Пример #1
0
    def setUp(self):
        self.seed = 88
        self.qasm_filename = self._get_resource_path('qasm/example.qasm')
        self.qasm_circ = QuantumCircuit.from_qasm_file(self.qasm_filename)
        qr = QuantumRegister(2, 'q')
        cr = ClassicalRegister(2, 'c')
        qc = QuantumCircuit(qr, cr)
        qc.h(qr[0])
        qc.measure(qr[0], cr[0])
        self.qc = qc

        # create qobj
        dag = DAGCircuit.fromQuantumCircuit(self.qc)
        json_circuit = DagUnroller(dag, JsonBackend(dag.basis)).execute()
        compiled_circuit1 = QobjExperiment.from_dict(json_circuit)

        dag = DAGCircuit.fromQuantumCircuit(self.qasm_circ)
        json_circuit = DagUnroller(dag, JsonBackend(dag.basis)).execute()
        compiled_circuit2 = QobjExperiment.from_dict(json_circuit)

        self.qobj = Qobj(qobj_id='test_qobj',
                         config=QobjConfig(shots=2000,
                                           memory_slots=1,
                                           max_credits=3,
                                           seed=1111),
                         experiments=[compiled_circuit1, compiled_circuit2],
                         header=QobjHeader(backend_name='qasm_simulator'))
        self.qobj.experiments[0].header.name = 'test_circuit1'
        self.qobj.experiments[0].config = QobjItem(
            basis_gates='u1,u2,u3,cx,id')
        self.qobj.experiments[1].header.name = 'test_circuit2'
        self.qobj.experiments[1].config = QobjItem(
            basis_gates='u1,u2,u3,cx,id')
        self.backend = QasmSimulator()
    def setUp(self):
        qasm_filename = self._get_resource_path('qasm/example.qasm')
        qasm_ast = Qasm(filename=qasm_filename).parse()
        qasm_dag = Unroller(qasm_ast, DAGBackend()).execute()
        qasm_json = DagUnroller(qasm_dag,
                                JsonBackend(qasm_dag.basis)).execute()

        qr = QuantumRegister(2, 'q')
        cr = ClassicalRegister(2, 'c')
        qc = QuantumCircuit(qr, cr)
        qc.h(qr[0])
        qc.measure(qr[0], cr[0])
        qc_dag = DAGCircuit.fromQuantumCircuit(qc)
        qc_json = DagUnroller(qc_dag, JsonBackend(qc_dag.basis)).execute()

        # create qobj
        compiled_circuit1 = QobjExperiment.from_dict(qc_json)
        compiled_circuit2 = QobjExperiment.from_dict(qasm_json)

        self.qobj = Qobj(qobj_id='test_qobj',
                         config=QobjConfig(shots=2000,
                                           memory_slots=1,
                                           max_credits=3,
                                           seed=1111),
                         experiments=[compiled_circuit1, compiled_circuit2],
                         header=QobjHeader(backend_name='qasm_simulator'))
        self.qobj.experiments[0].header.name = 'test_circuit1'
        self.qobj.experiments[1].header.name = 'test_circuit2'
        self.backend = QasmSimulator()
Пример #3
0
 def test_from_dag_to_json_with_basis(self):
     ast = qasm.Qasm(
         filename=self._get_resource_path('qasm/example.qasm')).parse()
     dag_circuit = Unroller(ast, DAGBackend(["cx", "u1", "u2",
                                             "u3"])).execute()
     dag_unroller = DagUnroller(dag_circuit,
                                JsonBackend(["cx", "u1", "u2", "u3"]))
     json_circuit = dag_unroller.execute()
     expected_result = \
         {'operations':
             [{'qubits': [5], 'texparams': ['0', '\\pi'], 'params': [0.0, 3.141592653589793],
               'name': 'u2'},
              {'qubits': [5, 2], 'texparams': [], 'params': [], 'name': 'cx'},
              {'qubits': [2], 'clbits': [2], 'name': 'measure'},
              {'qubits': [4], 'texparams': ['0', '\\pi'], 'params': [0.0, 3.141592653589793],
               'name': 'u2'},
              {'qubits': [4, 1], 'texparams': [], 'params': [], 'name': 'cx'},
              {'qubits': [1], 'clbits': [1], 'name': 'measure'},
              {'qubits': [3], 'texparams': ['0', '\\pi'], 'params': [0.0, 3.141592653589793],
               'name': 'u2'},
              {'qubits': [3, 0], 'texparams': [], 'params': [], 'name': 'cx'},
              {'qubits': [3, 4, 5], 'name': 'barrier'},
              {'qubits': [5], 'clbits': [5], 'name': 'measure'},
              {'qubits': [4], 'clbits': [4], 'name': 'measure'},
              {'qubits': [3], 'clbits': [3], 'name': 'measure'},
              {'qubits': [0], 'clbits': [0], 'name': 'measure'}],
          'header':
              {'clbit_labels': [['d', 3], ['c', 3]],
               'number_of_qubits': 6,
               'qubit_labels': [['r', 0], ['r', 1], ['r', 2], ['q', 0], ['q', 1], ['q', 2]],
               'number_of_clbits': 6
               }
          }
     self.assertEqual(json_circuit, expected_result)
Пример #4
0
    def test_dag_to_json(self):
        """Test DagUnroller with JSON backend."""
        ast = qasm.Qasm(filename=self._get_resource_path('qasm/example.qasm')).parse()
        dag_circuit = Unroller(ast, DAGBackend()).execute()
        dag_unroller = DagUnroller(dag_circuit, JsonBackend())
        json_circuit = dag_unroller.execute()
        expected_result = {
            'operations':
                [
                    {'qubits': [5], 'texparams': ['0.5 \\pi', '0', '\\pi'],
                     'name': 'U', 'params': [1.5707963267948966, 0.0, 3.141592653589793]},
                    {'name': 'CX', 'qubits': [5, 2]},
                    {'clbits': [2], 'name': 'measure', 'qubits': [2]},
                    {'qubits': [4], 'texparams': ['0.5 \\pi', '0', '\\pi'], 'name': 'U',
                     'params': [1.5707963267948966, 0.0, 3.141592653589793]},
                    {'name': 'CX', 'qubits': [4, 1]},
                    {'clbits': [1], 'name': 'measure', 'qubits': [1]},
                    {'qubits': [3], 'texparams': ['0.5 \\pi', '0', '\\pi'], 'name': 'U',
                     'params': [1.5707963267948966, 0.0, 3.141592653589793]},
                    {'name': 'CX', 'qubits': [3, 0]},
                    {'name': 'barrier', 'qubits': [3, 4, 5]},
                    {'clbits': [5], 'name': 'measure', 'qubits': [5]},
                    {'clbits': [4], 'name': 'measure', 'qubits': [4]},
                    {'clbits': [3], 'name': 'measure', 'qubits': [3]},
                    {'clbits': [0], 'name': 'measure', 'qubits': [0]}
                ],
            'header':
                {
                    'memory_slots': 6,
                    'qubit_labels': [['r', 0], ['r', 1], ['r', 2], ['q', 0], ['q', 1], ['q', 2]],
                    'n_qubits': 6, 'clbit_labels': [['d', 3], ['c', 3]]
                }
        }

