'b': Bool % P }, outputs=[ ('x', R) ], name='Bool Flag Swaps Output Method', description='Test if a parameter can change output' ) del P, R def predicates_preserved_method(a: EchoFormat) -> EchoFormat: return a P = TypeMatch([Properties('A'), Properties('B'), Properties('C'), Properties('X', 'Y')]) dummy_plugin.methods.register_function( function=predicates_preserved_method, inputs={ 'a': Foo % P }, parameters={}, outputs=[ ('x', Foo % P) ], name='Predicates Preserved Method', description='Test that predicates are preserved' ) del P
from q2_types.distance_matrix import DistanceMatrix from q2_types.sample_data import AlphaDiversity, SampleData from q2_types.tree import Phylogeny, Rooted from q2_types.ordination import PCoAResults plugin = Plugin( name='diversity', version=q2_diversity.__version__, website='https://github.com/qiime2/q2-diversity', package='q2_diversity' ) plugin.methods.register_function( function=q2_diversity.beta_phylogenetic, inputs={'table': FeatureTable[Frequency] % Properties('uniform-sampling'), 'phylogeny': Phylogeny[Rooted]}, parameters={'metric': Str % Choices(beta.phylogenetic_metrics())}, outputs=[('distance_matrix', DistanceMatrix % Properties('phylogenetic'))], input_descriptions={ 'table': ('The feature table containing the samples over which beta ' 'diversity should be computed.'), 'phylogeny': ('Phylogenetic tree containing tip identifiers that ' 'correspond to the feature identifiers in the table. ' 'This tree can contain tip ids that are not present in ' 'the table, but all feature ids in the table must be ' 'present in this tree.') }, parameter_descriptions={ 'metric': 'The beta diversity metric to be computed.' },
function=differential_plot, inputs={ "ranks": FeatureData[Differential], "table": FeatureTable[Frequency], }, parameters=params, parameter_descriptions=param_descs, input_descriptions={"ranks": "Feature differentials.", "table": TABLE}, name=short_desc.format("differential"), description=long_desc.format("differential"), ) plugin.visualizers.register_function( function=loading_plot, inputs={ "ranks": PCoAResults % Properties("biplot"), "table": FeatureTable[Frequency], }, parameters=params, parameter_descriptions=param_descs, input_descriptions={ "ranks": "A biplot containing feature loadings.", "table": TABLE, }, name=short_desc.format("loading"), description=long_desc.format("loading"), ) qarcoal_params = { "num_string": Str, "denom_string": Str,
parameters={ 'metadata': Metadata, 'formula': Str, 'training_column': Str, 'num_random_test_examples': Int, 'epoch': Int, 'batch_size': Int, 'beta_prior': Float, 'learning_rate': Float, 'clipnorm': Float, 'min_sample_count': Int, 'min_feature_count': Int, 'summary_interval': Int }, outputs=[('coefficients', FeatureTable[Composition % Properties('coefficients')])], input_descriptions={ 'table': 'Input table of counts.', }, parameter_descriptions={ 'metadata': 'Sample metadata table with covariates of interest.', 'formula': ('The statistical formula specifying covariates to be ' 'included in the model and their interactions'), 'num_random_test_examples': ("The number of random examples to select " "if `training_column` isn't specified"), 'epoch': ('The number of total number of iterations ' 'over the entire dataset'), 'batch_size': ('The number of samples to be evaluated per ' 'training iteration'), 'beta_prior': ('Width of normal prior for the coefficients '
function=supervised_rank_plot, inputs={ 'ranks': FeatureData[Differential], 'table': FeatureTable[Frequency] }, parameters=params, input_descriptions={ 'ranks': ranks_desc.format("differentials", "songbird"), 'table': table_desc }, name=short_desc.format("songbird"), description=long_desc.format("songbird")) plugin.visualizers.register_function(function=unsupervised_rank_plot, inputs={ 'ranks': PCoAResults % Properties("biplot"), 'table': FeatureTable[Frequency] }, parameters=params, input_descriptions={ 'ranks': ranks_desc.format( "ordination", "DEICODE"), 'table': table_desc }, name=short_desc.format("DEICODE"), description=long_desc.format("DEICODE"))
