Пример #1
0
def mitigated_results(circuit, backend, results):
    # Import the required methods
    from qiskit.providers.aer.noise import NoiseModel
    from qiskit.ignis.mitigation.measurement import (complete_meas_cal,
                                                     CompleteMeasFitter)

    # Get noise model for backend
    noise_model = NoiseModel.from_backend(backend)

    # Create the measurement fitter
    qr = QuantumRegister(circuit.num_qubits)
    meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
    job = execute(meas_calibs,
                  backend=Aer.get_backend('qasm_simulator'),
                  shots=8192,
                  noise_model=noise_model)
    cal_results = job.result()
    meas_fitter = CompleteMeasFitter(cal_results,
                                     state_labels,
                                     circlabel='mcal')
    #print(meas_fitter.cal_matrix)

    # Plot the calibration matrix
    print("Calibration matrix")
    meas_fitter.plot_calibration()

    # Get the filter object
    meas_filter = meas_fitter.filter

    # Results with mitigation
    mitigated_results = meas_filter.apply(results)
    mitigated_counts = mitigated_results.get_counts(0)
    print("Mitigated", backend, "results:\n", mitigated_counts)
    return (mitigated_counts)
def generate_mitigator(num_qubits, noisy, shots=1024):
    meas_calibs, state_labels = complete_meas_cal(range(num_qubits))
    experiments = transpile(meas_calibs, backend=noisy, optimization_level=3)
    job = noisy.run(assemble(experiments, shots=shots))
    cal_results = job.result()
    meas_fitter = CompleteMeasFitter(cal_results, state_labels)
    return job, meas_fitter.filter
def mitigated_results(backend,circuit,results,results_sim):
    from qiskit import Aer, execute
    from qiskit import QuantumRegister
    # Import the required methods
    from qiskit.providers.aer.noise import NoiseModel
    from qiskit.ignis.mitigation.measurement import (complete_meas_cal,CompleteMeasFitter)
    from qiskit.tools.visualization import plot_histogram
    import numpy
    numpy.set_printoptions(formatter={'float': lambda x: "{0:0.2f}".format(x)})
    
    # Get noise model for backend
    noise_model = NoiseModel.from_backend(backend)
    
    # Create the measurement fitter
    qr = QuantumRegister(circuit.num_qubits)
    meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
    job = execute(meas_calibs, backend=Aer.get_backend('qasm_simulator'), shots=8192, noise_model=noise_model)
    cal_results = job.result()
    meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
    print(meas_fitter.cal_matrix)

    # Get the filter object
    meas_filter = meas_fitter.filter
    
    # Results with mitigation
    mitigated_results = meas_filter.apply(results)
    mitigated_counts = mitigated_results.get_counts(0)
    
    title = "Mitigated Grover on "+str(ibmqbackend.name())
    display(plot_histogram([results_sim.get_counts(),results.get_counts(), mitigated_counts], title=title, legend=['sim','noisy', 'mitigated']))
    return(mitigated_counts)
Пример #4
0
def _qiskit_generate_samples_MEM(self: QiskitDevice) -> np.array:
    """
        This function is used to overrite the default QiskitDevice.generate_samples method.
        It adds a simple mechanism to perform measurement error mitigation on the results of
        the computation.
    """
    # branch out depending on the type of backend
    if self.backend_name in self._state_backends:
        # software simulator: need to sample from probabilities
        return super().generate_samples()

    # hardware or hardware simulator

    # ***here we actully perform the measurement error mitigation***
    meas_calibs, state_labels = complete_meas_cal(qr=self._reg, circlabel="mcal")
    mitigation_run_args = self.run_args.copy()
    mitigation_run_args["shots"] = NUMBER_OF_SHOTS_FOR_QISKIT_ERROR_MITIGATION
    meas_job = qiskit.execute(meas_calibs, backend=self.backend, **mitigation_run_args)

    # TODO: Adding a cache here is a free performance boost
    meas_fitter = CompleteMeasFitter(meas_job.result(), state_labels, circlabel="mcal")
    mitigated_results = meas_fitter.filter.apply(self._current_job.result())
    current_job_shots = sum(self._current_job.result().get_counts().values())
    summed_counts = sum(mitigated_results.get_counts().values())
    probs = [value / summed_counts for value in mitigated_results.get_counts().values()]
    samples = np.random.choice(
        np.array(list(mitigated_results.get_counts().keys())),
        current_job_shots,
        p=probs,
        replace=True,
    )

    # reverse qubit order to match PennyLane convention
    return np.vstack([np.array([int(i) for i in s[::-1]]) for s in samples])
Пример #5
0
def matricaZaGreske(brojQubita, noise_model):
    qr = QuantumRegister(brojQubita)
    meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
    backend = Aer.get_backend('qasm_simulator')
    job = execute(meas_calibs, backend=backend, shots=1000, noise_model=noise_model)
    cal_results = job.result()
    meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
    return(meas_fitter.cal_matrix)
    def test_meas_cal_on_circuit(self):
        """Test an execution on a circuit."""
        print("Testing measurement calibration on a circuit")

        # Generate the calibration circuits
        meas_calibs, state_labels, ghz = meas_calib_circ_creation()

        # Run the calibration circuits
        backend = Aer.get_backend('qasm_simulator')
        job = qiskit.execute(meas_calibs,
                             backend=backend,
                             shots=self.shots,
                             seed_simulator=SEED,
                             seed_transpiler=SEED)
        cal_results = job.result()