        self.assertEqual(json_circuit, expected_result)
Пример #5
0
    def test_execute(self):
        ast = qasm.Qasm(
            filename=self._get_resource_path('qasm/example.qasm')).parse()
        dag_circuit = Unroller(ast, DAGBackend()).execute()
        dag_unroller = DagUnroller(dag_circuit, DAGBackend())
        unroller_dag_circuit = dag_unroller.execute()
        expected_result = """\
OPENQASM 2.0;
qreg q[3];
qreg r[3];
creg c[3];
creg d[3];
U(0.5*pi,0,pi) q[2];
CX q[2],r[2];
measure r[2] -> d[2];
U(0.5*pi,0,pi) q[1];
CX q[1],r[1];
measure r[1] -> d[1];
U(0.5*pi,0,pi) q[0];
CX q[0],r[0];
measure r[0] -> d[0];
barrier q[0],q[1],q[2];
measure q[2] -> c[2];
measure q[1] -> c[1];
measure q[0] -> c[0];
"""
        self.assertEqual(unroller_dag_circuit.qasm(), expected_result)
Пример #6
0
    def test_dag_to_dag_expand_gates_default_basis(self):
        """Test DagUnroller.expand_gates()"""
        ast = qasm.Qasm(filename=self._get_resource_path('qasm/example.qasm')).parse()
        dag_circuit = Unroller(ast, DAGBackend()).execute()
        dag_unroller = DagUnroller(dag_circuit, DAGBackend())
        expanded_dag_circuit = dag_unroller.expand_gates()
        expected_result = """\
OPENQASM 2.0;
include "qelib1.inc";
qreg q[3];
qreg r[3];
creg c[3];
creg d[3];
U(pi/2,0,pi) q[2];
CX q[2],r[2];
measure r[2] -> d[2];
U(pi/2,0,pi) q[1];
CX q[1],r[1];
measure r[1] -> d[1];
U(pi/2,0,pi) q[0];
CX q[0],r[0];
barrier q[0],q[1],q[2];
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];
measure r[0] -> d[0];
"""
        expected_dag = circuit_to_dag(QuantumCircuit.from_qasm_str(expected_result))
        self.assertEqual(expanded_dag_circuit, expected_dag)
Пример #7
0
def _dags_2_qobj_parallel(dag, config=None, basis_gates=None,
                          coupling_map=None):
    """Helper function for dags to qobj in parallel (if available).

    Args:
        dag (DAGCircuit): DAG to compile
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (list[str])): basis gates for the experiment
        coupling_map (list): coupling map (perhaps custom) to target in mapping

    Returns:
        Qobj: Qobj to be run on the backends
    """
    json_circuit = DagUnroller(dag, JsonBackend(dag.basis)).execute()
    # Step 3a: create the Experiment based on json_circuit
    experiment = QobjExperiment.from_dict(json_circuit)
    # Step 3b: populate the Experiment configuration and header
    experiment.header.name = dag.name
    # TODO: place in header or config?
    experiment_config = deepcopy(config or {})
    experiment_config.update({
        'coupling_map': coupling_map,
        'basis_gates': basis_gates,
        'layout': dag.layout,
        'memory_slots': sum(dag.cregs.values()),
        # TODO: `n_qubits` is not part of the qobj spec, but needed for the simulator.
        'n_qubits': sum(dag.qregs.values())})
    experiment.config = QobjItem(**experiment_config)

    # set eval_symbols=True to evaluate each symbolic expression
    # TODO: after transition to qobj, we can drop this
    experiment.header.compiled_circuit_qasm = dag.qasm(
        qeflag=True, eval_symbols=True)
    # Step 3c: add the Experiment to the Qobj
    return experiment
Пример #8
0
    def test_pass_manager_none(self):
        """Test passing the default (None) pass manager to the transpiler.

