def train(self, training_data: TrainingData) -> None: x_train, y_train, x_val, y_val, vocab, class_to_i, i_to_class = preprocess_dataset( training_data) self.class_to_i = class_to_i self.i_to_class = i_to_class log.info('Batchifying data') train_batches = batchify(x_train, y_train, shuffle=True) val_batches = batchify(x_val, y_val, shuffle=False) self.model = ElmoModel(len(i_to_class), dropout=self.dropout) if CUDA: self.model = self.model.cuda() log.info(f'Parameters:\n{self.parameters()}') log.info(f'Model:\n{self.model}') parameters = list(self.model.classifier.parameters()) for mix in self.model.elmo._scalar_mixes: parameters.extend(list(mix.parameters())) self.optimizer = Adam(parameters) self.criterion = nn.CrossEntropyLoss() self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=5, verbose=True, mode='max') temp_prefix = get_tmp_filename() self.model_file = f'{temp_prefix}.pt' manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_acc', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), self.model_file, monitor='test_acc') ]) log.info('Starting training') epoch = 0 while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch(train_batches) random.shuffle(train_batches) self.model.eval() test_acc, test_loss, test_time = self.run_epoch(val_batches, train=False) stop_training, reasons = manager.instruct(train_time, train_loss, train_acc, test_time, test_loss, test_acc) if stop_training: log.info(' '.join(reasons)) break else: self.scheduler.step(test_acc) epoch += 1
def train(self, training_data): log.info('Loading Quiz Bowl dataset') train_iter, val_iter, dev_iter = QuizBowl.iters( batch_size=self.batch_size, lower=self.lowercase, use_wiki=self.use_wiki, n_wiki_sentences=self.n_wiki_sentences, replace_title_mentions=self.wiki_title_replace_token, sort_within_batch=True) log.info(f'Training Data={len(training_data[0])}') log.info(f'N Train={len(train_iter.dataset.examples)}') log.info(f'N Test={len(val_iter.dataset.examples)}') fields: Dict[str, Field] = train_iter.dataset.fields self.page_field = fields['page'] self.n_classes = len(self.ans_to_i) self.qanta_id_field = fields['qanta_id'] self.emb_dim = 300 self.text_field = fields['text'] log.info(f'Text Vocab={len(self.text_field.vocab)}') log.info('Initializing Model') self.model = RnnModel(self.n_classes, text_field=self.text_field, emb_dim=self.emb_dim, n_hidden_units=self.n_hidden_units, n_hidden_layers=self.n_hidden_layers, nn_dropout=self.nn_dropout) if CUDA: self.model = self.model.cuda() log.info(f'Parameters:\n{self.parameters()}') log.info(f'Model:\n{self.model}') self.optimizer = Adam(self.model.parameters()) self.criterion = nn.CrossEntropyLoss() self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=5, verbose=True, mode='max') temp_prefix = get_tmp_filename() self.model_file = f'{temp_prefix}.pt' manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_acc', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), self.model_file, monitor='test_acc') ]) log.info('Starting training') epoch = 0 while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch(train_iter) self.model.eval() test_acc, test_loss, test_time = self.run_epoch(val_iter) stop_training, reasons = manager.instruct(train_time, train_loss, train_acc, test_time, test_loss, test_acc) if stop_training: log.info(' '.join(reasons)) break else: self.scheduler.step(test_acc) epoch += 1
