Пример #1
0
 def _define(self):
     """
     gate swap a,b { cx a,b; cx b,a; cx a,b; }
     """
     # pylint: disable=cyclic-import
     from qiskit.circuit.quantumcircuit import QuantumCircuit
     from .x import CXGate
     q = QuantumRegister(2, 'q')
     qc = QuantumCircuit(q, name=self.name)
     rules = [
         (CXGate(), [q[0], q[1]], []),
         (CXGate(), [q[1], q[0]], []),
         (CXGate(), [q[0], q[1]], [])
     ]
     qc.data = rules
     self.definition = qc
Пример #2
0
    def _define(self):
        """
        gate tdg a { u1(pi/4) a; }
        """
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        from .u1 import U1Gate
        q = QuantumRegister(1, 'q')
        qc = QuantumCircuit(q, name=self.name)
        rules = [
            (U1Gate(-pi / 4), [q[0]], [])
        ]
        for instr, qargs, cargs in rules:
            qc._append(instr, qargs, cargs)

        self.definition = qc
Пример #3
0
 def _define(self):
     """Define the MCX gate using recursion."""
     # pylint: disable=cyclic-import
     from qiskit.circuit.quantumcircuit import QuantumCircuit
     q = QuantumRegister(self.num_qubits, name='q')
     qc = QuantumCircuit(q, name=self.name)
     if self.num_qubits == 4:
         qc._append(C3XGate(), q[:], [])
         self.definition = qc
     elif self.num_qubits == 5:
         qc._append(C4XGate(), q[:], [])
         self.definition = qc
     else:
         for instr, qargs, cargs in self._recurse(q[:-1], q_ancilla=q[-1]):
             qc._append(instr, qargs, cargs)
         self.definition = qc
Пример #4
0
    def _define(self):
        """
        gate cz a,b { h b; cx a,b; h b; }
        """
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        from .h import HGate
        from .x import CXGate
        q = QuantumRegister(2, 'q')
        qc = QuantumCircuit(q, name=self.name)
        rules = [(HGate(), [q[1]], []), (CXGate(), [q[0], q[1]], []),
                 (HGate(), [q[1]], [])]
        for instr, qargs, cargs in rules:
            qc._append(instr, qargs, cargs)

        self.definition = qc
Пример #5
0
def _copy_circuit_metadata(source_dag, coupling_map):
    """Return a copy of source_dag with metadata but empty.

    Generate only a single qreg in the output DAG, matching the size of the
    coupling_map.
    """
    target_dag = DAGCircuit()
    target_dag.name = source_dag.name

    for creg in source_dag.cregs.values():
        target_dag.add_creg(creg)

    device_qreg = QuantumRegister(len(coupling_map.physical_qubits), 'q')
    target_dag.add_qreg(device_qreg)

    return target_dag
Пример #6
0
    def _define(self):
        """
        gate ry(theta) a { r(theta, pi/2) a; }
        """
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        from .r import RGate
        q = QuantumRegister(1, 'q')
        qc = QuantumCircuit(q, name=self.name)
        rules = [
            (RGate(self.params[0], pi / 2), [q[0]], [])
        ]
        for instr, qargs, cargs in rules:
            qc._append(instr, qargs, cargs)

        self.definition = qc
Пример #7
0
    def _define(self):
        """
        gate r(θ, φ) a {u3(θ, φ - π/2, -φ + π/2) a;}
        """
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        from .u3 import U3Gate
        q = QuantumRegister(1, 'q')
        qc = QuantumCircuit(q, name=self.name)
        theta = self.params[0]
        phi = self.params[1]
        rules = [(U3Gate(theta, phi - pi / 2, -phi + pi / 2), [q[0]], [])]
        for instr, qargs, cargs in rules:
            qc._append(instr, qargs, cargs)

