Пример #1
0
def neg(x):
    '''Returns the negitive of a Measurement object
    '''
    import qexpy.error as e

    x, = check_values(x)
    result_derivative = {}
    for key in x.derivative:
        result_derivative[key] = -x.derivative[key]
    result = e.Function(-x.mean, x.std)
    result.derivative.update(result_derivative)
    result._update_info('neg', x, func_flag=1)
    result.error_flag = True
    return result
Пример #2
0
def operation_wrap(operation, *args, func_flag=False):
    '''e.Function wrapper to convert existing,  constant functions into functions
    which can handle measurement objects and return an error propagated by
    derivative,  min-max,  or Monte Carlo method.
    '''
    import qexpy.error as e

    args = check_values(*args)

    if len(args) > 1:
        args[0].get_covariance(args[1])

    if func_flag is False:
        args[0]._check_der(args[1])
        args[1]._check_der(args[0])

    df = {}
    for key in args[0].derivative:
        df[key] = diff[operation](key, *args)

    if check_formula(operation, *args, func_flag=func_flag) is not None:
        return check_formula(op_string[operation], *args, func_flag=func_flag)

    mean = operation(*args)
    std = dev(*args, der=df)
    result = e.Function(mean, std)
    result.der = [mean, std]
    result.MinMax = find_minmax(operation, *args)
    result.MC, result.MC_list = monte_carlo(operation, *args)

    #TODO: This is wrong: should not keep changing the mean and std
    # the error method should only change this on a print!!!
    
    # Derivative Method
    #if e.ExperimentalValue.error_method == "Derivative":
    #    pass

    # By Min-Max method
    #elif e.ExperimentalValue.error_method == "Min Max":
    #    (mean, std, ) = result.MinMax

    # Monte Carlo Method
    #elif e.ExperimentalValue.error_method == 'Monte Carlo':
    #    (mean, std, ) = result.MC

    #else:
    #    print('''Error method not properly set, please set to derivatie, Monte
    #    Carlo, or Min-Max. Derivative method used by default.''')

    if func_flag is False and args[0].info["Data"] is not None\
            and args[1].info['Data'] is not None\
            and args[0].info['Data'].size == args[1].info['Data'].size:
        d1 = args[0].info["Data"]
        d2 = args[1].info["Data"]
        result.info['Data'] = np.ndarray(d1.size, dtype=type(d1[0]))
        for i in range(d1.size):           
            result.info["Data"][i] = operation(d1[i],d2[i])

    elif args[0].info["Data"] is not None and func_flag is True:
        result.info["Data"] = (operation(args[0].info["Data"]))

    result.derivative.update(df)
    result._update_info(operation, *args, func_flag=func_flag)

    for root in result.root:
        result.get_covariance(e.ExperimentalValue.register[root])

    return result