        # Make a calibration matrix
        meas_cal = CompleteMeasFitter(cal_results, state_labels)
        # Calculate the fidelity
        fidelity = meas_cal.readout_fidelity()

        job = qiskit.execute([ghz],
                             backend=backend,
                             shots=self.shots,
                             seed_simulator=SEED,
                             seed_transpiler=SEED)
        results = job.result()

        # Predicted equally distributed results
        predicted_results = {'000': 0.5, '111': 0.5}

        meas_filter = meas_cal.filter

        # Calculate the results after mitigation
        output_results_pseudo_inverse = meas_filter.apply(
            results, method='pseudo_inverse').get_counts(0)
        output_results_least_square = meas_filter.apply(
            results, method='least_squares').get_counts(0)

        # Compare with expected fidelity and expected results
        self.assertAlmostEqual(fidelity, 1.0)
        self.assertAlmostEqual(output_results_pseudo_inverse['000'] /
                               self.shots,
                               predicted_results['000'],
                               places=1)

        self.assertAlmostEqual(output_results_least_square['000'] / self.shots,
                               predicted_results['000'],
                               places=1)

        self.assertAlmostEqual(output_results_pseudo_inverse['111'] /
                               self.shots,
                               predicted_results['111'],
                               places=1)

        self.assertAlmostEqual(output_results_least_square['111'] / self.shots,
                               predicted_results['111'],
                               places=1)
    def test_meas_fitter_with_noise(self):
        """
            Test the MeasurementFitter with noise
        """
        print("Testing MeasurementFitter with noise")

        # pre-generated results with noise
        # load from pickled file
        fo = open(
            os.path.join(os.path.dirname(__file__), 'test_meas_results.pkl'),
            'rb')
        tests = pickle.load(fo)
        fo.close()

        # Set the state labels
        state_labels = ['000', '001', '010', '011', '100', '101', '110', '111']
        meas_cal = CompleteMeasFitter(None, state_labels, circlabel='test')

        for tst_index, _ in enumerate(tests):
            # Set the calibration matrix
            meas_cal.cal_matrix = tests[tst_index]['cal_matrix']
            # Calculate the fidelity
            fidelity = meas_cal.readout_fidelity()

            meas_filter = MeasurementFilter(tests[tst_index]['cal_matrix'],
                                            state_labels)

            # Calculate the results after mitigation
            output_results_pseudo_inverse = meas_filter.apply(
                tests[tst_index]['results'], method='pseudo_inverse')
            output_results_least_square = meas_filter.apply(
                tests[tst_index]['results'], method='least_squares')

            # Compare with expected fidelity and expected results
            self.assertAlmostEqual(fidelity,
                                   tests[tst_index]['fidelity'],
                                   places=0)
            self.assertAlmostEqual(
                output_results_pseudo_inverse['000'],
                tests[tst_index]['results_pseudo_inverse']['000'],
                places=0)

            self.assertAlmostEqual(
                output_results_least_square['000'],
                tests[tst_index]['results_least_square']['000'],
                places=0)

            self.assertAlmostEqual(
                output_results_pseudo_inverse['111'],
                tests[tst_index]['results_pseudo_inverse']['111'],
                places=0)

            self.assertAlmostEqual(
                output_results_least_square['111'],
                tests[tst_index]['results_least_square']['111'],
                places=0)
Пример #8
0
def generate_error_mitigation_filter(q_list, noise_model):
    backend = get_sim_backend_from_name("qasm_simulator")
    qr = QuantumRegister(5)
    meas_cals, state_labels = complete_meas_cal(qubit_list=q_list, qr=qr)
    calibration_job = execute(meas_cals,
                              backend=backend,
                              shots=8192,
                              noise_model=noise_model)
    cal_results = calibration_job.result()
    meas_fitter = CompleteMeasFitter(cal_results, state_labels)
    em_filter = meas_fitter.filter
    return em_filter
Пример #9
0
def measurement_error_mitigator(systemsize,
                                sim,
                                quantum_com_choice_results,
                                shots=8192):
    if sim == "noisy_qasm":
        backend, coupling_map, noise_model = quantum_com_choice_results[sim]

        qr = QuantumRegister(systemsize)
        meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
        print('Calibrating POVM Matrix')
        job = execute(meas_calibs,
                      backend=backend,
                      shots=shots,
                      noise_model=noise_model,
                      coupling_map=coupling_map)
        cal_results = job.result()
        meas_fitter = CompleteMeasFitter(cal_results,
                                         state_labels,
                                         circlabel='mcal')
        meas_filter = meas_fitter.filter
        print("Provider backend: ", backend)
        return meas_filter
    elif sim == "real":
        backend = quantum_com_choice_results[sim]

        qr = QuantumRegister(systemsize)
        meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
        print('Calibrating POVM Matrix')
        job = execute(meas_calibs, backend=backend, shots=shots)
        job_monitor(job, interval=2)
        cal_results = job.result()
        meas_fitter = CompleteMeasFitter(cal_results,
                                         state_labels,
                                         circlabel='mcal')
        meas_filter = meas_fitter.filter
        print("Provider backend: ", backend)
        return meas_filter
Пример #10
0
    def apply(self, qc_list, info_list, shots):

        meas_calibs, state_labels, measure_list = info_list[0], info_list[
            1], info_list[2]

        managed_results = IBMQ.qc_experiment(qc_list + meas_calibs,
                                             self.backend, shots).run()
        results = managed_results.combine_results()

        meas_fitter = CompleteMeasFitter(results,
                                         state_labels,
                                         qubit_list=measure_list)
        meas_filter = meas_fitter.filter
        measurement_error_mitigated_results = meas_filter.apply(results)