website='http://bryandmartin.github.io/corncob/', package='q2_corncob', description=('This QIIME 2 plugin wraps corncob and supports ' 'single-taxon regression using the corncob R library.'), short_description='Plugin for single-taxon regression with corncob.', citations=[citations['martin2018']] ) plugin.methods.register_function( function=q2_corncob.differentialtest, inputs={'table': FeatureTable[Frequency], 'taxonomy': FeatureData[Taxonomy] }, parameters={'metadata': Metadata, 'variable': Str, }, outputs=[('output',FeatureData[Taxonomy % Properties(["Taxon", "DA", "DV"])])], input_descriptions={'table': ('A feature table.'), 'taxonomy': ('Your taxonomic classification by unique feature') }, output_descriptions={'output': 'A table of FDR <0.05 p-values.' }, parameter_descriptions={'metadata': ('Your metadata'), 'variable': ('A categorical variable in your metadata')}, name='Run differential test', description='This method runs differential test.' )
"some degree of accuracy loss, the magnitude " "of which varies across different datasets." }, output_descriptions={'pcoa': 'The resulting PCoA matrix.'}, name='Principal Coordinate Analysis', description=("Apply principal coordinate analysis."), citations=[citations['legendrelegendre'], citations['halko2010']]) plugin.methods.register_function( function=q2_diversity.pcoa_biplot, inputs={ 'pcoa': PCoAResults, 'features': FeatureTable[RelativeFrequency] }, parameters={}, outputs=[('biplot', PCoAResults % Properties('biplot'))], input_descriptions={ 'pcoa': 'The PCoA where the features will be projected onto.', 'features': 'Variables to project onto the PCoA matrix' }, parameter_descriptions={}, output_descriptions={'biplot': 'The resulting PCoA matrix.'}, name='Principal Coordinate Analysis Biplot', description="Project features into a principal coordinates matrix. The " "features used should be the features used to compute the " "distance matrix. It is recommended that these variables be" " normalized in cases of dimensionally heterogeneous physical" " variables.", citations=[citations['legendrelegendre']]) plugin.methods.register_function(
'formula': Str, 'training_column': Str, 'num_random_test_examples': Int, 'epochs': Int, 'batch_size': Int, 'differential_prior': Float, 'learning_rate': Float, 'clipnorm': Float, 'min_sample_count': Int, 'min_feature_count': Int, 'summary_interval': Int, 'random_seed': Int, }, outputs=[('differentials', FeatureData[Differential]), ('regression_stats', SampleData[SongbirdStats]), ('regression_biplot', PCoAResults % Properties('biplot'))], input_descriptions={ 'table': DESCS["table"], }, output_descriptions={ 'differentials': ('Output differentials learned from the ' 'multinomial regression.'), 'regression_stats': ('Summary information about the loss ' 'and cross validation error over iterations.'), 'regression_biplot': ('A biplot of the regression coefficients') }, parameter_descriptions={ 'metadata': DESCS["metadata"], 'formula': DESCS["formula"], "training_column": DESCS["training-column"], 'num_random_test_examples': DESCS["num-random-test-examples"],
short_description=('Plugin for Robust Aitchison PCA:' 'compositional biplots from sparse count data.'), description=('This is a QIIME 2 plugin supporting Robust Aitchison on ' 'feature tables'), package='deicode') plugin.methods.register_function( function=rpca, inputs={'table': FeatureTable[Frequency]}, parameters={ 'n_components': Int, 'min_sample_count': Int, 'min_feature_count': Int, 'max_iterations': Int, }, outputs=[('biplot', PCoAResults % Properties("biplot")), ('distance_matrix', DistanceMatrix)], input_descriptions={ 'table': 'Input table of counts.', }, parameter_descriptions={ 'n_components': DESC_RANK, 'min_sample_count': DESC_MSC, 'min_feature_count': DESC_MFC, 'max_iterations': DESC_ITERATIONS, }, output_descriptions={ 'biplot': ('A biplot of the (Robust Aitchison) RPCA feature loadings'), 'distance_matrix': ('The Aitchison distance of' 'the sample loadings from RPCA.') },