        self.definition = qc
Пример #8
0
    def __call__(self, target, basis_fidelity=None):
        """Decompose a two-qubit unitary over fixed basis + SU(2) using the best approximation given
        that each basis application has a finite fidelity.
        """
        basis_fidelity = basis_fidelity or self.basis_fidelity
        if hasattr(target, 'to_operator'):
            # If input is a BaseOperator subclass this attempts to convert
            # the object to an Operator so that we can extract the underlying
            # numpy matrix from `Operator.data`.
            target = target.to_operator().data
        if hasattr(target, 'to_matrix'):
            # If input is Gate subclass or some other class object that has
            # a to_matrix method this will call that method.
            target = target.to_matrix()
        # Convert to numpy array incase not already an array
        target = np.asarray(target, dtype=complex)
        # Check input is a 2-qubit unitary
        if target.shape != (4, 4):
            raise QiskitError(
                "TwoQubitBasisDecomposer: expected 4x4 matrix for target")
        if not is_unitary_matrix(target):
            raise QiskitError(
                "TwoQubitBasisDecomposer: target matrix is not unitary.")

        target_decomposed = TwoQubitWeylDecomposition(target)
        traces = self.traces(target_decomposed)
        expected_fidelities = [
            trace_to_fid(traces[i]) * basis_fidelity**i for i in range(4)
        ]

        best_nbasis = np.argmax(expected_fidelities)
        decomposition = self.decomposition_fns[best_nbasis](target_decomposed)
        decomposition_angles = [_DECOMPOSER1Q.angles(x) for x in decomposition]

        q = QuantumRegister(2)
        return_circuit = QuantumCircuit(q)
        for i in range(best_nbasis):
            return_circuit.append(U3Gate(*decomposition_angles[2 * i]), [q[0]])
            return_circuit.append(U3Gate(*decomposition_angles[2 * i + 1]),
                                  [q[1]])
            return_circuit.append(self.gate, [q[0], q[1]])
        return_circuit.append(U3Gate(*decomposition_angles[2 * best_nbasis]),
                              [q[0]])
        return_circuit.append(
            U3Gate(*decomposition_angles[2 * best_nbasis + 1]), [q[1]])

        return return_circuit
Пример #9
0
 def _define(self):
     """
     gate c3x a,b,c,d
     {
         h d; cu1(-pi/4) a,d; h d;
         cx a,b;
         h d; cu1(pi/4) b,d; h d;
         cx a,b;
         h d; cu1(-pi/4) b,d; h d;
         cx b,c;
         h d; cu1(pi/4) c,d; h d;
         cx a,c;
         h d; cu1(-pi/4) c,d; h d;
         cx b,c;
         h d; cu1(pi/4) c,d; h d;
         cx a,c;
         h d; cu1(-pi/4) c,d; h d;
     }
     """
     # pylint: disable=cyclic-import
     from qiskit.circuit.quantumcircuit import QuantumCircuit
     from .u1 import CU1Gate
     q = QuantumRegister(4, name='q')
     rules = [(HGate(), [q[3]], []),
              (CU1Gate(-self._angle), [q[0], q[3]], []),
              (HGate(), [q[3]], []), (CXGate(), [q[0], q[1]], []),
              (HGate(), [q[3]], []), (CU1Gate(self._angle), [q[1],
                                                             q[3]], []),
              (HGate(), [q[3]], []), (CXGate(), [q[0], q[1]], []),
              (HGate(), [q[3]], []),
              (CU1Gate(-self._angle), [q[1], q[3]], []),
              (HGate(), [q[3]], []), (CXGate(), [q[1], q[2]], []),
              (HGate(), [q[3]], []), (CU1Gate(self._angle), [q[2],
                                                             q[3]], []),
              (HGate(), [q[3]], []), (CXGate(), [q[0], q[2]], []),
              (HGate(), [q[3]], []),
              (CU1Gate(-self._angle), [q[2], q[3]], []),
              (HGate(), [q[3]], []), (CXGate(), [q[1], q[2]], []),
              (HGate(), [q[3]], []), (CU1Gate(self._angle), [q[2],
                                                             q[3]], []),
              (HGate(), [q[3]], []), (CXGate(), [q[0], q[2]], []),
              (HGate(), [q[3]], []),
              (CU1Gate(-self._angle), [q[2], q[3]], []),
              (HGate(), [q[3]], [])]
     qc = QuantumCircuit(q)
     qc._data = rules
     self.definition = qc
Пример #10
0
    def _define(self):
        """
        gate c3sqrtx a,b,c,d
        {
            h d; cu1(-pi/8) a,d; h d;
            cx a,b;
            h d; cu1(pi/8) b,d; h d;
            cx a,b;
            h d; cu1(-pi/8) b,d; h d;
            cx b,c;
            h d; cu1(pi/8) c,d; h d;
            cx a,c;
            h d; cu1(-pi/8) c,d; h d;
            cx b,c;
            h d; cu1(pi/8) c,d; h d;
            cx a,c;
            h d; cu1(-pi/8) c,d; h d;
        }
        gate c4x a,b,c,d,e
        {
            h e; cu1(-pi/2) d,e; h e;
            rc3x a,b,c,d;
            h e; cu1(pi/4) d,e; h e;
            rc3x a,b,c,d;
            c3sqrtx a,b,c,e;
        }
        """
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        from .u1 import CU1Gate
        q = QuantumRegister(5, name='q')
        qc = QuantumCircuit(q, name=self.name)
        rules = [
            (HGate(), [q[4]], []),
            (CU1Gate(-numpy.pi / 2), [q[3], q[4]], []),
            (HGate(), [q[4]], []),
            (RC3XGate(), [q[0], q[1], q[2], q[3]], []),
            (HGate(), [q[4]], []),
            (CU1Gate(numpy.pi / 2), [q[3], q[4]], []),
            (HGate(), [q[4]], []),
            (RC3XGate().inverse(), [q[0], q[1], q[2], q[3]], []),
            (C3SXGate(), [q[0], q[1], q[2], q[4]], []),
        ]
        for instr, qargs, cargs in rules:
            qc._append(instr, qargs, cargs)