        return [results, measurement_error_mitigated_results]
Пример #11
0
    def _run_analysis(self, experiment_data, parameter_guess=None, plot=True, ax=None):
        state_labels = []
        for datum in experiment_data.data():
            state_label = datum['metadata']['state_label']
            if state_label in state_labels:
                break
            state_labels.append(state_label)

        meas_fitter = CompleteMeasFitter(None, state_labels, circlabel='mcal')
        
        nstates = len(state_labels)

        for job_id in experiment_data.job_ids:
            full_result = experiment_data.backend.retrieve_job(job_id).result()
            # full_result might contain repeated experiments
            for iset in range(len(full_result.results) // nstates):
                try:
                    date = full_result.date
                except:
                    date = None
                try:
                    status = full_result.status
                except:
                    status = None
                try:
                    header = full_result.header
                except:
                    header = None
                    
                result = Result(full_result.backend_name, full_result.backend_version, \
                                full_result.qobj_id, full_result.job_id, \
                                full_result.success, full_result.results[iset * nstates:(iset + 1) * nstates], \
                                date=date, status=status, header=header, **full_result._metadata)

                meas_fitter.add_data(result)
        
        results = [
            AnalysisResultData('error_matrix', meas_fitter.cal_matrix, extra=state_labels)
        ]
                
        plots = []
        if plot:
            figure, ax = plt.subplots(1, 1)
            meas_fitter.plot_calibration(ax=ax)
            plots.append(figure)
        
        return results, plots
Пример #12
0
def generate_meas_calibration(results_file_path: str, runs: int):
    """
    run the measurement calibration circuits, calculates the fitter matrix in few methods
    and saves the results
    The simulation results files will contain a list of dictionaries with the keys:
        cal_matrix - the matrix used to calculate the ideal measurement
        fidelity - the calculated fidelity of using this matrix
        results - results of a bell state circuit with noise
        results_pseudo_inverse - the result of using the psedo-inverse method on the bell state
        results_least_square - the result of using the least-squares method on the bell state

    Args:
        results_file_path: path of the json file of the results file
        runs: the number of different runs to save
    """
    results = []
    for run in range(runs):
        cal_results, state_labels, circuit_results = \
            meas_calibration_circ_execution(3, 1000, SEED + run)

        meas_cal = CompleteMeasFitter(cal_results,
                                      state_labels,
                                      circlabel='test')
        meas_filter = MeasurementFilter(meas_cal.cal_matrix, state_labels)

        # Calculate the results after mitigation
        results_pseudo_inverse = meas_filter.apply(circuit_results,
                                                   method='pseudo_inverse')
        results_least_square = meas_filter.apply(circuit_results,
                                                 method='least_squares')
        results.append({
            "cal_matrix":
            convert_ndarray_to_list_in_data(meas_cal.cal_matrix),
            "fidelity":
            meas_cal.readout_fidelity(),
            "results":
            circuit_results,
            "results_pseudo_inverse":
            results_pseudo_inverse,
            "results_least_square":
            results_least_square
        })

    with open(results_file_path, "w") as results_file:
        json.dump(results, results_file)
Пример #13
0
def get_correction_matrix(qpu, max_age, access_token, used_qubits):
    """Return a correction matrix for the given QPU whit the maximum age in minutes"""
    app.logger.info('Getting calibration matrix for QPU ' + qpu + ' with max age of ' + str(max_age) + ' minutes')

    # Check for existing calibration matrix
    existing_matrix = calibration_matrixes.get(qpu)
    if existing_matrix is not None:
        age = datetime.now() - existing_matrix['Date']
        app.logger.info('Calibration matrix for this QPU exists with age ' + str(age))
        if age.total_seconds() < max_age * 60:
            app.logger.info('Returning existing calibration matrix!')
            return existing_matrix['Calibration_Matrix']

    if access_token is None:
        app.logger.error('Unable to create new correction matrix without access key...')
        return None

    # Load account to enable execution of calibration circuits
    IBMQ.save_account(access_token, overwrite=True)
    IBMQ.load_account()

    provider = IBMQ.get_provider(group='open')
    backend = provider.get_backend(qpu)

    # Generate a calibration circuit for each state
    qr = qiskit.QuantumRegister(used_qubits)
    meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')

    # Execute each calibration circuit and store results
    app.logger.info('Executing ' + str(len(meas_calibs)) + ' circuits to create calibration matrix...')
    cal_results = []
    for circuit in meas_calibs:
        app.logger.info('Executing circuit ' + circuit.name)
        cal_results.append(execute_job(circuit, backend))

    # Generate calibration matrix out of measurement results
    meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
    app.logger.info('Calibration matrix:')
    app.logger.info(meas_fitter.cal_matrix)

    # Store calibration matrix for later reuse
    calibration_matrixes[qpu] = {"Date": datetime.now(), "Calibration_Matrix": meas_fitter.filter}
    return meas_fitter.filter
Пример #14
0
    def initialize_meas_calibration(self, N_qubits, layout):
        """ Set up the confusion matrix needed for measurement error mitigation.
            This is basically just boilerplate code from the Ignis Github
            https://github.com/Qiskit/qiskit-ignis
        """
        if layout is None:
            cal_q = QuantumRegister(N_qubits)
            meas_cals, state_labels = complete_meas_cal(qr=cal_q)
        else:
            meas_cals, state_labels = complete_meas_cal(qubit_list=layout)