parameters={ 'metadata': Metadata, 'training_column': Str, 'num_testing_examples': Int, 'min_feature_count': Int, 'epochs': Int, 'batch_size': Int, 'latent_dim': Int, 'input_prior': Float, 'output_prior': Float, 'learning_rate': Float, 'summary_interval': Int }, outputs=[ ('conditionals', FeatureData[Conditional]), ('conditional_biplot', PCoAResults % Properties('biplot')) ], input_descriptions={ 'microbes': 'Input table of microbial counts.', 'metabolites': 'Input table of metabolite intensities.', }, output_descriptions={ 'conditionals': 'Mean-centered Conditional log-probabilities.', 'conditional_biplot': 'Biplot of microbe-metabolite vectors.', }, parameter_descriptions={ 'metadata': 'Sample metadata table with covariates of interest.', 'training_column': "The metadata column specifying which " "samples are for training/testing. " "Entries must be marked `Train` for training " "examples and `Test` for testing examples. ",
}, parameters=PARAMETERS, input_descriptions={ 'reference_pcoa': 'The reference ordination matrix to be plotted.', 'other_pcoa': 'The "other" ordination matrix to be plotted (the one ' 'that was fitted to the reference).' }, parameter_descriptions=PARAMETERS_DESC, name='Visualize and Interact with a procrustes plot', description='Plot two procrustes-fitted matrices') plugin.visualizers.register_function( function=biplot, inputs={'biplot': PCoAResults % Properties("biplot")}, parameters={ 'sample_metadata': Metadata, 'feature_metadata': Metadata, 'ignore_missing_samples': Bool, 'invert': Bool, 'number_of_features': Int % Range(1, None) }, input_descriptions={ 'biplot': 'The principal coordinates matrix to be plotted.' }, parameter_descriptions={ 'sample_metadata': 'The sample metadata', 'feature_metadata': 'The feature metadata (useful to manipulate the '
'Daniel McDonald, Jose C Clemente, Justin Kuczynski, ' 'Jai Ram Rideout, Jesse Stombaugh, Doug Wendel, Andreas ' 'Wilke, Susan Huse, John Hufnagle, Folker Meyer, Rob ' 'Knight and J Gregory Caporaso. GigaScience 1:7 (2012).' 'doi:10.1186/2047-217X-1-7'), short_description=('Plugin for working with sample by feature tables.'), description=('This is a QIIME 2 plugin supporting operations on sample ' 'by feature tables, such as filtering, merging, and ' 'transforming tables.')) plugin.methods.register_function( function=q2_feature_table.rarefy, inputs={'table': FeatureTable[Frequency]}, parameters={'sampling_depth': Int}, outputs=[('rarefied_table', FeatureTable[Frequency] % Properties('uniform-sampling'))], input_descriptions={'table': 'The feature table to be rarefied.'}, parameter_descriptions={ 'sampling_depth': ('The total frequency that each sample should be ' 'rarefied to. Samples where the sum of frequencies ' 'is less than the sampling depth will be not be ' 'included in the resulting table.') }, output_descriptions={ 'rarefied_table': 'The resulting rarefied feature table.' }, name='Rarefy table', description=("Subsample frequencies from all samples without replacement " "so that the sum of frequencies in each sample is equal to " "sampling-depth."))
plugin = qiime2.plugin.Plugin(name='breakaway', version=q2_breakaway.__version__, website='http://github.com/adw96/breakaway/', package='q2_breakaway', description=('baway'), short_description='ba.', citations=qiime2.plugin.Citations.load( 'citations.bib', package='q2_breakaway')) _METRIC_CHOICES = {'richness', 'chao_bunge'} plugin.methods.register_function( function=q2_breakaway.breakaway, inputs={'table': FeatureTable[Frequency]}, outputs=[('alpha_diversity', SampleData[AlphaDiversity % Properties( ["StandardError", "LowerConfidence", "UpperConfidence"])])], parameters={'metric': Str % Choices(_METRIC_CHOICES)}, input_descriptions={ 'table': ('The feature table containing the samples for which alpha ' 'diversity should be computed.') }, parameter_descriptions={ 'metric': 'An alpha diversity metric', }, output_descriptions={ 'alpha_diversity': 'Vector containing per-sample alpha diversities.' }, name='Richness, better', description='Amy\'s opinionated ideas about richness as a q2, ' 'plug-in.')