def train(self, training_data: TrainingData) -> None: if self.use_qb: x_train_text, y_train, x_test_text, y_test, vocab, class_to_i, i_to_class = preprocess_dataset( training_data) if self.use_wiki: wiki_dataset = WikipediaDataset(set(training_data[1])) wiki_train_data = wiki_dataset.training_data() w_x_train_text, w_train_y, _, _, _, _, _ = preprocess_dataset( wiki_train_data, train_size=1, vocab=vocab, class_to_i=class_to_i, i_to_class=i_to_class) x_train_text.extend(w_x_train_text) y_train.extend(w_train_y) else: if self.use_wiki: wiki_dataset = WikipediaDataset(set(training_data[1])) wiki_train_data = wiki_dataset.training_data() x_train_text, y_train, x_test_text, y_test, vocab, class_to_i, i_to_class = preprocess_dataset( wiki_train_data) else: raise ValueError( 'use_wiki and use_qb cannot both be false, otherwise there is no training data' ) self.class_to_i = class_to_i self.i_to_class = i_to_class self.vocab = vocab embeddings, embedding_lookup = load_embeddings(vocab=vocab, expand_glove=True) self.embeddings = embeddings self.embedding_lookup = embedding_lookup x_train = [ convert_text_to_embeddings_indices(q, embedding_lookup) for q in x_train_text ] for r in x_train: if len(r) == 0: r.append(embedding_lookup['UNK']) x_train = np.array(x_train) y_train = np.array(y_train) x_test = [ convert_text_to_embeddings_indices(q, embedding_lookup) for q in x_test_text ] for r in x_test: if len(r) == 0: r.append(embedding_lookup['UNK']) x_test = np.array(x_test) y_test = np.array(y_test) self.n_classes = compute_n_classes(training_data[1]) n_batches_train, t_x_train, t_offset_train, t_y_train = batchify( self.batch_size, x_train, y_train, truncate=True) n_batches_test, t_x_test, t_offset_test, t_y_test = batchify( self.batch_size, x_test, y_test, truncate=False) self.vocab_size = embeddings.shape[0] self.model = DanModel(self.vocab_size, self.n_classes, dropout_prob=self.dropout_prob, k_softmaxes=self.k_softmaxes, n_hidden_units=self.n_hidden_units, non_linearity=self.non_linearity) log.info(f'Parameters:\n{pformat(self.parameters())}') log.info(f'Torch Model:\n{self.model}') self.model.init_weights(initial_embeddings=embeddings) if CUDA: self.model = self.model.cuda() self.optimizer = Adam(self.model.parameters(), lr=self.learning_rate) self.criterion = nn.NLLLoss() # self.criterion = nn.CrossEntropyLoss() self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=5, verbose=True) tb_experiment = ' '.join( f'{param}={value}' for param, value in [('model', 'dan'), ('n_hidden_units', self.n_hidden_units), ('dropout_prob', self.dropout_prob), ('k_softmaxes', self.k_softmaxes), ('non_linearity', self.non_linearity), ('learning_rate', self.learning_rate), ('batch_size', self.batch_size)]) manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_loss', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), '/tmp/dan.pt', monitor='test_loss'), Tensorboard(tb_experiment) ]) log.info('Starting training...') while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch(n_batches_train, t_x_train, t_offset_train, t_y_train, evaluate=False) self.model.eval() test_acc, test_loss, test_time = self.run_epoch(n_batches_test, t_x_test, t_offset_test, t_y_test, evaluate=True) stop_training, reasons = manager.instruct(train_time, train_loss, train_acc, test_time, test_loss, test_acc) if stop_training: log.info(' '.join(reasons)) break else: self.scheduler.step(test_loss) log.info('Done training')
def train(self, training_data): log.info('Loading Quiz Bowl dataset') train_iter, val_iter, dev_iter = QuizBowl.iters( batch_size=self.batch_size, lower=self.lowercase, use_wiki=self.use_wiki, n_wiki_sentences=self.n_wiki_sentences, replace_title_mentions=self.wiki_title_replace_token ) log.info(f'N Train={len(train_iter.dataset.examples)}') log.info(f'N Test={len(val_iter.dataset.examples)}') fields: Dict[str, Field] = train_iter.dataset.fields self.page_field = fields['page'] self.n_classes = len(self.ans_to_i) self.qnum_field = fields['qnum'] self.text_field = fields['text'] self.emb_dim = self.text_field.vocab.vectors.shape[1] log.info(f'Vocab={len(self.text_field.vocab)}') log.info('Initializing Model') self.model = TiedModel( self.text_field, self.n_classes, emb_dim=self.emb_dim, n_hidden_units=self.n_hidden_units, n_hidden_layers=self.n_hidden_layers, nn_dropout=self.nn_dropout, sm_dropout=self.sm_dropout ) if CUDA: self.model = self.model.cuda() log.info(f'Parameters:\n{self.parameters()}') log.info(f'Model:\n{self.model}') self.optimizer = Adam(self.model.parameters(), lr=self.lr) self.criterion = nn.CrossEntropyLoss() self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=5, verbose=True, mode='max') manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_acc', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), '/tmp/tied.pt', monitor='test_acc') ]) log.info('Starting training') try: import socket from kuro import Worker worker = Worker(socket.gethostname()) experiment = worker.experiment( 'guesser', 'Tied', hyper_parameters=conf['guessers']['Tied'], metrics=[ 'train_acc', 'train_loss', 'test_acc', 'test_loss' ], n_trials=5 ) trial = experiment.trial() if trial is not None: self.kuro_trial_id = trial.id except ModuleNotFoundError: trial = None epoch = 0 while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch(train_iter) self.model.eval() test_acc, test_loss, test_time = self.run_epoch(val_iter) stop_training, reasons = manager.instruct( train_time, train_loss, train_acc, test_time, test_loss, test_acc ) if trial is not None: trial.report_metric('test_acc', test_acc, step=epoch) trial.report_metric('test_loss', test_loss, step=epoch) trial.report_metric('train_acc', train_acc, step=epoch) trial.report_metric('train_loss', train_loss, step=epoch) if stop_training: log.info(' '.join(reasons)) break else: self.scheduler.step(test_acc) epoch += 1
def train(self, training_data: TrainingData) -> None: x_train_text, y_train, x_test_text, y_test, vocab, class_to_i, i_to_class = preprocess_dataset( training_data ) self.class_to_i = class_to_i self.i_to_class = i_to_class self.vocab = vocab embeddings, embedding_lookup = load_embeddings(vocab=vocab, expand_glove=True) self.embeddings = embeddings self.embedding_lookup = embedding_lookup x_train = [convert_text_to_embeddings_indices(q, embedding_lookup) for q in x_train_text] for r in x_train: if len(r) == 0: r.append(embedding_lookup['UNK']) x_train = np.array(x_train) y_train = np.array(y_train) x_test = [convert_text_to_embeddings_indices(q, embedding_lookup) for q in x_test_text] for r in x_test: if len(r) == 0: r.append(embedding_lookup['UNK']) x_test = np.array(x_test) y_test = np.array(y_test) self.n_classes = compute_n_classes(training_data[1]) n_batches_train, t_x_train, t_offset_train, t_y_train = batchify( self.batch_size, x_train, y_train, truncate=True) n_batches_test, t_x_test, t_offset_test, t_y_test = batchify( self.batch_size, x_test, y_test, truncate=False) self.model = DanModel(embeddings.shape[0], self.n_classes) self.model.init_weights(initial_embeddings=embeddings) self.model.cuda() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate) self.criterion = nn.CrossEntropyLoss() manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_acc', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), '/tmp/dan.pt', monitor='test_acc') # Tensorboard('dan', log_dir='tb-logs') ]) log.info('Starting training...') while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch( n_batches_train, t_x_train, t_offset_train, t_y_train, evaluate=False ) self.model.eval() test_acc, test_loss, test_time = self.run_epoch( n_batches_test, t_x_test, t_offset_test, t_y_test, evaluate=True ) stop_training, reasons = manager.instruct( train_time, train_loss, train_acc, test_time, test_loss, test_acc ) if stop_training: log.info(' '.join(reasons)) break log.info('Done training')