        # Run the calibration circuits with the device noise model
        backend = Aer.get_backend('qasm_simulator')
        job = execute(meas_cals,
                      backend=backend,
                      shots=10000,
                      noise_model=self.noise_model)
        cal_results = job.result()

        return CompleteMeasFitter(cal_results, state_labels).filter
Пример #15
0
def get_measurement_fitter(l, backend, device, shots):
    qb = QuantumRegister(l)
    qubit_list = list(range(l))
    meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list,
                                                  qr=qb,
                                                  circlabel='mcal')

    # Execute calibration circuits
    job = execute(meas_calibs,
                  backend=backend,
                  shots=shots,
                  noise_model=device.noise_model,
                  coupling_map=device.coupling_map,
                  basis_gates=device.basis_gates)
    cal_results = job.result()

    meas_fitter = CompleteMeasFitter(cal_results,
                                     state_labels,
                                     circlabel='mcal')
    #meas_filter = meas_fitter.filter
    #mitigated_results = meas_filter.apply(results)
    #mitigated_counts = mitigated_results.get_counts(0)
    return meas_fitter
Пример #16
0
    def apply_readout_correction(self, counts, qubit_list=None, **kwargs):
        if self.readout_correction_filter is None:

            for key in counts.keys():
                num_qubits = len(key)
                break

            if qubit_list is None or qubit_list == {}:
                qubit_list = [i for i in range(num_qubits)]

            qr = QuantumRegister(num_qubits)
            meas_cals, state_labels = complete_meas_cal(qubit_list=qubit_list, qr=qr)

            # Execute the calibration circuits
            job = self.execute_with_retries(meas_cals, self.n_samples)
            cal_results = job.result()

            # Make a calibration matrix
            meas_fitter = CompleteMeasFitter(cal_results, state_labels)
            # Create a measurement filter from the calibration matrix
            self.readout_correction_filter = meas_fitter.filter

        mitigated_counts = self.readout_correction_filter.apply(counts)
        return mitigated_counts
Пример #17
0
    def test_ideal_meas_cal(self):
        """Test ideal execution, without noise."""
        for nq in self.nq_list:
            print("Testing %d qubit measurement calibration" % nq)

            for pattern_type in range(1, 2**nq):

                # Generate the quantum register according to the pattern
                qubits, weight = self.choose_calibration(nq, pattern_type)

                # Generate the calibration circuits
                meas_calibs, state_labels = \
                    complete_meas_cal(qubit_list=qubits,
                                      circlabel='test')

                # Perform an ideal execution on the generated circuits
                backend = Aer.get_backend('qasm_simulator')
                job = qiskit.execute(meas_calibs,
                                     backend=backend,
                                     shots=self.shots)
                cal_results = job.result()

                # Make a calibration matrix
                meas_cal = CompleteMeasFitter(cal_results,
                                              state_labels,
                                              circlabel='test')

                # Assert that the calibration matrix is equal to identity
                IdentityMatrix = np.identity(2**weight)
                self.assertListEqual(
                    meas_cal.cal_matrix.tolist(), IdentityMatrix.tolist(),
                    'Error: the calibration matrix is \
                                     not equal to identity')

                # Assert that the readout fidelity is equal to 1
                self.assertEqual(
                    meas_cal.readout_fidelity(), 1.0,
                    'Error: the average fidelity  \
                                 is not equal to 1')

                # Generate ideal (equally distributed) results
                results_dict, results_list = \
                    self.generate_ideal_results(state_labels, weight)

                # Output the filter
                meas_filter = meas_cal.filter

                # Apply the calibration matrix to results
                # in list and dict forms using different methods
                results_dict_1 = meas_filter.apply(results_dict,
                                                   method='least_squares')
                results_dict_0 = meas_filter.apply(results_dict,
                                                   method='pseudo_inverse')
                results_list_1 = meas_filter.apply(results_list,
                                                   method='least_squares')
                results_list_0 = meas_filter.apply(results_list,
                                                   method='pseudo_inverse')

                # Assert that the results are equally distributed
                self.assertListEqual(results_list, results_list_0.tolist())
                self.assertListEqual(results_list,
                                     np.round(results_list_1).tolist())
                self.assertDictEqual(results_dict, results_dict_0)
                round_results = {}
                for key, val in results_dict_1.items():
                    round_results[key] = np.round(val)
                self.assertDictEqual(results_dict, round_results)
Пример #18
0
def all_methods_data(interested_qubits,
                     backend,
                     itr,
                     QDT_correlated,
                     shots_per_point=1024,
                     file_address=''):
    """Collect data for our method, Qiskit method, QDT, and standard Bayesian.

    Args:
      interested_qubits:
        an array of ints. REMEBER TO FOLLOW THE ORDER [LAST QUBIT, ..., FIRST QUBIT]
      backend:
        backend from provider.get_backend().
      itr:
        number of iterations of job submission in our method only.
      QDT_correlated:
        True if want qubits corrlected in QDT method.
      file_address:
        file address, string ends with '/' if not empty

    Returns:
      None
    """
    with open(file_address + 'interested_qubits.csv', mode='w',
              newline='') as sgm:
        param_writer = csv.writer(sgm,
                                  delimiter=',',
                                  quotechar='"',
                                  quoting=csv.QUOTE_MINIMAL)
        param_writer.writerow(interested_qubits)

    # Record data for filters (ourmethod)
    print('Our method')
    collect_filter_data(backend,
                        itr=itr,
                        shots=8192,
                        if_monitor_job=True,
                        if_write=True,
                        file_address=file_address)