        self.definition = qc
Пример #11
0
 def _define(self):
     """
     gate cswap a,b,c
     { cx c,b;
       ccx a,b,c;
       cx c,b;
     }
     """
     from .x import CXGate, CCXGate
     definition = []
     q = QuantumRegister(3, 'q')
     rule = [(CXGate(), [q[2], q[1]], []),
             (CCXGate(), [q[0], q[1], q[2]], []),
             (CXGate(), [q[2], q[1]], [])]
     for inst in rule:
         definition.append(inst)
     self.definition = definition
Пример #12
0
    def _define(self):
        """
        gate rz(phi) a { u1(phi) a; }
        """
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        from .u1 import U1Gate
        q = QuantumRegister(1, 'q')
        theta = self.params[0]
        qc = QuantumCircuit(q, name=self.name, global_phase=-theta / 2)
        rules = [
            (U1Gate(theta), [q[0]], [])
        ]
        for instr, qargs, cargs in rules:
            qc._append(instr, qargs, cargs)

        self.definition = qc
Пример #13
0
    def extend_back(self, dag, edge_map=None):
        """Add `dag` at the end of `self`, using `edge_map`.
        """
        edge_map = edge_map or {}
        for qreg in dag.qregs.values():
            if qreg.name not in self.qregs:
                self.add_qreg(QuantumRegister(qreg.size, qreg.name))
            edge_map.update([(qbit, qbit) for qbit in qreg
                             if qbit not in edge_map])

        for creg in dag.cregs.values():
            if creg.name not in self.cregs:
                self.add_creg(ClassicalRegister(creg.size, creg.name))
            edge_map.update([(cbit, cbit) for cbit in creg
                             if cbit not in edge_map])

        self.compose_back(dag, edge_map)
Пример #14
0
 def _define(self):
     """
     gate rzx(theta) a, b { h b; cx a, b; u1(theta) b; cx a, b; h b;}
     """
     # pylint: disable=cyclic-import
     from qiskit.circuit.quantumcircuit import QuantumCircuit
     from .h import HGate
     from .x import CXGate
     from .rz import RZGate
     theta = self.params[0]
     q = QuantumRegister(2, 'q')
     qc = QuantumCircuit(q, name=self.name)
     rules = [(HGate(), [q[1]], []), (CXGate(), [q[0], q[1]], []),
              (RZGate(theta), [q[1]], []), (CXGate(), [q[0], q[1]], []),
              (HGate(), [q[1]], [])]
     qc._data = rules
     self.definition = qc
Пример #15
0
def circuit_to_instruction(circuit):
    """Build an ``Instruction`` object from a ``QuantumCircuit``.