def train(self, training_data): log.info("Loading Quiz Bowl dataset") train_iter, val_iter, dev_iter = QuizBowl.iters( batch_size=self.batch_size, lower=self.lowercase, use_wiki=self.use_wiki, n_wiki_sentences=self.n_wiki_sentences, replace_title_mentions=self.wiki_title_replace_token, combined_ngrams=self.combined_ngrams, unigrams=self.unigrams, bigrams=self.bigrams, trigrams=self.trigrams, combined_max_vocab_size=self.combined_max_vocab_size, unigram_max_vocab_size=self.unigram_max_vocab_size, bigram_max_vocab_size=self.bigram_max_vocab_size, trigram_max_vocab_size=self.trigram_max_vocab_size, ) log.info(f"N Train={len(train_iter.dataset.examples)}") log.info(f"N Test={len(val_iter.dataset.examples)}") fields: Dict[str, Field] = train_iter.dataset.fields self.page_field = fields["page"] self.n_classes = len(self.ans_to_i) self.qanta_id_field = fields["qanta_id"] self.emb_dim = 300 if "text" in fields: self.text_field = fields["text"] log.info(f"Text Vocab={len(self.text_field.vocab)}") if "unigram" in fields: self.unigram_field = fields["unigram"] log.info(f"Unigram Vocab={len(self.unigram_field.vocab)}") if "bigram" in fields: self.bigram_field = fields["bigram"] log.info(f"Bigram Vocab={len(self.bigram_field.vocab)}") if "trigram" in fields: self.trigram_field = fields["trigram"] log.info(f"Trigram Vocab={len(self.trigram_field.vocab)}") log.info("Initializing Model") self.model = DanModel( self.n_classes, text_field=self.text_field, unigram_field=self.unigram_field, bigram_field=self.bigram_field, trigram_field=self.trigram_field, emb_dim=self.emb_dim, n_hidden_units=self.n_hidden_units, n_hidden_layers=self.n_hidden_layers, nn_dropout=self.nn_dropout, pooling=self.pooling, ) if CUDA: self.model = self.model.cuda() log.info(f"Parameters:\n{self.parameters()}") log.info(f"Model:\n{self.model}") self.optimizer = Adam(self.model.parameters()) self.criterion = nn.CrossEntropyLoss() self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=5, verbose=True, mode="max") temp_prefix = get_tmp_filename() self.model_file = f"{temp_prefix}.pt" manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor="test_acc", patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), self.model_file, monitor="test_acc"), ]) log.info("Starting training") epoch = 0 while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch(train_iter) self.model.eval() test_acc, test_loss, test_time = self.run_epoch(val_iter) stop_training, reasons = manager.instruct(train_time, train_loss, train_acc, test_time, test_loss, test_acc) if stop_training: log.info(" ".join(reasons)) break else: self.scheduler.step(test_acc) epoch += 1
def train(self, training_data: TrainingData): x_train_text, y_train, x_test_text, y_test, vocab, class_to_i, i_to_class = preprocess_dataset( training_data) if self.use_wiki: wiki_dataset = FilteredWikipediaDataset() wiki_train_data = wiki_dataset.training_data() w_x_train_text, w_train_y, _, _, _, _, _ = preprocess_dataset( wiki_train_data, train_size=1, vocab=vocab, class_to_i=class_to_i, i_to_class=i_to_class) x_train_text.extend(w_x_train_text) y_train.extend(w_train_y) self.class_to_i = class_to_i self.i_to_class = i_to_class self.vocab = vocab embeddings, embedding_lookup = load_embeddings(vocab=vocab, expand_glove=True, mask_zero=True) self.embeddings = embeddings self.embedding_lookup = embedding_lookup x_train = [ convert_text_to_embeddings_indices(q, embedding_lookup, random_unk_prob=.05) for q in x_train_text ] for r in x_train: if len(r) == 0: r.append(embedding_lookup['UNK']) x_train = np.array(x_train) y_train = np.array(y_train) x_test = [ convert_text_to_embeddings_indices(q, embedding_lookup, random_unk_prob=.05) for q in x_test_text ] for r in x_test: if len(r) == 0: r.append(embedding_lookup['UNK']) x_test = np.array(x_test) y_test = np.array(y_test) self.n_classes = compute_n_classes(training_data[1]) n_batches_train, t_x_train, lengths_train, t_y_train, _ = batchify( self.batch_size, x_train, y_train, truncate=True) n_batches_test, t_x_test, lengths_test, t_y_test, _ = batchify( self.batch_size, x_test, y_test, truncate=False) self.model = RnnModel(embeddings.shape[0], self.n_classes) self.model.init_weights(embeddings=embeddings) self.model.cuda() self.optimizer = Adam(self.model.parameters(), lr=self.learning_rate) self.criterion = nn.CrossEntropyLoss() self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, 