    # Qiskit Method
    print('Qiskit Method')
    qr = QuantumRegister(len(interested_qubits))
    meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
    for i in range(len(meas_calibs)):
        meas_calibs[i] = transpile(meas_calibs[i],
                                   backend,
                                   initial_layout=interested_qubits[::-1])

    job = execute(meas_calibs,
                  backend=backend,
                  shots=8192,
                  optimization_level=0)
    job_monitor(job)

    cal_results = job.result()
    meas_fitter = CompleteMeasFitter(cal_results,
                                     state_labels,
                                     circlabel='mcal')
    meas_filter = meas_fitter.filter
    cal_matrix = meas_fitter.cal_matrix

    with open(file_address + 'cal_matrix.csv', mode='w', newline='') as sgm:
        param_writer = csv.writer(sgm,
                                  delimiter=',',
                                  quotechar='"',
                                  quoting=csv.QUOTE_MINIMAL)
        for row in cal_matrix:
            param_writer.writerow(row)
    with open(file_address + 'state_labels.csv', mode='w', newline='') as sgm:
        param_writer = csv.writer(sgm,
                                  delimiter=',',
                                  quotechar='"',
                                  quoting=csv.QUOTE_MINIMAL)
        param_writer.writerow(state_labels)

    # QDT
    print('QDT, correlation = ', QDT_correlated)
    if QDT_correlated:
        qdt_qubit_indices = interested_qubits
        qdt_probe_kets = povmtools.pauli_probe_eigenkets
        qdt_calibration_circuits = detector_tomography_circuits(
            qdt_qubit_indices, qdt_probe_kets)

        print('Number of Circuits needed is ', len(qdt_calibration_circuits))

        # We then execute them on backend prepared earlier.
        shots_number = 8192

        # Perform a noisy simulation
        job = execute(qdt_calibration_circuits,
                      backend=backend,
                      shots=shots_number,
                      optimization_level=0)
        job_monitor(job)
        result = job.result()

        dtf = DetectorTomographyFitter()
        calibration_setup = QDTCalibrationSetup.from_qiskit_results(
            [result], qdt_probe_kets)
        ml_povm_estimator = dtf.get_maximum_likelihood_povm_estimator(
            calibration_setup)

        mitigator = QDTErrorMitigator()
        mitigator.prepare_mitigator(ml_povm_estimator)
        trans_mat = mitigator.transition_matrix

        with open(file_address + 'trans_matrix.csv', mode='w',
                  newline='') as sgm:
            param_writer = csv.writer(sgm,
                                      delimiter=',',
                                      quotechar='"',
                                      quoting=csv.QUOTE_MINIMAL)
            for row in trans_mat:
                param_writer.writerow(row)
    else:
        for q in interested_qubits:
            qdt_qubit_indices = [q]
            qdt_probe_kets = povmtools.pauli_probe_eigenkets
            qdt_calibration_circuits = detector_tomography_circuits(
                qdt_qubit_indices, qdt_probe_kets)

            print('Number of Circuits needed is ',
                  len(qdt_calibration_circuits))

            # We then execute them on backend prepared earlier.
            shots_number = 8192

            # Perform a noisy simulation
            job = execute(qdt_calibration_circuits,
                          backend=backend,
                          shots=shots_number,
                          optimization_level=0)
            job_monitor(job)
            result = job.result()

            # Create Mitigator

            dtf = DetectorTomographyFitter()
            calibration_setup = QDTCalibrationSetup.from_qiskit_results(
                [result], qdt_probe_kets)
            ml_povm_estimator = dtf.get_maximum_likelihood_povm_estimator(
                calibration_setup)

            mitigator = QDTErrorMitigator()
            mitigator.prepare_mitigator(ml_povm_estimator)

            trans_mat = mitigator.transition_matrix

            with open(file_address + 'trans_matrix' + str(q) + '.csv',
                      mode='w',
                      newline='') as sgm:
                param_writer = csv.writer(sgm,
                                          delimiter=',',
                                          quotechar='"',
                                          quoting=csv.QUOTE_MINIMAL)
                for row in trans_mat:
                    param_writer.writerow(row)

    # Data for Standard Bayesian
    # Read data to for measurement error while input is |0>
    print('Write data for standard Bayesian')
    prop_dict = backend.properties().to_dict()
    with open(file_address + 'given_params.csv', mode='w', newline='') as sgm:
        param_writer = csv.writer(sgm,
                                  delimiter=',',
                                  quotechar='"',
                                  quoting=csv.QUOTE_MINIMAL)
        for q in interested_qubits:
            p0m0 = 1 - prop_dict['qubits'][q][5]['value']
            if p0m0 == 1 or p0m0 < 0.7:
                p0m0 = 0.9
            p1m1 = 1 - prop_dict['qubits'][q][4]['value']
            if p1m1 == 1 or p1m1 < 0.7:
                p1m1 = 0.9
            param_writer.writerow([p0m0, p1m1])

    with open(file_address + 'Filter_data.csv', mode='r') as measfile:
        reader = csv.reader(measfile)
        cali01 = np.asarray([row for row in reader][0])

    Data = cali01
    for q in interested_qubits:
        y = getData0(Data, itr * int(8192 / shots_per_point), q)
        with open(file_address + 'Qubit{}.csv'.format(q), mode='w',
                  newline='') as sgr:
            read_writer = csv.writer(sgr,
                                     delimiter=',',
                                     quotechar='"',
                                     quoting=csv.QUOTE_MINIMAL)
            read_writer.writerow(['x', 'y'])
            for i in range(len(y)):
                read_writer.writerow([0.5, y[i]])
Пример #19
0
# If no mitigation is applied, add ', memory=True', and .get_memory() to job.result()

job = execute(qc, backend, shots=4096, optimization_level=0)
results = job.result()