    The instruction is anonymous (not tied to a named quantum register),
    and so can be inserted into another circuit. The instruction will
    have the same string name as the circuit.

    Args:
        circuit (QuantumCircuit): the input circuit.

    Return:
        Instruction: an instruction equivalent to the action of the
            input circuit. Upon decomposition, this instruction will
            yield the components comprising the original circuit.
    """
    instruction = Instruction(name=circuit.name,
                              num_qubits=sum([qreg.size for qreg in circuit.qregs]),
                              num_clbits=sum([creg.size for creg in circuit.cregs]),
                              params=[])
    instruction.control = None

    def find_bit_position(bit):
        """find the index of a given bit (Register, int) within
        a flat ordered list of bits of the circuit
        """
        if isinstance(bit[0], QuantumRegister):
            ordered_regs = circuit.qregs
        else:
            ordered_regs = circuit.cregs
        reg_index = ordered_regs.index(bit[0])
        return sum([reg.size for reg in ordered_regs[:reg_index]]) + bit[1]

    definition = circuit.data.copy()

    if instruction.num_qubits > 0:
        q = QuantumRegister(instruction.num_qubits, 'q')
    if instruction.num_clbits > 0:
        c = ClassicalRegister(instruction.num_clbits, 'c')

    definition = list(map(lambda x:
                          (x[0],
                           list(map(lambda y: (q, find_bit_position(y)), x[1])),
                           list(map(lambda y: (c, find_bit_position(y)), x[2]))), definition))
    instruction.definition = definition

    return instruction
Пример #16
0
    def __call__(self,
                 target,
                 basis_fidelity=None,
                 *,
                 _num_basis_uses=None) -> QuantumCircuit:
        """Decompose a two-qubit unitary over fixed basis + SU(2) using the best approximation given
        that each basis application has a finite fidelity.

        You can force a particular approximation by passing _num_basis_uses.
        """
        basis_fidelity = basis_fidelity or self.basis_fidelity
        target = np.asarray(target, dtype=complex)

        target_decomposed = TwoQubitWeylDecomposition(target)
        traces = self.traces(target_decomposed)
        expected_fidelities = [
            trace_to_fid(traces[i]) * basis_fidelity**i for i in range(4)
        ]

        best_nbasis = int(np.argmax(expected_fidelities))
        if _num_basis_uses is not None:
            best_nbasis = _num_basis_uses
        decomposition = self.decomposition_fns[best_nbasis](target_decomposed)
        decomposition_euler = [
            self._decomposer1q._decompose(x) for x in decomposition
        ]

        q = QuantumRegister(2)
        return_circuit = QuantumCircuit(q)
        return_circuit.global_phase = target_decomposed.global_phase
        return_circuit.global_phase -= best_nbasis * self.basis.global_phase
        if best_nbasis == 2:
            return_circuit.global_phase += np.pi
        for i in range(best_nbasis):
            return_circuit.compose(decomposition_euler[2 * i], [q[0]],
                                   inplace=True)
            return_circuit.compose(decomposition_euler[2 * i + 1], [q[1]],
                                   inplace=True)
            return_circuit.append(self.gate, [q[0], q[1]])
        return_circuit.compose(decomposition_euler[2 * best_nbasis], [q[0]],
                               inplace=True)
        return_circuit.compose(decomposition_euler[2 * best_nbasis + 1],
                               [q[1]],
                               inplace=True)

