Пример #1
0
 def test_matrix_iter(self):
     """Test PauliSumOp dense matrix_iter method."""
     labels = ["III", "IXI", "IYY", "YIZ", "XYZ", "III"]
     coeffs = np.array([1, 2, 3, 4, 5, 6])
     table = PauliTable.from_labels(labels)
     coeff = 10
     op = PauliSumOp(SparsePauliOp(table, coeffs), coeff)
     for idx, i in enumerate(op.matrix_iter()):
         self.assertTrue(np.array_equal(i, coeff * coeffs[idx] * Pauli(labels[idx]).to_matrix()))
Пример #2
0
 def test_matrix_iter_sparse(self):
     """Test PauliSumOp sparse matrix_iter method."""
     labels = ['III', 'IXI', 'IYY', 'YIZ', 'XYZ', 'III']
     coeffs = np.array([1, 2, 3, 4, 5, 6])
     coeff = 10
     table = PauliTable.from_labels(labels)
     op = PauliSumOp(SparsePauliOp(table, coeffs), coeff)
     for idx, i in enumerate(op.matrix_iter(sparse=True)):
         self.assertTrue(
             np.array_equal(i.toarray(), coeff * coeffs[idx] *
                            Pauli(labels[idx]).to_matrix()))
Пример #3
0
    def test_coder_operators(self):
        """Test runtime encoder and decoder for operators."""
        x = Parameter("x")
        y = x + 1
        qc = QuantumCircuit(1)
        qc.h(0)
        coeffs = np.array([1, 2, 3, 4, 5, 6])
        table = PauliTable.from_labels(
            ["III", "IXI", "IYY", "YIZ", "XYZ", "III"])
        op = (2.0 * I ^ I)
        z2_symmetries = Z2Symmetries(
            [Pauli("IIZI"), Pauli("ZIII")],
            [Pauli("IIXI"), Pauli("XIII")], [1, 3], [-1, 1])
        isqrt2 = 1 / np.sqrt(2)
        sparse = scipy.sparse.csr_matrix([[0, isqrt2, 0, isqrt2]])

        subtests = (
            PauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[2]), coeff=3),
            PauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[1]), coeff=y),
            PauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[1 + 2j]),
                       coeff=3 - 2j),
            PauliSumOp.from_list([("II", -1.052373245772859),
                                  ("IZ", 0.39793742484318045)]),
            PauliSumOp(SparsePauliOp(table, coeffs), coeff=10),
            MatrixOp(primitive=np.array([[0, -1j], [1j, 0]]), coeff=x),
            PauliOp(primitive=Pauli("Y"), coeff=x),
            CircuitOp(qc, coeff=x),
            EvolvedOp(op, coeff=x),
            TaperedPauliSumOp(SparsePauliOp(Pauli("XYZX"), coeffs=[2]),
                              z2_symmetries),
            StateFn(qc, coeff=x),
            CircuitStateFn(qc, is_measurement=True),
            DictStateFn("1" * 3, is_measurement=True),
            VectorStateFn(np.ones(2**3, dtype=complex)),
            OperatorStateFn(CircuitOp(QuantumCircuit(1))),
            SparseVectorStateFn(sparse),
            Statevector([1, 0]),
            CVaRMeasurement(Z, 0.2),
            ComposedOp([(X ^ Y ^ Z), (Z ^ X ^ Y ^ Z).to_matrix_op()]),
            SummedOp([X ^ X * 2, Y ^ Y], 2),
            TensoredOp([(X ^ Y), (Z ^ I)]),
            (Z ^ Z) ^ (I ^ 2),
        )
        for op in subtests:
            with self.subTest(op=op):
                encoded = json.dumps(op, cls=RuntimeEncoder)
                self.assertIsInstance(encoded, str)
                decoded = json.loads(encoded, cls=RuntimeDecoder)
                self.assertEqual(op, decoded)
Пример #4
0
def _fix_qubits(
    operator: Union[int, PauliSumOp, PauliOp, OperatorBase],
    has_side_chain_second_bead: bool = False,
) -> Union[int, PauliSumOp, PauliOp, OperatorBase]:
    """
    Assigns predefined values for turns qubits on positions 0, 1, 2, 3, 5 in the main chain
    without the loss of generality (see the paper https://arxiv.org/pdf/1908.02163.pdf). Qubits
    on these position are considered fixed and not subject to optimization.

    Args:
        operator: an operator whose qubits shall be fixed.

    Returns:
        An operator with relevant qubits changed to fixed values.
    """
    # operator might be 0 (int) because it is initialized as operator = 0; then we should not
    # attempt fixing qubits
    if (not isinstance(operator, PauliOp)
            and not isinstance(operator, PauliSumOp)
            and not isinstance(operator, OperatorBase)):
        return operator
    operator = operator.reduce()
    new_tables = []
    new_coeffs = []
    if isinstance(operator, PauliOp):
        table_z = np.copy(operator.primitive.z)
        table_x = np.copy(operator.primitive.x)
        _preset_binary_vals(table_z, has_side_chain_second_bead)
        return PauliOp(Pauli((table_z, table_x)))

    for hamiltonian in operator:
        table_z = np.copy(hamiltonian.primitive.paulis.z[0])
        table_x = np.copy(hamiltonian.primitive.paulis.x[0])
        coeffs = _calc_updated_coeffs(hamiltonian, table_z,
                                      has_side_chain_second_bead)
        _preset_binary_vals(table_z, has_side_chain_second_bead)
        new_table = np.concatenate((table_x, table_z), axis=0)
        new_tables.append(new_table)
        new_coeffs.append(coeffs)
    new_pauli_table = PauliTable(data=new_tables)
    operator_updated = PauliSumOp(
        SparsePauliOp(data=new_pauli_table, coeffs=new_coeffs))
    operator_updated = operator_updated.reduce()
    return operator_updated
Пример #5
0
def _compress_pauli_sum_op(
    num_qubits: int,
    total_hamiltonian: Union[PauliSumOp, PauliOp, OperatorBase],
    unused_qubits: List[int],
) -> Union[PauliSumOp, PauliOp, OperatorBase]:
    new_tables = []
    new_coeffs = []
    for term in total_hamiltonian:
        table_z = term.primitive.paulis.z[0]
        table_x = term.primitive.paulis.x[0]
        coeffs = term.primitive.coeffs[0]
        new_table_z, new_table_x = _calc_reduced_pauli_tables(
            num_qubits, table_x, table_z, unused_qubits)
        new_table = np.concatenate((new_table_x, new_table_z), axis=0)
        new_tables.append(new_table)
        new_coeffs.append(coeffs)
    new_pauli_table = PauliTable(data=new_tables)
    total_hamiltonian_compressed = PauliSumOp(
        SparsePauliOp(data=new_pauli_table, coeffs=new_coeffs)).reduce()
    return total_hamiltonian_compressed