Пример #1
0
    def test_qsvm_binary_directly_statevector(self):
        """ QSVM Binary Directly Statevector test """
        ref_kernel_testing = np. array([[0.1443953, 0.18170069, 0.47479649, 0.14691763],
                                        [0.33041779, 0.37663733, 0.02115561, 0.16106199]])

        ref_support_vectors = np.array([[2.95309709, 2.51327412], [3.14159265, 4.08407045],
                                        [4.08407045, 2.26194671], [4.46106157, 2.38761042]])

        backend = BasicAer.get_backend('statevector_simulator')
        num_qubits = 2
        feature_map = SecondOrderExpansion(feature_dimension=num_qubits,
                                           depth=2,
                                           entangler_map=[[0, 1]])
        svm = QSVM(feature_map, self.training_data, self.testing_data, None)

        quantum_instance = QuantumInstance(backend, seed_transpiler=self.random_seed,
                                           seed_simulator=self.random_seed)
        file_path = self.get_resource_path('qsvm_test.npz')
        try:
            result = svm.run(quantum_instance)

            ori_alphas = result['svm']['alphas']

            np.testing.assert_array_almost_equal(
                result['kernel_matrix_testing'], ref_kernel_testing, decimal=4)

            self.assertEqual(len(result['svm']['support_vectors']), 4)
            np.testing.assert_array_almost_equal(
                result['svm']['support_vectors'], ref_support_vectors, decimal=4)

            self.assertEqual(result['testing_accuracy'], 0.5)

            svm.save_model(file_path)

            self.assertTrue(os.path.exists(file_path))

            loaded_svm = QSVM(feature_map)
            loaded_svm.load_model(file_path)

            np.testing.assert_array_almost_equal(
                loaded_svm.ret['svm']['support_vectors'], ref_support_vectors, decimal=4)

            np.testing.assert_array_almost_equal(
                loaded_svm.ret['svm']['alphas'], ori_alphas, decimal=4)

            loaded_test_acc = loaded_svm.test(svm.test_dataset[0],
                                              svm.test_dataset[1],
                                              quantum_instance)
            self.assertEqual(result['testing_accuracy'], loaded_test_acc)

            np.testing.assert_array_almost_equal(
                loaded_svm.ret['kernel_matrix_testing'], ref_kernel_testing, decimal=4)
        except NameError as ex:
            self.skipTest(str(ex))
        finally:
            if os.path.exists(file_path):
                try:
                    os.remove(file_path)
                except Exception:  # pylint: disable=broad-except
                    pass
Пример #2
0
    def test_binary_directly_statevector(self):
        """Test QSVM on binary classification on BasicAer's statevector simulator.

        Also tests saving and loading models."""
        data_preparation = self.data_preparation
        svm = QSVM(data_preparation, self.training_data, self.testing_data,
                   None)

        file_path = self.get_resource_path('qsvm_test.npz')
        try:
            result = svm.run(self.statevector_simulator)

            ori_alphas = result['svm']['alphas']

            np.testing.assert_array_almost_equal(
                result['kernel_matrix_testing'],
                self.ref_kernel_testing['statevector'],
                decimal=4)

            self.assertEqual(len(result['svm']['support_vectors']), 4)
            np.testing.assert_array_almost_equal(
                result['svm']['support_vectors'],
                self.ref_support_vectors,
                decimal=4)

            self.assertEqual(result['testing_accuracy'], 0.5)

            svm.save_model(file_path)

            self.assertTrue(os.path.exists(file_path))

            loaded_svm = QSVM(data_preparation)
            loaded_svm.load_model(file_path)

            np.testing.assert_array_almost_equal(
                loaded_svm.ret['svm']['support_vectors'],
                self.ref_support_vectors,
                decimal=4)

            np.testing.assert_array_almost_equal(
                loaded_svm.ret['svm']['alphas'], ori_alphas, decimal=4)

            loaded_test_acc = loaded_svm.test(svm.test_dataset[0],
                                              svm.test_dataset[1],
                                              self.statevector_simulator)
            self.assertEqual(result['testing_accuracy'], loaded_test_acc)

            np.testing.assert_array_almost_equal(
                loaded_svm.ret['kernel_matrix_testing'],
                self.ref_kernel_testing['statevector'],
                decimal=4)
        except MissingOptionalLibraryError as ex:
            self.skipTest(str(ex))
        finally:
            if os.path.exists(file_path):
                try:
                    os.remove(file_path)
                except Exception:  # pylint: disable=broad-except
                    pass
Пример #3
0
def compareMethods(class1, class2, class3 = None, backend=BasicAer.get_backend('qasm_simulator'), name = "", 
                   include_unscaled=False, include_QSVM = True, include_VQC = True, feature_dimension = 2, gamma = 'auto', C = 1.0):
  
    #Define header and chart data
    data = []
    header = ["Algorithm", "Backend", "Time", "Accuracy", "Only one Class Predicted?"]
    data.append(header)
    