        return return_circuit
Пример #17
0
 def _define(self):
     """
     gate sx a { rz(-pi/2) a; h a; rz(-pi/2); }
     """
     # pylint: disable=cyclic-import
     from qiskit.circuit.quantumcircuit import QuantumCircuit
     from .s import SdgGate
     from .h import HGate
     q = QuantumRegister(1, 'q')
     qc = QuantumCircuit(q, name=self.name, global_phase=pi / 4)
     rules = [
         (SdgGate(), [q[0]], []),
         (HGate(), [q[0]], []),
         (SdgGate(), [q[0]], [])
     ]
     qc.data = rules
     self.definition = qc
Пример #18
0
 def _define(self):
     """
     gate csx a,b { h b; cu1(pi/2) a,b; h b; }
     """
     # pylint: disable=cyclic-import
     from qiskit.circuit.quantumcircuit import QuantumCircuit
     from .h import HGate
     from .u1 import CU1Gate
     q = QuantumRegister(2, 'q')
     qc = QuantumCircuit(q, name=self.name)
     rules = [
         (HGate(), [q[1]], []),
         (CU1Gate(pi/2), [q[0], q[1]], []),
         (HGate(), [q[1]], [])
     ]
     qc.data = rules
     self.definition = qc
Пример #19
0
    def _define(self):
        """
        gate pauli (p1 a1,...,pn an) { p1 a1; ... ; pn an; }
        """
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit

        gates = {"X": XGate, "Y": YGate, "Z": ZGate}
        q = QuantumRegister(len(self.params[0]), "q")
        qc = QuantumCircuit(q, name=f"{self.name}({self.params[0]})")

        paulis = self.params[0]
        for i, p in enumerate(reversed(paulis)):
            if p == "I":
                continue
            qc._append(CircuitInstruction(gates[p](), (q[i], ), ()))
        self.definition = qc
Пример #20
0
 def _dec_ucg(self):
     """
     Call to create a circuit that implements the uniformly controlled gate. If
     up_to_diagonal=True, the circuit implements the gate up to a diagonal gate and
     the diagonal gate is also returned.
     """
     diag = np.ones(2 ** self.num_qubits).tolist()
     q = QuantumRegister(self.num_qubits)
     q_controls = q[1:]
     q_target = q[0]
     circuit = QuantumCircuit(q)
     # If there is no control, we use the ZYZ decomposition
     if not q_controls:
         theta, phi, lamb = euler_angles_1q(self.params[0])
         circuit.u3(theta, phi, lamb, q)
         return circuit, diag
     # If there is at least one control, first,
     # we find the single qubit gates of the decomposition.
     (single_qubit_gates, diag) = self._dec_ucg_help()
     # Now, it is easy to place the C-NOT gates and some Hadamards and Rz(pi/2) gates
     # (which are absorbed into the single-qubit unitaries) to get back the full decomposition.
     for i, gate in enumerate(single_qubit_gates):
         # Absorb Hadamards and Rz(pi/2) gates
         if i == 0:
             squ = HGate().to_matrix().dot(gate)
         elif i == len(single_qubit_gates) - 1:
             squ = gate.dot(UCGate._rz(np.pi / 2)).dot(HGate().to_matrix())
         else:
             squ = HGate().to_matrix().dot(gate.dot(UCGate._rz(np.pi / 2))).dot(
                 HGate().to_matrix())
         # Add single-qubit gate
         circuit.squ(squ, q_target)
         # The number of the control qubit is given by the number of zeros at the end
         # of the binary representation of (i+1)
         binary_rep = np.binary_repr(i + 1)
         num_trailing_zeros = len(binary_rep) - len(binary_rep.rstrip('0'))
         q_contr_index = num_trailing_zeros
         # Add C-NOT gate
         if not i == len(single_qubit_gates) - 1:
             circuit.cx(q_controls[q_contr_index], q_target)
     if not self.up_to_diagonal:
         # Important: the diagonal gate is given in the computational basis of the qubits
         # q[k-1],...,q[0],q_target (ordered with decreasing significance),
         # where q[i] are the control qubits and t denotes the target qubit.
         circuit.diagonal(diag.tolist(), q)
     return circuit, diag
Пример #21
0
    def _define(self):
        """
        gate rc3x a,b,c,d
        { u2(0,pi) d;
          u1(pi/4) d;
          cx c,d;
          u1(-pi/4) d;
          u2(0,pi) d;
          cx a,d;
          u1(pi/4) d;
          cx b,d;
          u1(-pi/4) d;
          cx a,d;
          u1(pi/4) d;
          cx b,d;
          u1(-pi/4) d;
          u2(0,pi) d;
          u1(pi/4) d;
          cx c,d;
          u1(-pi/4) d;
          u2(0,pi) d;
        }
        """
        q = QuantumRegister(4, 'q')