# Mitigation Measurement, will run twice

cal_circuits, state_labels = complete_meas_cal(
    qr=qc.qregs[0], circlabel='measurement_calibration')
calculatedJob = execute(cal_circuits,
                        backend,
                        shots=4096,
                        optimization_level=0)
calculatedResults = calculatedJob.result()

meas_fitter = CompleteMeasFitter(calculatedResults, state_labels)
meas_filter = meas_fitter.filter
mitigated_result = meas_filter.apply(results)
device_counts = results.get_counts(qc)
mitigated_counts = mitigated_result.get_counts(qc)

output = []

# Reminder, if mitigated results are disabled, add ".get_memory()" to job.result(), and uncomment:

# for x in range(0, 4096):
#     convert = int(mitigated_counts_2[x], 2)
#     output.append(convert)

# And comment out:
Пример #20
0
    def test_meas_cal_on_circuit(self):
        """Test an execution on a circuit."""
        print("Testing measurement calibration on a circuit")

        # Choose 3 qubits
        q1 = 1
        q2 = 2
        q3 = 3

        # Generate the quantum register according to the pattern
        qr = qiskit.QuantumRegister(5)
        # Generate the calibration circuits
        meas_calibs, state_labels = \
            complete_meas_cal(qubit_list=[1, 2, 3],
                              qr=qr)

        # Run the calibration circuits
        backend = Aer.get_backend('qasm_simulator')
        job = qiskit.execute(meas_calibs, backend=backend, shots=self.shots)
        cal_results = job.result()

        # Make a calibration matrix
        meas_cal = CompleteMeasFitter(cal_results, state_labels)
        # Calculate the fidelity
        fidelity = meas_cal.readout_fidelity()

        # Make a 3Q GHZ state
        cr = ClassicalRegister(3)
        ghz = QuantumCircuit(qr, cr)
        ghz.h(qr[q1])
        ghz.cx(qr[q1], qr[q2])
        ghz.cx(qr[q2], qr[q3])
        ghz.measure(qr[q1], cr[0])
        ghz.measure(qr[q2], cr[1])
        ghz.measure(qr[q3], cr[2])

        job = qiskit.execute([ghz], backend=backend, shots=self.shots)
        results = job.result()

        # Predicted equally distributed results
        predicted_results = {'000': 0.5, '111': 0.5}

        meas_filter = meas_cal.filter

        # Calculate the results after mitigation
        output_results_pseudo_inverse = meas_filter.apply(
            results, method='pseudo_inverse').get_counts(0)
        output_results_least_square = meas_filter.apply(
            results, method='least_squares').get_counts(0)

        # Compare with expected fidelity and expected results
        self.assertAlmostEqual(fidelity, 1.0)
        self.assertAlmostEqual(output_results_pseudo_inverse['000'] /
                               self.shots,
                               predicted_results['000'],
                               places=1)

        self.assertAlmostEqual(output_results_least_square['000'] / self.shots,
                               predicted_results['000'],
                               places=1)

        self.assertAlmostEqual(output_results_pseudo_inverse['111'] /
                               self.shots,
                               predicted_results['111'],
                               places=1)

        self.assertAlmostEqual(output_results_least_square['111'] / self.shots,
                               predicted_results['111'],
                               places=1)
Пример #21
0
## main part!
from qiskit.ignis.mitigation.measurement import (complete_meas_cal,
                                                 CompleteMeasFitter)
cal_circuits, state_labels = complete_meas_cal(
    qr=circuit.qregs[0], circlabel="measerrormitigationcal"
)  #circuit.qregs[0] is the quantum register to show all qubits we have
#cal_circuits is the calibrated circuit of all qubits possible outcomes, state labels are 000 - 111
cal_job = execute(cal_circuits, qcom, shots=1024, optimization_level=0)
print(cal_job.job_id())
job_monitor(cal_job)
result_cal = cal_job.result()
plot_histogram(result_cal.get_counts())

#Build the measurement fitter which extracts the parameters from calibration results
meas_fitter = CompleteMeasFitter(
    result_cal, state_labels)  #fit the calibrated results with actucal labels
meas_fitter.plot_calibration()

#Make the calibration filter to mitigate the results
#This filter can be used for other 3 qubuits circuit
meas_filter = meas_fitter.filter
result_mitigated = meas_filter.apply(
    result_q
)  #Generate mitigated result by applying filter to the quantum computer result

#get result
counts_q = result_q.get_counts()
counts_mitigated = result_mitigated.get_counts()
plot_histogram([counts_q, counts_mitigated],
               legend=["noisy result", 'mitigated result'])
Пример #22
0
def twospin_df(J, Bx, dB, Bz_max, dt_steps, dt_steps_bool, gamma, skip,
               provider, backend, pq1, pq2):
    count_list = []
    calibrated_count_list = []
    tarray, Bzarray, dt_or_steps, _ = adiabaticramp(J, Bx, dB, Bz_max,
                                                    dt_steps, dt_steps_bool,
                                                    gamma)

    if dt_steps_bool == 'dt':
        dt = dt_steps
    else:
        dt = dt_or_steps

    thetaarray, _ = theta(Bzarray, dt)

