] optimizers = [ SgdOptimizer(1), SgdOptimizer(0.1), SgdOptimizer(0.05), AdamOptimizer(len(psi.parameters), 0.1, 0.9), AdamOptimizer(len(psi.parameters), 0.1, 0.8), ] E = [] for opt in optimizers: # psi.parameters = org_params psi = RBMWavefunction(N * D, 2) # psi = SimpleGaussian(0.8) sampler = ImportanceSampler(system, psi, 0.1) sampler.thermalize(10000) E_training = EnergyCallback(samples=1000000, verbose=True) train( psi, H, sampler, iters=500, samples=1000, gamma=0.0, optimizer=opt, call_backs=[E_training], call_back_resolution=50, ) E.append(np.asarray(E_training)) if master_rank(): fig, ax = plt.subplots()