def run(self): make_dirs('output/summary/') call([ 'python3', 'qanta/reporting/performance.py', 'generate', c.PRED_TARGET.format(self.fold), c.META_TARGET.format(self.fold), 'output/summary/{0}.json'.format(self.fold) ])
def run(self): make_dirs('output/models/') call([ 'vw', '-d', c.VW_INPUT.format('dev'), '-b', '30', '--loss_function', 'logistic', '-f', c.VW_MODEL ])
def run(self): make_dirs("output/summary/") call([ "python3", "qanta/reporting/performance.py", "generate", c.PRED_TARGET.format(self.fold), c.META_TARGET.format(self.fold), "output/summary/{0}.json".format(self.fold), ])
def run(self): make_dirs('output/predictions/') shell( ('vw -t ' '-d output/vw_input/{fold}.vw.txt ' '--loss_function logistic ' '-i {vw_model} --audit ' '| python cli.py format_vw_audit ' '> output/predictions/{fold}.audit').format(fold='test', vw_model=c.VW_MODEL) )
def run(self): make_dirs('output/predictions/') call([ 'vw', '-t', '--loss_function', 'logistic', '-d', c.VW_INPUT.format(self.fold), '-i', c.VW_MODEL, '-p', c.VW_PREDICTIONS.format(self.fold) ])
def run(self): make_dirs('output/tagme/') db = QuestionDatabase() questions = list(db.all_questions().values()) batch = 0 batch_lookup = {} while batch * BATCH_SIZE < len(questions): batch_questions = questions[batch * BATCH_SIZE:(batch + 1) * BATCH_SIZE] batch_lookup[batch] = batch_questions batch += 1 with open('output/tagme/batches.pickle', 'wb') as f: pickle.dump(batch_lookup, f) with open('output/tagme/meta.pickle', 'wb') as f: pickle.dump(batch, f)
def run(self): make_dirs(safe_path("output/predictions/")) make_dirs(safe_path("output/expo/")) make_dirs(safe_path("output/vw_input/")) config = conf["buzzer"]["config"] buzzer_test.generate(config, [self.fold])
def run(self): make_dirs(safe_path("output/buzzers/")) train_cost_sensitive(conf["buzzer"]["config"], c.BUZZER_GENERATION_FOLDS)
def run(self): make_dirs(safe_path('output/predictions/')) make_dirs(safe_path('output/expo/')) make_dirs(safe_path('output/vw_input/')) config=conf['buzzer']['config'] buzzer_test.generate(config, [self.fold])
def run(self): make_dirs(safe_path('output/buzzers/')) train_cost_sensitive(conf['buzzer']['config'], c.BUZZER_GENERATION_FOLDS)
def run(self): make_dirs(safe_path('output/predictions/')) make_dirs(safe_path('output/expo/')) make_dirs(safe_path('output/vw_input/')) args = Namespace(fold=self.fold, config=conf['buzzer']['config']) buzzer_test.generate(args)
def run(self): make_dirs(safe_path('output/buzzers/')) args = Namespace(config=conf['buzzer']['config'], epochs=6, load=False) train_cost_sensitive(args)
def output(self): make_dirs('output/predictions/') return LocalTarget( c.VW_PREDICTIONS.format(self.fold))