    #Split data into train and test
    class1_train, class1_test = train_test_split(class1, test_size=0.33, random_state=42)
    class2_train, class2_test = train_test_split(class2, test_size=0.33, random_state=42)
    feature_dim = feature_dimension
    if class3 is not None:
        class3_train, class3_test = train_test_split(class3, test_size=0.33, random_state=42)

    #Get input data for quantum
    training_data = {'A': np.asarray(class1_train), 'B': np.asarray(class2_train)}
    test_data = {'A': np.asarray(class1_test), 'B': np.asarray(class2_test)}
    total_array = np.concatenate((test_data['A'], test_data['B']))
    
    if class3 is not None:
        training_data["C"] = class3_train
        test_data["C"] = class3_test
        total_array = np.concatenate((total_array, test_data['C']))

    
    #Get input data for classical
    X_train, x_test, Y_train, y_test = convertFromQS(training_data, test_data)

    #Classical SVM, linear kernel (scaled and unscaled)
    if include_unscaled:
        start = time.time()
        clf = svm.SVC(kernel='linear') # Linear Kernel
        model = clf.fit(X_train, Y_train)
        y_pred = clf.predict(x_test)
        end = time.time()
        data.append(["SVM, Linear Kernel", "Local Processor", round(end-start), str(round(100*metrics.accuracy_score(y_test, y_pred), 2)),checkAllSame(y_pred)])
    
    start = time.time()
    scaler = StandardScaler()
    X_train_std = scaler.fit_transform(X_train)
    x_test_std = scaler.fit_transform(x_test)
    clf = svm.SVC(kernel='linear') # Linear Kernel
    model = clf.fit(X_train_std, Y_train)
    y_pred = clf.predict(x_test_std)
    end = time.time()
    data.append(["SVM, Linear Kernel, scaled", "Local Processor", round(end-start), str(round(100*metrics.accuracy_score(y_test, y_pred), 2)),checkAllSame(y_pred)])
        
    #Classical SVM, rbf kernel (scaled and unscaled)
    if include_unscaled:
        start = time.time()
        clf = svm.SVC(C=C, kernel='rbf', gamma = gamma) # rbf Kernel
        model = clf.fit(X_train, Y_train)
        y_pred = clf.predict(x_test)
        end = time.time()
        data.append(["SVM, RBF Kernel", "Local Processor", round(end-start), str(round(100*metrics.accuracy_score(y_test, y_pred), 2)),checkAllSame(y_pred)])

    start = time.time()
    scaler = StandardScaler()
    X_train_std = scaler.fit_transform(X_train)
    x_test_std = scaler.fit_transform(x_test)
    clf = svm.SVC(C=C, kernel='rbf', gamma = gamma) # rbf Kernel
    model = clf.fit(X_train_std, Y_train)
    y_pred = clf.predict(x_test_std)
    end = time.time()
    data.append(["SVM, RBF Kernel, scaled", "Local Processor", round(end-start), str(round(100*metrics.accuracy_score(y_test, y_pred), 2)),checkAllSame(y_pred)])

    
    #QSVM run
    if include_QSVM:
        start = time.time()
        feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2, entanglement='linear')
        if class3 is None:
            qsvm = QSVM(feature_map, training_data, test_data, total_array)
        else:
            qsvm = QSVM(feature_map, training_data, test_data, total_array, multiclass_extension=AllPairs())           
        quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=10598, seed_transpiler=10598)
        resultSVM = qsvm.run(quantum_instance)
        end = time.time()
        QSVM_Summary = ["QSVM", backend.name(), round(end-start), str(round(100*resultSVM['testing_accuracy'], 2)), checkAllSame(resultSVM['predicted_classes'])]
        data.append(QSVM_Summary)
        path = 'C:\\Users\\admin\\Desktop\\QQML\\Code\\Saved_SVMs\\' + name + "_" + backend.name() + "_QSVM"
        if class3 is None: #Bug in package prevents saving Multiclass svms. Will find workaround or submit bug report if time.
            qsvm.save_model(path)
    
    #VQC run
    if include_VQC:
        start = time.time()
        optimizer = SPSA(max_trials=100, c0=4.0, skip_calibration=True)
        optimizer.set_options(save_steps=1)
        feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2)
        var_form = TwoLocal(feature_dim, ['ry', 'rz'], 'cz', reps=3)
        vqc = VQC(optimizer, feature_map, var_form, training_data, test_data, total_array)
        quantum_instance = QuantumInstance(backend, shots=1024, seed_simulator=10589, seed_transpiler=10598)
        resultVQC = vqc.run(quantum_instance)
        end = time.time()
        VQC_Summary = ["VQC", backend.name(), round(end-start), str(round(100*resultVQC['testing_accuracy'], 2)), checkAllSame(resultVQC['predicted_classes'])]
        data.append(VQC_Summary)
        path = 'C:\\Users\\admin\\Desktop\\QQML\\Code\\Saved_SVMs\\' + name + "_" + backend.name() + "_VQC"
        vqc.save_model(path)
    
    display(HTML(tabulate.tabulate(data, tablefmt='html')))
    return data