        It should perform the default qiskit flow:
        unroll, swap_mapper, direction_mapper, cx cancellation, optimize_1q_gates
        and should be equivalent to using wrapper.compile
        """
        q = QuantumRegister(2)
        circ = QuantumCircuit(q)
        circ.h(q[0])
        circ.h(q[0])
        circ.cx(q[0], q[1])
        circ.cx(q[0], q[1])
        circ.cx(q[0], q[1])
        circ.cx(q[0], q[1])

        coupling_map = [[1, 0]]
        basis_gates = 'u1,u2,u3,cx,id'

        dag_circuit = DAGCircuit.fromQuantumCircuit(circ)
        dag_circuit = transpile(dag_circuit, coupling_map=coupling_map,
                                basis_gates=basis_gates, pass_manager=None)
        transpiler_json = DagUnroller(dag_circuit, JsonBackend(dag_circuit.basis)).execute()

        qobj = wrapper.compile(circ, backend='local_qasm_simulator',
                               coupling_map=coupling_map, basis_gates=basis_gates)
        compiler_json = qobj.experiments[0].as_dict()

        # Remove extra Qobj header parameters.
        compiler_json.pop('config')
        compiler_json['header'].pop('name')
        compiler_json['header'].pop('compiled_circuit_qasm')

        self.assertDictEqual(transpiler_json, compiler_json)
Пример #9
0
    def setUp(self):
        self.seed = 88
        self.backend = QasmSimulatorPy()
        backend_basis = self.backend.configuration().basis_gates
        qasm_filename = self._get_resource_path('qasm/example.qasm')
        qasm_ast = Qasm(filename=qasm_filename).parse()
        qasm_dag = Unroller(qasm_ast, DAGBackend()).execute()
        qasm_dag = DagUnroller(qasm_dag, DAGBackend(backend_basis)).expand_gates()
        qasm_json = DagUnroller(qasm_dag, JsonBackend(qasm_dag.basis)).execute()
        compiled_circuit = QobjExperiment.from_dict(qasm_json)
        compiled_circuit.header.name = 'test'

        self.qobj = Qobj(
            qobj_id='test_sim_single_shot',
            config=QobjConfig(
                shots=1024, memory_slots=6,
                max_credits=3, seed=self.seed
            ),
            experiments=[compiled_circuit],
            header=QobjHeader(backend_name='qasm_simulator_py')
        )
Пример #10
0
def dag2json(dag_circuit, basis_gates='u1,u2,u3,cx,id'):
    """Make a Json representation of the circuit.
    Takes a circuit dag and returns json circuit obj. This is an internal
    function.
    Args:
        dag_circuit (QuantumCircuit): a dag representation of the circuit.
        basis_gates (str): a comma seperated string and are the base gates,
                               which by default are: u1,u2,u3,cx,id
    Returns:
        json: the json version of the dag
    """
    return DagUnroller(dag_circuit, JsonBackend(basis_gates)).execute()
Пример #11
0
    def test_dag_to_dag_expand_gates_custom_basis(self):
        """Test DagUnroller.expand_gates() to a gate basis."""
        ast = qasm.Qasm(
            filename=self._get_resource_path('qasm/example.qasm')).parse()
        dag_circuit = Unroller(ast, DAGBackend()).execute()
        dag_unroller = DagUnroller(dag_circuit, DAGBackend())
        expanded_dag_circuit = dag_unroller.expand_gates(
            basis=["cx", "u1", "u2", "u3"])
        expected_result = """\
OPENQASM 2.0;
qreg q[3];
qreg r[3];
creg c[3];
creg d[3];
gate u2(phi,lambda) q
{
  U((pi/2),phi,lambda) q;
}
gate h a
{
  u2(0,pi) a;
}
gate cx c,t
{
  CX c,t;
}
u2(0,pi) q[2];
cx q[2],r[2];
measure r[2] -> d[2];
u2(0,pi) q[1];
cx q[1],r[1];
measure r[1] -> d[1];
u2(0,pi) q[0];
cx q[0],r[0];
barrier q[0],q[1],q[2];
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];
measure r[0] -> d[0];
"""
        self.assertEqual(expanded_dag_circuit.qasm(), expected_result)
Пример #12
0
def _circuit_to_experiment(circuit,
                           config=None,
                           basis_gates=None,
                           coupling_map=None):
    """Helper function for dags to qobj in parallel (if available).

    Args:
        circuit (QuantumCircuit): QuantumCircuit to convert into qobj experiment
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (list[str])): basis gates for the experiment
        coupling_map (list): coupling map (perhaps custom) to target in mapping

    Returns:
        Qobj: Qobj to be run on the backends
    """
    # pylint: disable=unused-argument
    #  TODO: if arguments are really unused, consider changing the signature
    # TODO: removed the DAG from this function
    from qiskit.converters import circuit_to_dag
    from qiskit.unroll import DagUnroller, JsonBackend
    dag = circuit_to_dag(circuit)
    json_circuit = DagUnroller(dag, JsonBackend(dag.basis)).execute()
    # Step 3a: create the Experiment based on json_circuit
    experiment = QobjExperiment.from_dict(json_circuit)
    # Step 3b: populate the Experiment configuration and header
    experiment.header.name = circuit.name
    experiment_config = deepcopy(config or {})
    experiment_config.update({
        'memory_slots':
        sum([creg.size for creg in dag.cregs.values()]),
        'n_qubits':
        sum([qreg.size for qreg in dag.qregs.values()])
    })
    experiment.config = QobjItem(**experiment_config)

    # set eval_symbols=True to evaluate each symbolic expression
    # TODO: after transition to qobj, we can drop this
    experiment.header.compiled_circuit_qasm = circuit.qasm()
    # Step 3c: add the Experiment to the Qobj
    return experiment
Пример #13
0
def transpile(dag,
              basis_gates='u1,u2,u3,cx,id',
              coupling_map=None,
              initial_layout=None,
              get_layout=False,
              format='dag',
              seed=None,
              pass_manager=None):
    """Transform a dag circuit into another dag circuit (transpile), through
    consecutive passes on the dag.