'max', patience=5, verbose=True) manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_acc', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), '/tmp/rnn.pt', monitor='test_acc') #Tensorboard('rnn', log_dir='tb-logs') ]) log.info('Starting training...') while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch(n_batches_train, t_x_train, lengths_train, t_y_train, evaluate=False) self.model.eval() test_acc, test_loss, test_time = self.run_epoch(n_batches_test, t_x_test, lengths_test, t_y_test, evaluate=True) stop_training, reasons = manager.instruct(train_time, train_loss, train_acc, test_time, test_loss, test_acc) if stop_training: log.info(' '.join(reasons)) break else: self.scheduler.step(test_acc) log.info('Done training')
def train(self, training_data: TrainingData) -> None: if self.use_qb: x_train_text, y_train, x_test_text, y_test, vocab, class_to_i, i_to_class = preprocess_dataset( training_data ) if self.use_wiki: wiki_dataset = WikipediaDataset(set(training_data[1])) wiki_train_data = wiki_dataset.training_data() w_x_train_text, w_train_y, _, _, _, _, _ = preprocess_dataset( wiki_train_data, train_size=1, vocab=vocab, class_to_i=class_to_i, i_to_class=i_to_class ) x_train_text.extend(w_x_train_text) y_train.extend(w_train_y) else: if self.use_wiki: wiki_dataset = WikipediaDataset(set(training_data[1])) wiki_train_data = wiki_dataset.training_data() x_train_text, y_train, x_test_text, y_test, vocab, class_to_i, i_to_class = preprocess_dataset( wiki_train_data ) else: raise ValueError('use_wiki and use_qb cannot both be false, otherwise there is no training data') self.class_to_i = class_to_i self.i_to_class = i_to_class self.vocab = vocab embeddings, embedding_lookup = load_embeddings(vocab=vocab, expand_glove=True) self.embeddings = embeddings self.embedding_lookup = embedding_lookup x_train = [convert_text_to_embeddings_indices(q, embedding_lookup) for q in x_train_text] for r in x_train: if len(r) == 0: r.append(embedding_lookup['UNK']) x_train = np.array(x_train) y_train = np.array(y_train) x_test = [convert_text_to_embeddings_indices(q, embedding_lookup) for q in x_test_text] for r in x_test: if len(r) == 0: r.append(embedding_lookup['UNK']) x_test = np.array(x_test) y_test = np.array(y_test) self.n_classes = compute_n_classes(training_data[1]) log.info(f'Batching: {len(x_train)} train questions and {len(x_test)} test questions') n_batches_train, t_x_train, t_offset_train, t_y_train = batchify( self.batch_size, x_train, y_train, truncate=True) n_batches_test, t_x_test, t_offset_test, t_y_test = batchify( self.batch_size, x_test, y_test, truncate=False) self.vocab_size = embeddings.shape[0] self.model = DanModel(self.vocab_size, self.n_classes, embeddings=embeddings) if CUDA: self.model = self.model.cuda() log.info(f'Model:\n{self.model}') self.optimizer = Adam(self.model.parameters(), lr=self.learning_rate) self.criterion = nn.CrossEntropyLoss() self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=5, verbose=True, mode='max') manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_acc', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), '/tmp/dan.pt', monitor='test_acc') ]) log.info('Starting training...') while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch( n_batches_train, t_x_train, t_offset_train, t_y_train, evaluate=False ) self.model.eval() test_acc, test_loss, test_time = self.run_epoch( n_batches_test, t_x_test, t_offset_test, t_y_test, evaluate=True ) stop_training, reasons = manager.instruct( train_time, train_loss, train_acc, test_time, test_loss, test_acc ) if stop_training: log.info(' '.join(reasons)) break else: self.scheduler.step(test_acc) log.info('Done training')
