Пример #1
0
    thr = None
    thr_result = None
    trains_to_update = [
        train_next[n_train]['more_files'] for n_train in range(len(train_next))
    ]

    for epoch in range(EPOCHS_TO_RUN):
        """
        update files after each epoch, all 4.
        Convert to threads after testing
        """
        if (FILE_UPDATE_EPOCHS > 0) and (epoch % FILE_UPDATE_EPOCHS == 0):
            if not thr is None:
                if thr.is_alive():
                    qsf.print_time("***WAITING*** until tfrecord gets loaded",
                                   end=" ")
                else:
                    qsf.print_time("tfrecord is ***ALREADY LOADED*** ",
                                   end=" ")

                thr.join()
                qsf.print_time("Done")
                qsf.print_time("Inserting new data", end=" ")
                for n_train in range(len(trains_to_update)):
                    if trains_to_update[n_train]:
                        qsf.add_file_to_dataset(
                            dataset=dataset_train,
                            new_dataset=thr_result[n_train],
                            train_next=train_next[n_train])
                qsf.print_time("Done")
            thr_result = []
 dataset_img = qsf.readImageData(
     image_data =     image_data,
     files =          files,
     indx =           nimg,
     cluster_radius = 0, # CLUSTER_RADIUS,
     tile_layers =    TILE_LAYERS,
     tile_side =      TILE_SIDE,
     width =          IMG_WIDTH,
     replace_nans =   True,
     infer =          True,
     keep_gt =        True) # to generate same output files
 img_corr2d = dataset_img['corr2d'] # (?,324)
 img_target = dataset_img['target_disparity'] # (?,1)
 img_ntile =  dataset_img['ntile'].reshape([-1]) # (?) - 0...78k int32
 #run first stage network
 qsf.print_time("Running inferred model, stage1", end=" ")
 _  = sess.run([stage1done],
                 feed_dict={ph_corr2d:            img_corr2d,
                            ph_target_disparity:  img_target,
                            ph_ntile:             img_ntile })
 qsf.print_time("Done.")
 qsf.print_time("Running inferred model, stage2", end=" ")
 disp_out,  = sess.run([stage2_out_sparse],
                 feed_dict={ph_ntile_out:         img_ntile })
 qsf.print_time("Done.")
 result_file = files['result'][nimg].replace('.npy','-infer.npy') #not to overwrite training result files that are more complete
 try:
     os.makedirs(os.path.dirname(result_file))
 except:
     pass     
 rslt = np.concatenate(