        definition = [
            (U2Gate(0, pi), [q[3]], []),  # H gate
            (U1Gate(pi / 4), [q[3]], []),  # T gate
            (CXGate(), [q[2], q[3]], []),
            (U1Gate(-pi / 4), [q[3]], []),  # inverse T gate
            (U2Gate(0, pi), [q[3]], []),
            (CXGate(), [q[0], q[3]], []),
            (U1Gate(pi / 4), [q[3]], []),
            (CXGate(), [q[1], q[3]], []),
            (U1Gate(-pi / 4), [q[3]], []),
            (CXGate(), [q[0], q[3]], []),
            (U1Gate(pi / 4), [q[3]], []),
            (CXGate(), [q[1], q[3]], []),
            (U1Gate(-pi / 4), [q[3]], []),
            (U2Gate(0, pi), [q[3]], []),
            (U1Gate(pi / 4), [q[3]], []),
            (CXGate(), [q[2], q[3]], []),
            (U1Gate(-pi / 4), [q[3]], []),
            (U2Gate(0, pi), [q[3]], []),
        ]
        self.definition = definition
Пример #22
0
    def _define(self):
        """
        gate rzz(theta) a, b { cx a, b; u1(theta) b; cx a, b; }
        """
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        from .x import CXGate
        from .rz import RZGate
        q = QuantumRegister(2, 'q')
        theta = self.params[0]
        qc = QuantumCircuit(q, name=self.name)
        rules = [(CXGate(), [q[0], q[1]], []), (RZGate(theta), [q[1]], []),
                 (CXGate(), [q[0], q[1]], [])]
        for instr, qargs, cargs in rules:
            qc._append(instr, qargs, cargs)

        self.definition = qc
Пример #23
0
def _gate_to_circuit(operation):
    from qiskit.circuit.quantumcircuit import QuantumCircuit
    from qiskit.circuit.quantumregister import QuantumRegister
    qr = QuantumRegister(operation.num_qubits)
    qc = QuantumCircuit(qr, name=operation.name)
    if hasattr(operation, 'definition') and operation.definition:
        for rule in operation.definition:
            if rule[0].name in {'id', 'barrier', 'measure', 'snapshot'}:
                raise QiskitError(
                    'Cannot make controlled gate with {} instruction'.format(
                        rule[0].name))
            qc.append(rule[0],
                      qargs=[qr[bit.index] for bit in rule[1]],
                      cargs=[])
    else:
        qc.append(operation, qargs=qr, cargs=[])
    return qc
Пример #24
0
 def _define(self):
     """
     gate cy a,b { sdg b; cx a,b; s b; }
     """
     # pylint: disable=cyclic-import
     from qiskit.circuit.quantumcircuit import QuantumCircuit
     from .s import SGate, SdgGate
     from .x import CXGate
     q = QuantumRegister(2, 'q')
     qc = QuantumCircuit(q, name=self.name)
     rules = [
         (SdgGate(), [q[1]], []),
         (CXGate(), [q[0], q[1]], []),
         (SGate(), [q[1]], [])
     ]
     qc._data = rules
     self.definition = qc
Пример #25
0
    def _define(self):
        """
		Gate Ry(theta) to Rz(-pi/2)·Rx(theta)·Rz(pi/2)
		"""
        definition = []
        q = QuantumRegister(1, 'q')
        if self.params[0] == 0:
            rule = [(RZGate(0), [q[0]], [])]
        elif self.params[0] % (2 * pi) == 0:
            rule = [(RZGate(0), [q[0]], [])]
        else:
            rule = [(RZGate(-pi / 2), [q[0]], []),
                    (RXGate(self.params[0]), [q[0]], []),
                    (RZGate(pi / 2), [q[0]], [])]
        for inst in rule:
            definition.append(inst)
        self.definition = definition
Пример #26
0
    def _define(self):
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        q = QuantumRegister(self.num_qubits, 'q')
        qc = QuantumCircuit(q, name=self.name)

