpace('local')) == 'H_local' assert ascii(LocalSpace('kappa')) == 'H_kappa' with pytest.raises(ValueError): LocalSpace(r'\kappa') assert ascii(TrivialSpace) == 'H_null' assert ascii(FullSpace) == 'H_total' assert ascii(LocalSpace(StrLabel(IdxSym('i')))) == 'H_i'
def test_unicode_symbolic_labels(): """Test unicode representation of symbols with symbolic labels""" i = IdxSym('i') j = IdxSym('j') hs0 = LocalSpace(0) hs1 = LocalSpace(1) Psi = IndexedBase('Psi') assert unicode(BasisKet(FockIndex(2 * i), hs=hs0)) == '|2 i⟩⁽⁰⁾' assert unicode(KetSymbol(StrLabel(2 * i), hs=hs0)) == '|2 i⟩⁽⁰⁾' assert (unicode(KetSymbol(StrLabel(Psi[i, j]), hs=hs0 * hs1)) == '|Ψ_ij⟩^(0⊗1)') expr = BasisKet(FockIndex(i), hs=hs0) * BasisKet(FockIndex(j), hs=hs1) assert unicode(expr) == '|i,j⟩^(0⊗1)' assert unicode(Bra(BasisKet(FockIndex(2 * i), hs=hs0))) == '⟨2 i|⁽⁰⁾' assert (unicode(LocalSigma(FockIndex(i), FockIndex(j), hs=hs0)) == '|i⟩⟨j|⁽⁰⁾') expr = CoherentStateKet(symbols('alpha'), hs=1).to_fock_representation() assert unicode(expr) == 'exp(-α α ⃰/2) (∑_{n ∈ ℌ₁} αⁿ/√n! |n⟩⁽¹⁾)' tls = SpinSpace(label='s', spin='1/2', basis=('down', 'up')) Sig = IndexedBase('sigma') n = IdxSym('n') Sig_n = OperatorSymbol(StrLabel(Sig[n]), hs=tls) assert unicode(Sig_n, show_hs_label=False) == 'σ̂ₙ'
def test_partial_expansion(): """Test partially executing the sum (only for a subset of summation indices)""" i = IdxSym('i') j = IdxSym('j') k = IdxSym('k') hs = LocalSpace('0', dimension=2) Psi = IndexedBase('Psi') def r(index_symbol): return IndexOverFockSpace(index_symbol, hs=hs) psi_ijk = KetSymbol(StrLabel(Psi[i, j, k]), hs=hs) def psi(i_val, j_val, k_val): return psi_ijk.substitute({i: i_val, j: j_val, k: k_val}) expr = KetIndexedSum(psi_ijk, ranges=(r(i), r(j), r(k))) expr_expanded = expr.doit(indices=[i]) assert expr_expanded == KetIndexedSum(psi(0, j, k) + psi(1, j, k), ranges=(r(j), r(k))) expr_expanded = expr.doit(indices=[j]) assert expr_expanded == KetIndexedSum(psi(i, 0, k) + psi(i, 1, k), ranges=(r(i), r(k))) assert expr.doit(indices=[j]) == expr.doit(indices=['j']) expr_expanded = expr.doit(indices=[i, j]) assert expr_expanded == KetIndexedSum(psi(0, 0, k) + psi(1, 0, k) + psi(0, 1, k) + psi(1, 1, k), ranges=r(k)) assert expr.doit(indices=[i, j]) == expr.doit(indices=[j, i]) assert expr.doit(indices=[i, j, k]) == expr.doit() with pytest.raises(ValueError): expr.doit(indices=[i], max_terms=10)
{}, OperatorPlus(-OpA, -OpB, -OpC), ), ( ScalarTimesOperator, 'R004', (2 * gamma, Half * OpA), {}, ScalarTimesOperator(gamma, OpA), ), # State Algebra # ... ( KetIndexedSum, 'R001', (KetSymbol(StrLabel(i), hs=0) - KetSymbol(StrLabel(i), hs=0), ), dict(ranges=(IndexOverFockSpace(i, hs=LocalSpace(0)), )), ZeroKet, ), ( KetIndexedSum, 'R002', (symbols('a') * BasisKet(FockIndex(i), hs=0), ), dict(ranges=(IndexOverRange(i, 0, 1), )), symbols('a') * KetIndexedSum(BasisKet(FockIndex(i), hs=0), ranges=(IndexOverRange(i, 0, 1), )), ), ] @pytest.mark.parametrize("cls, rule, args, kwargs, expected", TESTS)
def A(i, j): return OperatorSymbol(StrLabel(IndexedBase('A')[i, j]), hs=0)
def Psi(*args): return KetSymbol(StrLabel(Indexed(IndexedBase('Psi'), *args)), hs=0)
def A(i): if isinstance(i, IdxSym): return OperatorSymbol(StrLabel(Indexed('A', i)), hs=0) else: return OperatorSymbol("A_%s" % i, hs=0)