    Args:
        dag (DAGCircuit): dag circuit to transform via transpilation
        basis_gates (str): a comma separated string for the target basis gates
        coupling_map (list): A graph of coupling::

            [
             [control0(int), target0(int)],
             [control1(int), target1(int)],
            ]

            eg. [[0, 2], [1, 2], [1, 3], [3, 4]}

        initial_layout (dict): A mapping of qubit to qubit::

                              {
                                ("q", start(int)): ("q", final(int)),
                                ...
                              }
                              eg.
                              {
                                ("q", 0): ("q", 0),
                                ("q", 1): ("q", 1),
                                ("q", 2): ("q", 2),
                                ("q", 3): ("q", 3)
                              }
        get_layout (bool): flag for returning the final layout after mapping
        format (str): The target format of the compilation:
            {'dag', 'json', 'qasm'}
        seed (int): random seed for the swap mapper
        pass_manager (PassManager): pass manager instance for the transpilation process
            If None, a default set of passes are run.
            Otherwise, the passes defined in it will run.
            If contains no passes in it, no dag transformations occur.

    Returns:
        DAGCircuit: transformed dag
        DAGCircuit, dict: transformed dag along with the final layout on backend qubits

    Raises:
        TranspilerError: if the format is not valid.
    """
    # TODO: `basis_gates` will be removed after we have the unroller pass.
    # TODO: `coupling_map`, `initial_layout`, `get_layout`, `seed` removed after mapper pass.

    # TODO: move this to the mapper pass
    num_qubits = sum(dag.qregs.values())
    if num_qubits == 1 or coupling_map == "all-to-all":
        coupling_map = None

    final_layout = None

    if pass_manager:
        # run the passes specified by the pass manager
        # TODO return the property set too. See #1086
        dag = pass_manager.run_passes(dag)
    else:
        # default set of passes
        # TODO: move each step here to a pass, and use a default passmanager below
        basis = basis_gates.split(',') if basis_gates else []
        dag_unroller = DagUnroller(dag, DAGBackend(basis))
        dag = dag_unroller.expand_gates()
        # if a coupling map is given compile to the map
        if coupling_map:
            logger.info("pre-mapping properties: %s", dag.property_summary())
            # Insert swap gates
            coupling = Coupling(coupling_list2dict(coupling_map))
            removed_meas = remove_last_measurements(dag)
            logger.info("measurements moved: %s", removed_meas)
            logger.info("initial layout: %s", initial_layout)
            dag, final_layout, last_layout = swap_mapper(dag,
                                                         coupling,
                                                         initial_layout,
                                                         trials=20,
                                                         seed=seed)
            logger.info("final layout: %s", final_layout)
            # Expand swaps
            dag_unroller = DagUnroller(dag, DAGBackend(basis))
            dag = dag_unroller.expand_gates()
            # Change cx directions
            dag = direction_mapper(dag, coupling)
            # Simplify cx gates
            cx_cancellation(dag)
            # Simplify single qubit gates
            dag = optimize_1q_gates(dag)
            return_last_measurements(dag, removed_meas, last_layout)
            logger.info("post-mapping properties: %s", dag.property_summary())

    # choose output format
    # TODO: do we need all of these formats, or just the dag?
    if format == 'dag':
        compiled_circuit = dag
    elif format == 'json':
        # FIXME: JsonBackend is wrongly taking an ordered dict as basis, not list
        dag_unroller = DagUnroller(dag, JsonBackend(dag.basis))
        compiled_circuit = dag_unroller.execute()
    elif format == 'qasm':
        compiled_circuit = dag.qasm()
    else:
        raise TranspilerError('unrecognized circuit format')

    if get_layout:
        return compiled_circuit, final_layout
    return compiled_circuit
Пример #14
0
def optimize_1q_gates(circuit):
    """Simplify runs of single qubit gates in the QX basis.

    Return a new circuit that has been optimized.
    """
    qx_basis = ["u1", "u2", "u3", "cx", "id"]
    dag_unroller = DagUnroller(circuit, DAGBackend(qx_basis))
    unrolled = dag_unroller.expand_gates()