plugin.methods.register_function( function=q2_cscs.q2_cscs.cscs, inputs={ 'features': FeatureTable[Frequency], }, parameters={ 'css_edges': qiime2.plugin.Str, 'weighted': qiime2.plugin.Bool, 'normalization': qiime2.plugin.Bool, 'cosine_threshold': qiime2.plugin.Float % qiime2.plugin.Range(0., None), 'cpus': qiime2.plugin.Int, 'chunk': qiime2.plugin.Int }, outputs=[('distance_matrix', DistanceMatrix % Properties('phylogenetic'))], input_descriptions={ 'features': ('The feature table containing the samples over which the chemical structural and compositional dissimilarity metric ' 'should be computed.') }, parameter_descriptions={ 'css_edges': '.tsv file containing pair wise cosine scores for all features provided in the feature table', 'normalization': 'Perform Total Ion Current Normalization (TIC) on the feature table', 'cosine_threshold': 'Min. cosine score between two features to be included', 'weighted': 'Weight CSCS by feature intensity', 'cpus': 'How many parallel processeces to run', 'chunk': 'How large pieces to parallelize'
plugin = qiime2.plugin.Plugin( name='gemelli', version=__version__, website="https://github.com/biocore/gemelli", citations=[citations['Martino2019']], short_description=('Plugin for Compositional Tensor Factorization'), description=('This is a QIIME 2 plugin supporting Robust Aitchison on ' 'feature tables'), package='gemelli') plugin.methods.register_function( function=ctf, inputs={'table': FeatureTable[Frequency]}, parameters=PARAMETERS, outputs=[('subject_biplot', PCoAResults % Properties("biplot")), ('state_biplot', PCoAResults % Properties("biplot")), ('distance_matrix', DistanceMatrix), ('state_subject_ordination', SampleData[SampleTrajectory]), ('state_feature_ordination', FeatureData[FeatureTrajectory])], input_descriptions={'table': DESC_BIN}, parameter_descriptions=PARAMETERDESC, output_descriptions={ 'subject_biplot': QLOAD, 'state_biplot': QSOAD, 'distance_matrix': QDIST, 'state_subject_ordination': QORD, 'state_feature_ordination': QORD }, name='Compositional Tensor Factorization - Mode 3', description=("Gemelli resolves spatiotemporal subject variation and the"
'statistics and visualizations in the context of sample ' 'metadata.'), short_description='Plugin for exploring community diversity.', ) plugin.methods.register_function( function=q2_diversity.beta_phylogenetic, inputs={ 'table': FeatureTable[Frequency], 'phylogeny': Phylogeny[Rooted] }, parameters={ 'metric': Str % Choices(beta.phylogenetic_metrics()), 'n_jobs': Int % Range(1, None) }, outputs=[('distance_matrix', DistanceMatrix % Properties('phylogenetic'))], input_descriptions={ 'table': ('The feature table containing the samples over which beta ' 'diversity should be computed.'), 'phylogeny': ('Phylogenetic tree containing tip identifiers that ' 'correspond to the feature identifiers in the table. ' 'This tree can contain tip ids that are not present in ' 'the table, but all feature ids in the table must be ' 'present in this tree.') }, parameter_descriptions={ 'metric': 'The beta diversity metric to be computed.', 'n_jobs': '[Excluding weighted_unifrac] - %s' % sklearn_n_jobs_description }, output_descriptions={'distance_matrix': 'The resulting distance matrix.'},
def test_complicated_semantic_type(self): self.assert_roundtrip( C2[C1[Foo % Properties(["A", "B"]) | Bar], Foo % Properties("A")] % Properties(exclude=["B", "C"]))
P, R = TypeMap({Choices(True): C1[Foo], Choices(False): Foo}) dummy_plugin.methods.register_function( function=bool_flag_swaps_output_method, inputs={'a': Bar}, parameters={'b': Bool % P}, outputs=[('x', R)], name='Bool Flag Swaps Output Method', description='Test if a parameter can change output') del P, R def predicates_preserved_method(a: EchoFormat) -> EchoFormat: return a P = TypeMatch( [Properties('A'), Properties('B'), Properties('C'), Properties('X', 'Y')]) dummy_plugin.methods.register_function( function=predicates_preserved_method, inputs={'a': Foo % P}, parameters={}, outputs=[('x', Foo % P)], name='Predicates Preserved Method', description='Test that predicates are preserved') del P
plugin = qiime2.plugin.Plugin(name='breakaway', version=q2_breakaway.__version__, website='http://github.com/adw96/breakaway/', package='q2_breakaway', description=('baway'), short_description='ba.', citations=qiime2.plugin.Citations.load( 'citations.bib', package='q2_breakaway')) _METRIC_CHOICES = {'richness', 'chao_bunge'} plugin.methods.register_function( function=q2_breakaway.alpha, inputs={'table': FeatureTable[Frequency]}, outputs=[('alpha_diversity', SampleData[AlphaDiversity % Properties([ "StandardError", "LowerConfidence", "UpperConfidence", "SampleNames", "MethodName", "ModelType" ])])], parameters={'metric': Str % Choices(_METRIC_CHOICES)}, input_descriptions={ 'table': ('The feature table containing the samples for which alpha ' 'diversity should be computed.') }, parameter_descriptions={ 'metric': 'An alpha diversity metric', }, output_descriptions={ 'alpha_diversity': 'Vector containing per-sample alpha diversities.' }, name='Richness, better', description='Amy\'s opinionated ideas about richness as a q2, ' 'plug-in.')