    # Calibration Matrix
    meas_calibs, state_labels = complete_meas_cal(qubit_list=[0, 1, 2, 3],
                                                  qr=QuantumRegister(4),
                                                  circlabel='4spin')
    cal_results = execute(meas_calibs,
                          backend=Aer.get_backend('qasm_simulator'),
                          shots=1000).result()
    meas_calibs, state_labels = complete_meas_cal(qubit_list=[0, 1, 2, 3],
                                                  qr=QuantumRegister(4),
                                                  circlabel='4spin')
    meas_fitter = CompleteMeasFitter(cal_results,
                                     state_labels,
                                     circlabel='4spin')
    #meas_fitter.plot_calibration()

    qmap = Layout()

    i = 0
    while (i < len(thetaarray)):
        print('Bz = %f' % (Bzarray[i]))
        qr = QuantumRegister(4, 'qr')
        cr = ClassicalRegister(4, 'cr')
        circ = QuantumCircuit(qr, cr)
        #qmap.from_dict(input_dict={qr[0]: pq1, qr[1]: pq2})
        circ.initialize([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
                        [0, 1, 2, 3])

        fourspin_instruction(circ, J, Bx, thetaarray[:i + 1], dt)
        circ.measure([0, 1, 2, 3], [0, 1, 2, 3])

        result = execute(circ, Aer.get_backend('qasm_simulator'),
                         shots=5000).result()
        counts = result.get_counts()
        counts['Time'] = tarray[i]
        counts['Bz'] = Bzarray[i]
        count_list.append(counts)
        with open("count_list.txt", "w") as output:
            output.write(str(count_list))

        mitigated_counts = meas_fitter.filter.apply(result).get_counts()
        mitigated_counts['Time'] = tarray[i]
        mitigated_counts['Bz'] = Bzarray[i]
        calibrated_count_list.append(mitigated_counts)
        with open("calibrated_count_list.txt", "w") as output:
            output.write(str(calibrated_count_list))

        i = i + 1 + skip

    # Creating dataframe
    df = pd.DataFrame(count_list)
    time_col = df.pop('Time')
    df.insert(0, 'Time', time_col)
    df['Exact'] = exactm(J, Bx, Bzarray, dt)
    df['Interaction'] = interactionm(J, Bx, thetaarray, dt)

    calibrated_df = pd.DataFrame(calibrated_count_list)
    time_col = df.pop('Time')
    df.insert(0, 'Time', time_col)

    if '0000' not in df:
        df['0000'] = 0
    if '0001' not in df:
        df['0001'] = 0
    if '0010' not in df:
        df['0010'] = 0
    if '0011' not in df:
        df['0011'] = 0
    if '0100' not in df:
        df['0000'] = 0
    if '0101' not in df:
        df['0001'] = 0
    if '0110' not in df:
        df['0010'] = 0
    if '0111' not in df:
        df['0011'] = 0
    if '1000' not in df:
        df['0000'] = 0
    if '1001' not in df:
        df['0001'] = 0
    if '1010' not in df:
        df['0010'] = 0
    if '1011' not in df:
        df['0011'] = 0
    if '1100' not in df:
        df['0000'] = 0
    if '1101' not in df:
        df['0001'] = 0
    if '1110' not in df:
        df['0010'] = 0
    if '1111' not in df:
        df['0011'] = 0
    df = df.fillna(0)

    if '0000' not in calibrated_df:
        calibrated_df['00'] = 0
    if '0001' not in calibrated_df:
        calibrated_df['01'] = 0
    if '0010' not in calibrated_df:
        calibrated_df['10'] = 0
    if '0011' not in calibrated_df:
        calibrated_df['11'] = 0
    if '0100' not in calibrated_df:
        calibrated_df['00'] = 0
    if '0101' not in calibrated_df:
        calibrated_df['01'] = 0
    if '0110' not in calibrated_df:
        calibrated_df['10'] = 0
    if '0111' not in calibrated_df:
        calibrated_df['11'] = 0
    if '1000' not in calibrated_df:
        calibrated_df['00'] = 0
    if '1001' not in calibrated_df:
        calibrated_df['01'] = 0
    if '1010' not in calibrated_df:
        calibrated_df['10'] = 0
    if '1011' not in calibrated_df:
        calibrated_df['11'] = 0
    if '1100' not in calibrated_df:
        calibrated_df['00'] = 0
    if '1101' not in calibrated_df:
        calibrated_df['01'] = 0
    if '1110' not in calibrated_df:
        calibrated_df['10'] = 0
    if '1111' not in calibrated_df:
        calibrated_df['11'] = 0
    calibrated_df = calibrated_df.fillna(0)

    # Calculating mz
    total = df['0000'] + df['0001'] + df['0010'] + df['0011'] + df[
        '0100'] + df['0101'] + df['0110'] + df['0111'] + df['1000'] + df[
            '1001'] + df['1010'] + df['1011'] + df['1100'] + df['1101'] + df[
                '1110'] + df['1111']
    df['mz'] = -(2 * df['0000'] + df['0001'] + df['0010'] + df['0100'] +
                 df['1000'] - df['0111'] - df['1011'] - df['1101'] -
                 df['1110'] - 2 * df['1111']) / total
    calibrated_df['mz'] = -(2 * df['0000'] + df['0001'] + df['0010'] +
                            df['0100'] + df['1000'] - df['0111'] - df['1011'] -
                            df['1101'] - df['1110'] - 2 * df['1111']) / total