        if self.num_ctrl_qubits == 0:
            qc.p(self.params[0], 0)
        if self.num_ctrl_qubits == 1:
            qc.cp(self.params[0], 0, 1)
        else:
            from .u3 import _gray_code_chain
            scaled_lam = self.params[0] / (2**(self.num_ctrl_qubits - 1))
            bottom_gate = PhaseGate(scaled_lam)
            definition = _gray_code_chain(q, self.num_ctrl_qubits, bottom_gate)
            qc.data = definition
        self.definition = qc
Пример #27
0
 def _define(self):
     """
     gate crz(lambda) a,b
     { u1(lambda/2) b; cx a,b;
       u1(-lambda/2) b; cx a,b;
     }
     """
     from .u1 import U1Gate
     from .x import CXGate
     definition = []
     q = QuantumRegister(2, 'q')
     rule = [(U1Gate(self.params[0] / 2), [q[1]], []),
             (CXGate(), [q[0], q[1]], []),
             (U1Gate(-self.params[0] / 2), [q[1]], []),
             (CXGate(), [q[0], q[1]], [])]
     for inst in rule:
         definition.append(inst)
     self.definition = definition
Пример #28
0
 def _circuit_xyx(theta,
                  phi,
                  lam,
                  phase,
                  simplify=True,
                  atol=DEFAULT_ATOL):
     qr = QuantumRegister(1, 'qr')
     circuit = QuantumCircuit(qr, global_phase=phase)
     if simplify and math.isclose(theta, 0.0, abs_tol=atol):
         circuit._append(RXGate(phi + lam), [qr[0]], [])
         return circuit
     if not simplify or not math.isclose(lam, 0.0, abs_tol=atol):
         circuit._append(RXGate(lam), [qr[0]], [])
     if not simplify or not math.isclose(theta, 0.0, abs_tol=atol):
         circuit._append(RYGate(theta), [qr[0]], [])
     if not simplify or not math.isclose(phi, 0.0, abs_tol=atol):
         circuit._append(RXGate(phi), [qr[0]], [])
     return circuit
Пример #29
0
    def _define(self):
        # pylint: disable=cyclic-import
        from qiskit.circuit.quantumcircuit import QuantumCircuit
        q = QuantumRegister(self.num_qubits, 'q')
        qc = QuantumCircuit(q, name=self.name)

        if self.num_ctrl_qubits == 0:
            definition = U1Gate(self.params[0]).definition
        if self.num_ctrl_qubits == 1:
            definition = CU1Gate(self.params[0]).definition
        else:
            from .u3 import _gray_code_chain
            scaled_lam = self.params[0] / (2 ** (self.num_ctrl_qubits - 1))
            bottom_gate = CU1Gate(scaled_lam)
            definition = _gray_code_chain(q, self.num_ctrl_qubits, bottom_gate)
        for instr, qargs, cargs in definition:
            qc._append(instr, qargs, cargs)
        self.definition = qc
Пример #30
0
 def _define(self):
     """
     gate cphase(lambda) a,b
     { phase(lambda/2) a; cx a,b;
       phase(-lambda/2) b; cx a,b;
       phase(lambda/2) b;
     }
     """
     # pylint: disable=cyclic-import
     from qiskit.circuit.quantumcircuit import QuantumCircuit
     q = QuantumRegister(2, 'q')
     qc = QuantumCircuit(q, name=self.name)
     qc.p(self.params[0] / 2, 0)
     qc.cx(0, 1)
     qc.p(-self.params[0] / 2, 1)
     qc.cx(0, 1)
     qc.p(self.params[0] / 2, 1)
     self.definition = qc