    runs = unrolled.collect_runs(["u1", "u2", "u3", "id"])
    for run in runs:
        qname = unrolled.multi_graph.node[run[0]]["qargs"][0]
        right_name = "u1"
        right_parameters = (N(0), N(0), N(0))  # (theta, phi, lambda)
        for current_node in run:
            nd = unrolled.multi_graph.node[current_node]
            assert nd["condition"] is None, "internal error"
            assert len(nd["qargs"]) == 1, "internal error"
            assert nd["qargs"][0] == qname, "internal error"
            left_name = nd["name"]
            assert left_name in ["u1", "u2", "u3", "id"], "internal error"
            if left_name == "u1":
                left_parameters = (N(0), N(0), nd["params"][0])
            elif left_name == "u2":
                left_parameters = (sympy.pi / 2, nd["params"][0], nd["params"][1])
            elif left_name == "u3":
                left_parameters = tuple(nd["params"])
            else:
                left_name = "u1"  # replace id with u1
                left_parameters = (N(0), N(0), N(0))
            # Compose gates
            name_tuple = (left_name, right_name)
            if name_tuple == ("u1", "u1"):
                # u1(lambda1) * u1(lambda2) = u1(lambda1 + lambda2)
                right_parameters = (N(0), N(0), right_parameters[2] +
                                    left_parameters[2])
            elif name_tuple == ("u1", "u2"):
                # u1(lambda1) * u2(phi2, lambda2) = u2(phi2 + lambda1, lambda2)
                right_parameters = (sympy.pi / 2, right_parameters[1] +
                                    left_parameters[2], right_parameters[2])
            elif name_tuple == ("u2", "u1"):
                # u2(phi1, lambda1) * u1(lambda2) = u2(phi1, lambda1 + lambda2)
                right_name = "u2"
                right_parameters = (sympy.pi / 2, left_parameters[1],
                                    right_parameters[2] + left_parameters[2])
            elif name_tuple == ("u1", "u3"):
                # u1(lambda1) * u3(theta2, phi2, lambda2) =
                #     u3(theta2, phi2 + lambda1, lambda2)
                right_parameters = (right_parameters[0], right_parameters[1] +
                                    left_parameters[2], right_parameters[2])
            elif name_tuple == ("u3", "u1"):
                # u3(theta1, phi1, lambda1) * u1(lambda2) =
                #     u3(theta1, phi1, lambda1 + lambda2)
                right_name = "u3"
                right_parameters = (left_parameters[0], left_parameters[1],
                                    right_parameters[2] + left_parameters[2])
            elif name_tuple == ("u2", "u2"):
                # Using Ry(pi/2).Rz(2*lambda).Ry(pi/2) =
                #    Rz(pi/2).Ry(pi-2*lambda).Rz(pi/2),
                # u2(phi1, lambda1) * u2(phi2, lambda2) =
                #    u3(pi - lambda1 - phi2, phi1 + pi/2, lambda2 + pi/2)
                right_name = "u3"
                right_parameters = (sympy.pi - left_parameters[2] -
                                    right_parameters[1], left_parameters[1] +
                                    sympy.pi / 2, right_parameters[2] +
                                    sympy.pi / 2)
            elif name_tuple[1] == "nop":
                right_name = left_name
                right_parameters = left_parameters
            else:
                # For composing u3's or u2's with u3's, use
                # u2(phi, lambda) = u3(pi/2, phi, lambda)
                # together with the qiskit.mapper.compose_u3 method.
                right_name = "u3"
                # Evaluate the symbolic expressions for efficiency
                left_parameters = tuple(map(lambda x: x.evalf(), list(left_parameters)))
                right_parameters = tuple(map(lambda x: x.evalf(), list(right_parameters)))
                right_parameters = compose_u3(left_parameters[0],
                                              left_parameters[1],
                                              left_parameters[2],
                                              right_parameters[0],
                                              right_parameters[1],
                                              right_parameters[2])
                # Why evalf()? This program:
                #   OPENQASM 2.0;
                #   include "qelib1.inc";
                #   qreg q[2];
                #   creg c[2];
                #   u3(0.518016983430947*pi,1.37051598592907*pi,1.36816383603222*pi) q[0];
                #   u3(1.69867232277986*pi,0.371448347747471*pi,0.461117217930936*pi) q[0];
                #   u3(0.294319836336836*pi,0.450325871124225*pi,1.46804720442555*pi) q[0];
                #   measure q -> c;
                # took >630 seconds (did not complete) to optimize without
                # calling evalf() at all, 19 seconds to optimize calling
                # evalf() AFTER compose_u3, and 1 second to optimize
                # calling evalf() BEFORE compose_u3.
            # 1. Here down, when we simplify, we add f(theta) to lambda to
            # correct the global phase when f(theta) is 2*pi. This isn't
            # necessary but the other steps preserve the global phase, so
            # we continue in that manner.
            # 2. The final step will remove Z rotations by 2*pi.
            # 3. Note that is_zero is true only if the expression is exactly
            # zero. If the input expressions have already been evaluated
            # then these final simplifications will not occur.
            # TODO After we refactor, we should have separate passes for
            # exact and approximate rewriting.

            # Y rotation is 0 mod 2*pi, so the gate is a u1
            if (right_parameters[0] % (2 * sympy.pi)).is_zero \
                    and right_name != "u1":
                right_name = "u1"
                right_parameters = (0, 0, right_parameters[1] +
                                    right_parameters[2] +
                                    right_parameters[0])
            # Y rotation is pi/2 or -pi/2 mod 2*pi, so the gate is a u2
            if right_name == "u3":
                # theta = pi/2 + 2*k*pi
                if ((right_parameters[0] - sympy.pi / 2) % (2 * sympy.pi)).is_zero:
                    right_name = "u2"
                    right_parameters = (sympy.pi / 2, right_parameters[1],
                                        right_parameters[2] +
                                        (right_parameters[0] - sympy.pi / 2))
                # theta = -pi/2 + 2*k*pi
                if ((right_parameters[0] + sympy.pi / 2) % (2 * sympy.pi)).is_zero:
                    right_name = "u2"
                    right_parameters = (sympy.pi / 2, right_parameters[1] +
                                        sympy.pi, right_parameters[2] -
                                        sympy.pi + (right_parameters[0] +
                                                    sympy.pi / 2))
            # u1 and lambda is 0 mod 2*pi so gate is nop (up to a global phase)
            if right_name == "u1" and (right_parameters[2] % (2 * sympy.pi)).is_zero:
                right_name = "nop"
            # Simplify the symbolic parameters
            right_parameters = tuple(map(sympy.simplify, list(right_parameters)))
        # Replace the data of the first node in the run
        new_params = []
        if right_name == "u1":
            new_params = [right_parameters[2]]
        if right_name == "u2":
            new_params = [right_parameters[1], right_parameters[2]]
        if right_name == "u3":
            new_params = list(right_parameters)

        nx.set_node_attributes(unrolled.multi_graph, name='name',
                               values={run[0]: right_name})
        # params is a list of sympy symbols
        nx.set_node_attributes(unrolled.multi_graph, name='params',
                               values={run[0]: new_params})
        # Delete the other nodes in the run
        for current_node in run[1:]:
            unrolled._remove_op_node(current_node)
        if right_name == "nop":
            unrolled._remove_op_node(run[0])
    return unrolled
Пример #15
0
def swap_mapper(circuit_graph, coupling_graph,
                initial_layout=None,
                basis="cx,u1,u2,u3,id", trials=20, seed=None):
    """Map a DAGCircuit onto a CouplingGraph using swap gates.