    # Creating Files
    if dt_steps_bool == 'dt':
        df.to_csv(
            '4spin J={:.3f} Bx={:.3f} dB={:.3f} BzMax={:.3f} dt={:.3f} gamma={:.3f}.csv'
            .format(J, Bx, dB, Bz_max, dt_steps, gamma))
        calibrated_df.to_csv(
            'Calibrated 4spin J={:.3f} Bx={:.3f} dB={:.3f} BzMax={:.3f} dt={:.3f} gamma={:.3f}.csv'
            .format(J, Bx, dB, Bz_max, dt_steps, gamma))
    else:
        df.to_csv(
            '4spin J={:.3f} Bx={:.3f} dB={:.3f} BzMax={:.3f} BzSteps={:.3f} gamma={:.3f}.csv'
            .format(J, Bx, dB, Bz_max, dt_steps, gamma))
        calibrated_df.to_csv(
            'Calibrated 4spin J={:.3f} Bx={:.3f} dB={:.3f} BzMax={:.3f} BzSteps={:.3f} gamma={:.3f}.csv'
            .format(J, Bx, dB, Bz_max, dt_steps, gamma))

    return df, calibrated_df, dt_or_steps, thetaarray
Пример #23
0
                print('\nOptimization level must be an integer between 0 and 3, inclusive. Higher levels generate more optimized circuits, at the expense of longer transpilation time.\n')
                exit(1)
        else:
            opt_level = 1
   
        U_f = get_U_f(func_in, n)
        list_y = []
        
        circuit = simon_program(U_f, n)
        circuit.measure(range(n), range(n))

        # Calibration Matrix
        meas_calibs, state_labels = complete_meas_cal(qubit_list=range(n), circlabel='mcal')
        cal_job = execute(meas_calibs, backend=backend, shots=8192)
        cal_results = cal_job.result()
        meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
        
        start = time.time()
        circuit = transpile(circuit, backend, optimization_level=opt_level)
        transpiletime = time.time() - start

        if trials*n > 2048:
            trial_list = [8192]*((trials*n)//2048) + [(4*trials*n)%8192]
        else:
            trial_list = [4*trials*n]
        
        job = []
        for t in trial_list:
            job.append(execute(circuit, backend, optimization_level=0, shots=t))

        result = []
Пример #24
0
                flip_drive = True
                backend_sim = qiskit.providers.aer.PulseSimulator()
#                experiments10 = cr_drive_experiments(drive_idx, target_idx, flip_drive)
               # compute frequencies from the Hamiltonian
#                qubit_lo_freq10 = two_qubit_model.hamiltonian.get_qubit_lo_from_drift()
                #assemble qobj 1
                rabifit_result = RabiFitter(result1, amps1, qubits, fit_p0 = [0.5,0.5,0.6,1.5])
                if l == trainidx[0] and i == 0:
                #if flag != 1:
                    # Generate the calibration circuits
                    qr = qiskit.QuantumRegister(2)
                    qubit_list = [0,1]
                    meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list, qr=qr, circlabel='mcal')
                    job = qiskit.execute(meas_calibs, backend=backend, shots=10, noise_model=noise_model)
                    cal_results = job.result()
                    meas_fitter = CompleteMeasFitter(cal_results, state_labels)
#                    meas_fitter.cal_matrix = np.kron(meas_fitter.cal_matrices[1],meas_fitter.cal_matricesc[0])
                    meas_fitter.cal_matrix
                    plt.figure(figsize=(15, 10))
                    for qubit in qubits:
                        ax = plt.subplot(2, 2, qubit + 1)
                        #Xvmin, Xvmax = ax.xaxis.get_data_interval()
                        #Yvmin, Yvmax = ax.yaxis.get_data_interval()
                        #print(Xvmin, Xvmax,Yvmin, Yvmax)
                        Xvmin = multiplier * np.floor(0.1 / multiplier)
                        Xvmax = multiplier * np.ceil(0.5 / multiplier)
                        ax.set_xlim([Xvmin, Xvmax])
                        rabifit_result.plot(qubit, ax=ax)
                        print('Q1  Pi Amp: %f'%rabifit_result.pi_amplitude(qubit))
                        # analysis on multi-shots averaged result
                        # Results without mitigation
Пример #25
0
# Generates measurement calibration circuits for running measurement error
#  mitigation.
q_register = QuantumRegister(5)
calibration_circuits, state_labels = complete_meas_cal(qubit_list=[2, 3, 4],
                                                       qr=q_register)

# Executes calibration circuits.
qasm_backend = Aer.get_backend("qasm_simulator")  # simulates circuit
job = qiskit.execute(calibration_circuits,
                     backend=qasm_backend,
                     shots=1000,
                     noise_model=aer_noise_model)
calibration_results = job.result()

# Makes calibration matrix.
measure_fitter = CompleteMeasFitter(calibration_results, state_labels)

# Makes a 3-qubit GHZ state (a particular entangled state, at least 3 qubits).
# 1. applies Hadamard, putting qubit into superposition
# 2. applies CX (CNOT), putting qubits into Bell state
# 3. applies CX (CNOT), putting qubits into GHZ state
c_register = ClassicalRegister(3)
ghz = QuantumCircuit(q_register, c_register)
ghz.h(q_register[2])  # ghz.h(qubit); Hadamard gate
ghz.cx(q_register[2],
       q_register[3])  # ghz.cx(control_qubit, target_qubit); CNOT
ghz.cx(q_register[3], q_register[4])
ghz.measure(q_register[2], c_register[0])  # ghz.measure(qubit, cbit):
#  qubit: quantum register,
#  cbit: classical register,
# measures qubit into classical bit