def train(self, training_data: TrainingData): log.info('Preprocessing the dataset') self.nlp = spacy.load('en', create_pipeline=custom_spacy_pipeline) x_train_tokens, y_train, x_test_tokens, y_test, vocab, class_to_i, i_to_class = preprocess_dataset( self.nlp, training_data) self.class_to_i = class_to_i self.i_to_class = i_to_class self.vocab = vocab log.info('Loading word embeddings') word_embeddings, multi_embedding_lookup = load_multi_embeddings( multi_vocab=vocab) self.word_embeddings = word_embeddings self.multi_embedding_lookup = multi_embedding_lookup log.info('Batching the dataset') train_dataset = BatchedDataset(self.batch_size, multi_embedding_lookup, x_train_tokens, y_train) test_dataset = BatchedDataset(self.batch_size, multi_embedding_lookup, x_test_tokens, y_test) self.n_classes = compute_n_classes(training_data[1]) log.info('Initializing neural model') self.model = RnnEntityModel(len(multi_embedding_lookup.word), len(multi_embedding_lookup.pos), len(multi_embedding_lookup.iob), len(multi_embedding_lookup.ent_type), self.n_classes) self.model.init_weights(word_embeddings=word_embeddings) self.model.cuda() self.optimizer = Adam(self.model.parameters(), lr=self.learning_rate) self.criterion = nn.CrossEntropyLoss() self.scheduler = lr_scheduler.ReduceLROnPlateau(self.optimizer, 'max', patience=5, verbose=True) manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_acc', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), '/tmp/rnn_entity.pt', monitor='test_acc') #Tensorboard('rnn_entity', log_dir='tb-logs') ]) log.info('Starting training...') while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch(train_dataset, evaluate=False) self.model.eval() test_acc, test_loss, test_time = self.run_epoch(test_dataset, evaluate=True) stop_training, reasons = manager.instruct(train_time, train_loss, train_acc, test_time, test_loss, test_acc) if stop_training: log.info(' '.join(reasons)) break else: self.scheduler.step(test_acc) log.info('Done training')
def train(self, training_data) -> None: log.info('Preprocessing data') x_train_text, y_train, x_test_text, y_test, vocab, class_to_i, i_to_class = preprocess_dataset( training_data ) self.class_to_i = class_to_i self.i_to_class = i_to_class self.vocab = vocab embeddings, embedding_lookup = load_embeddings(vocab=vocab, expand_glove=True, mask_zero=True) self.embeddings = embeddings self.embedding_lookup = embedding_lookup x_train = [convert_text_to_embeddings_indices(q, embedding_lookup) for q in x_train_text] for r in x_train: if len(r) == 0: r.append(embedding_lookup['UNK']) x_train = np.array(x_train) y_train = np.array(y_train) x_test = [convert_text_to_embeddings_indices(q, embedding_lookup) for q in x_test_text] for r in x_test: if len(r) == 0: r.append(embedding_lookup['UNK']) x_test = np.array(x_test) y_test = np.array(y_test) log.info('Batching data') n_batches_train, t_x_train, lengths_train, masks_train, t_y_train = batchify( self.batch_size, x_train, y_train, truncate=True ) n_batches_test, t_x_test, lengths_test, masks_test, t_y_test = batchify( self.batch_size, x_test, y_test, truncate=False, shuffle=False ) self.n_classes = compute_n_classes(training_data[1]) log.info('Creating model') self.model = BCN( 300, 500, embeddings.shape[0], self.n_classes, We=torch.from_numpy(embeddings) ).cuda() self.optimizer = Adam(self.model.parameters()) self.criterion = nn.NLLLoss() log.info(f'Model:\n{self.model}') manager = TrainingManager([ BaseLogger(log_func=log.info), TerminateOnNaN(), EarlyStopping(monitor='test_acc', patience=10, verbose=1), MaxEpochStopping(100), ModelCheckpoint(create_save_model(self.model), '/tmp/bcn.pt', monitor='test_acc'), Tensorboard('bcn') ]) log.info('Starting training...') while True: self.model.train() train_acc, train_loss, train_time = self.run_epoch( n_batches_train, t_x_train, lengths_train, masks_train, t_y_train, evaluate=False ) self.model.eval() test_acc, test_loss, test_time = self.run_epoch( n_batches_test, t_x_test, lengths_test, masks_test, t_y_test, evaluate=True ) stop_training, reasons = manager.instruct( train_time, train_loss, train_acc, test_time, test_loss, test_acc ) if stop_training: log.info(' '.join(reasons)) break