    Args:
        circuit_graph (DAGCircuit): input DAG circuit
        coupling_graph (CouplingGraph): coupling graph to map onto
        initial_layout (dict): dict from qubits of circuit_graph to qubits
            of coupling_graph (optional)
        basis (str): basis string specifying basis of output DAGCircuit
        trials (int): number of trials.
        seed (int): initial seed.

    Returns:
        DAGCircuit: object containing a circuit equivalent to
        circuit_graph that respects couplings in coupling_graph, and
        a layout dict mapping qubits of circuit_graph into qubits
        of coupling_graph. The layout may differ from the initial_layout
        if the first layer of gates cannot be executed on the
        initial_layout. Finally, returned is the final layer qubit
        permutation that is needed to add measurements back in.

    Raises:
        MapperError: if there was any error during the mapping or with the
            parameters.
    """
    if circuit_graph.width() > coupling_graph.size():
        raise MapperError("Not enough qubits in CouplingGraph")

    # Schedule the input circuit
    layerlist = list(circuit_graph.layers())
    logger.debug("schedule:")
    for i, v in enumerate(layerlist):
        logger.debug("    %d: %s", i, v["partition"])

    if initial_layout is not None:
        # Check the input layout
        circ_qubits = circuit_graph.get_qubits()
        coup_qubits = coupling_graph.get_qubits()
        qubit_subset = []
        for k, v in initial_layout.items():
            qubit_subset.append(v)
            if k not in circ_qubits:
                raise MapperError("initial_layout qubit %s[%d] not in input "
                                  "DAGCircuit" % (k[0], k[1]))
            if v not in coup_qubits:
                raise MapperError("initial_layout qubit %s[%d] not in input "
                                  "CouplingGraph" % (v[0], v[1]))
    else:
        # Supply a default layout
        qubit_subset = coupling_graph.get_qubits()
        qubit_subset = qubit_subset[0:circuit_graph.width()]
        initial_layout = {a: b for a, b in
                          zip(circuit_graph.get_qubits(), qubit_subset)}

    # Find swap circuit to preceed to each layer of input circuit
    layout = initial_layout.copy()
    layout_max_index = max(map(lambda x: x[1]+1, layout.values()))

    # Construct an empty DAGCircuit with one qreg "q"
    # and the same set of cregs as the input circuit
    dagcircuit_output = DAGCircuit()
    dagcircuit_output.add_qreg("q", layout_max_index)
    for name, size in circuit_graph.cregs.items():
        dagcircuit_output.add_creg(name, size)

    # Make a trivial wire mapping between the subcircuits
    # returned by swap_mapper_layer_update and the circuit
    # we are building
    identity_wire_map = {}
    for j in range(layout_max_index):
        identity_wire_map[("q", j)] = ("q", j)
    for name, size in circuit_graph.cregs.items():
        for j in range(size):
            identity_wire_map[(name, j)] = (name, j)

    first_layer = True  # True until first layer is output
    logger.debug("initial_layout = %s", layout)

    # Iterate over layers
    for i, layer in enumerate(layerlist):

        # Attempt to find a permutation for this layer
        success_flag, best_circ, best_d, best_layout, trivial_flag \
            = layer_permutation(layer["partition"], layout,
                                qubit_subset, coupling_graph, trials, seed)
        logger.debug("swap_mapper: layer %d", i)
        logger.debug("swap_mapper: success_flag=%s,best_d=%s,trivial_flag=%s",
                     success_flag, str(best_d), trivial_flag)

        # If this fails, try one gate at a time in this layer
        if not success_flag:
            logger.debug("swap_mapper: failed, layer %d, "
                         "retrying sequentially", i)
            serial_layerlist = list(layer["graph"].serial_layers())

            # Go through each gate in the layer
            for j, serial_layer in enumerate(serial_layerlist):

                success_flag, best_circ, best_d, best_layout, trivial_flag \
                    = layer_permutation(serial_layer["partition"],
                                        layout, qubit_subset, coupling_graph,
                                        trials, seed)
                logger.debug("swap_mapper: layer %d, sublayer %d", i, j)
                logger.debug("swap_mapper: success_flag=%s,best_d=%s,"
                             "trivial_flag=%s",
                             success_flag, str(best_d), trivial_flag)

                # Give up if we fail again
                if not success_flag:
                    raise MapperError("swap_mapper failed: " +
                                      "layer %d, sublayer %d" % (i, j) +
                                      ", \"%s\"" %
                                      serial_layer["graph"].qasm(
                                          no_decls=True,
                                          aliases=layout))

                # If this layer is only single-qubit gates,
                # and we have yet to see multi-qubit gates,
                # continue to the next inner iteration
                if trivial_flag and first_layer:
                    logger.debug("swap_mapper: skip to next sublayer")
                    continue

                # Update the record of qubit positions for each inner iteration
                layout = best_layout
                # Update the QASM
                dagcircuit_output.compose_back(
                    swap_mapper_layer_update(j,
                                             first_layer,
                                             best_layout,
                                             best_d,
                                             best_circ,
                                             serial_layerlist),
                    identity_wire_map)
                # Update initial layout
                if first_layer:
                    initial_layout = layout
                    first_layer = False

        else:
            # Update the record of qubit positions for each iteration
            layout = best_layout

            # Update the QASM
            dagcircuit_output.compose_back(
                swap_mapper_layer_update(i,
                                         first_layer,
                                         best_layout,
                                         best_d,
                                         best_circ,
                                         layerlist),
                identity_wire_map)
            # Update initial layout
            if first_layer:
                initial_layout = layout
                first_layer = False

    # This is the final layout that we need to correctly replace
    # any measurements that needed to be removed before the swap
    last_layout = layout

    # If first_layer is still set, the circuit only has single-qubit gates
    # so we can use the initial layout to output the entire circuit
    if first_layer:
        layout = initial_layout
        for i, layer in enumerate(layerlist):
            dagcircuit_output.compose_back(layer["graph"], layout)

    # Parse openqasm_output into DAGCircuit object
    dag_unrrolled = DagUnroller(dagcircuit_output,
                                DAGBackend(basis.split(",")))
    dagcircuit_output = dag_unrrolled.expand_gates()
    return dagcircuit_output, initial_layout, last_layout
Пример #16
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        Qobj: the Qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    # Step 1: create the Qobj, with empty experiments.
    # Copy the configuration: the values in `config` have prefern
    qobj_config = deepcopy(config or {})
    # TODO: "register_slots" is required by the qobj schema in the top-level
    # qobj.config. In this implementation, is overridden by the individual
    # experiment.config entries (hence the 0 should never be used).
    qobj_config.update({
        'shots': shots,
        'max_credits': max_credits,
        'register_slots': 0
    })

    qobj = Qobj(id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(**qobj_config),
                experiments=[],
                header=QobjHeader(backend_name=backend_name))
    if seed:
        qobj.config.seed = seed

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    # Step 2 and 3: transpile and populate the circuits
    for circuit in circuits:
        # TODO: A better solution is to have options to enable/disable optimizations
        num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values()))
        if num_qubits == 1 or coupling_map == "all-to-all":
            coupling_map = None
        # Step 2a: circuit -> dag
        dag_circuit = DAGCircuit.fromQuantumCircuit(circuit)

        # TODO: move this inside the mapper pass
        # pick a good initial layout if coupling_map is not already satisfied
        # otherwise keep it as q[i]->q[i]
        if (initial_layout is None and not backend_conf['simulator']
                and not _matches_coupling_map(circuit.data, coupling_map)):
            initial_layout = _pick_best_layout(backend, num_qubits,
                                               circuit.get_qregs())

        # Step 2b: transpile (dag -> dag)
        dag_circuit, final_layout = transpile(dag_circuit,
                                              basis_gates=basis_gates,
                                              coupling_map=coupling_map,
                                              initial_layout=initial_layout,
                                              get_layout=True,
                                              seed=seed,
                                              pass_manager=pass_manager)

        # Step 2c: dag -> json
        # the compiled circuit to be run saved as a dag
        # we assume that transpile() has already expanded gates
        # to the target basis, so we just need to generate json
        list_layout = [[k, v] for k, v in final_layout.items()
                       ] if final_layout else None

        json_circuit = DagUnroller(dag_circuit,
                                   JsonBackend(dag_circuit.basis)).execute()

        # Step 3a: create the Experiment based on json_circuit
        experiment = QobjExperiment.from_dict(json_circuit)
        # Step 3b: populate the Experiment configuration and header
        experiment.header.name = circuit.name
        # TODO: place in header or config?
        experiment_config = deepcopy(config or {})
        experiment_config.update({
            'coupling_map':
            coupling_map,
            'basis_gates':
            basis_gates,
            'layout':
            list_layout,
            'register_slots':
            sum(register.size for register in circuit.get_cregs().values())
        })
        experiment.config = QobjItem(**experiment_config)

        # set eval_symbols=True to evaluate each symbolic expression
        # TODO after transition to qobj, we can drop this
        experiment.header.compiled_circuit_qasm = dag_circuit.qasm(
            qeflag=True, eval_symbols=True)

        # Step 3c: add the Experiment to the Qobj
        qobj.experiments.append(experiment)

    return qobj
Пример #17
0
def transpile(dag_circuit,
              basis_gates='u1,u2,u3,cx,id',
              coupling_map=None,
              initial_layout=None,
              get_layout=False,
              format='dag',
              seed=None,
              pass_manager=None):
    """Transform a dag circuit into another dag circuit (transpile), through
    consecutive passes on the dag.

    Args:
        dag_circuit (DAGCircuit): dag circuit to transform via transpilation
        basis_gates (str): a comma seperated string for the target basis gates
        coupling_map (list): A graph of coupling::

            [
             [control0(int), target0(int)],
             [control1(int), target1(int)],
            ]

            eg. [[0, 2], [1, 2], [1, 3], [3, 4]}

        initial_layout (dict): A mapping of qubit to qubit::

                              {
                                ("q", start(int)): ("q", final(int)),
                                ...
                              }
                              eg.
                              {
                                ("q", 0): ("q", 0),
                                ("q", 1): ("q", 1),
                                ("q", 2): ("q", 2),
                                ("q", 3): ("q", 3)
                              }
        get_layout (bool): flag for returning the layout
        format (str): The target format of the compilation:
            {'dag', 'json', 'qasm'}
        seed (int): random seed for simulators
        pass_manager (PassManager): pass manager instance for the tranpilation process
            If None, a default set of passes are run.
            Otherwise, the passes defined in it will run.
            If contains no passes in it, no dag transformations occur.

    Returns:
        object: If get_layout == False, the compiled circuit in the specified
            format. If get_layout == True, a tuple is returned, with the
            second element being the layout.

    Raises:
        TranspilerError: if the format is not valid.
    """
    final_layout = None

    if pass_manager:
        # run the passes specified by the pass manager
        for pass_ in pass_manager.passes():
            pass_.run(dag_circuit)
    else:
        # default set of passes
        # TODO: move each step here to a pass, and use a default passmanager below
        basis = basis_gates.split(',') if basis_gates else []
        dag_unroller = DagUnroller(dag_circuit, DAGBackend(basis))
        dag_circuit = dag_unroller.expand_gates()
        # if a coupling map is given compile to the map
        if coupling_map:
            logger.info("pre-mapping properties: %s",
                        dag_circuit.property_summary())
            # Insert swap gates
            coupling = Coupling(coupling_list2dict(coupling_map))
            logger.info("initial layout: %s", initial_layout)
            dag_circuit, final_layout = swap_mapper(dag_circuit,
                                                    coupling,
                                                    initial_layout,
                                                    trials=20,
                                                    seed=seed)
            logger.info("final layout: %s", final_layout)
            # Expand swaps
            dag_unroller = DagUnroller(dag_circuit, DAGBackend(basis))
            dag_circuit = dag_unroller.expand_gates()
            # Change cx directions
            dag_circuit = direction_mapper(dag_circuit, coupling)
            # Simplify cx gates
            cx_cancellation(dag_circuit)
            # Simplify single qubit gates
            dag_circuit = optimize_1q_gates(dag_circuit)
            logger.info("post-mapping properties: %s",
                        dag_circuit.property_summary())

    # choose output format
    # TODO: do we need all of these formats, or just the dag?
    if format == 'dag':
        compiled_circuit = dag_circuit
    elif format == 'json':
        # FIXME: JsonBackend is wrongly taking an ordered dict as basis, not list
        dag_unroller = DagUnroller(dag_circuit, JsonBackend(dag_circuit.basis))
        compiled_circuit = dag_unroller.execute()
    elif format == 'qasm':
        compiled_circuit = dag_circuit.qasm()
    else:
        raise TranspilerError('unrecognized circuit format')

    if get_layout:
        return compiled_circuit, final_layout
    return compiled_circuit
Пример #18
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        obj: the qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    qobj = {}

    # step 1: populate the qobj-level `id`
    qobj_id = qobj_id or str(uuid.uuid4())
    qobj['id'] = qobj_id

    # step 2: populate the qobj-level `config`
    qobj['config'] = {
        'max_credits': max_credits,
        'shots': shots,
        'backend_name': backend_name
    }

    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')

    # step 3: populate the `circuits` in qobj, after compiling each circuit
    qobj['circuits'] = []
    if not basis_gates:
        basis_gates = backend_conf['basis_gates']
    if not coupling_map:
        coupling_map = backend_conf['coupling_map']

    for circuit in circuits:
        job = {}

        # step 1: populate the circuit-level `name`
        job["name"] = circuit.name

        # step 2: populate the circuit-level `config`
        if config is None:
            config = {}
        job["config"] = copy.deepcopy(config)
        # TODO: A better solution is to have options to enable/disable optimizations
        num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values()))
        if num_qubits == 1 or coupling_map == "all-to-all":
            coupling_map = None
        job["config"]["coupling_map"] = coupling_map
        job["config"]["basis_gates"] = basis_gates
        job["config"]["seed"] = seed

        # step 3: populate the circuit `instructions` after compilation
        # step 3a: circuit -> dag
        dag_circuit = DAGCircuit.fromQuantumCircuit(circuit)

        # TODO: move this inside the mapper pass
        # pick a good initial layout if coupling_map is not already satisfied
        # otherwise keep it as q[i]->q[i]
        if (initial_layout is None and not backend_conf['simulator']
                and not _matches_coupling_map(circuit.data, coupling_map)):
            initial_layout = _pick_best_layout(backend, num_qubits,
                                               circuit.get_qregs())

        # step 3b: transpile (dag -> dag)
        dag_circuit, final_layout = transpile(dag_circuit,
                                              basis_gates=basis_gates,
                                              coupling_map=coupling_map,
                                              initial_layout=initial_layout,
                                              get_layout=True,
                                              seed=seed,
                                              pass_manager=pass_manager)

        # step 3c: dag -> json
        # TODO: populate the Qobj object when Qobj class exists
        # the compiled circuit to be run saved as a dag
        # we assume that transpile() has already expanded gates
        # to the target basis, so we just need to generate json
        list_layout = [[k, v] for k, v in final_layout.items()
                       ] if final_layout else None
        job["config"]["layout"] = list_layout
        json_circuit = DagUnroller(dag_circuit,
                                   JsonBackend(dag_circuit.basis)).execute()
        job["compiled_circuit"] = json_circuit

        # set eval_symbols=True to evaluate each symbolic expression
        # TODO after transition to qobj, we can drop this
        job["compiled_circuit_qasm"] = dag_circuit.qasm(qeflag=True,
                                                        eval_symbols=True)

        # add job to the qobj
        qobj["circuits"].append(job)

    return qobj
Пример #19
0
def _dags_2_qobj(dags,
                 backend_name,
                 config=None,
                 shots=None,
                 max_credits=None,
                 qobj_id=None,
                 basis_gates=None,
                 coupling_map=None,
                 seed=None):
    """Convert a list of dags into a qobj.

    Args:
        dags (list[DAGCircuit]): dags to compile
        backend_name (str): name of runner backend
        config (dict): dictionary of parameters (e.g. noise) used by runner
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        qobj_id (int): identifier for the generated qobj
        basis_gates (list[str])): basis gates for the experiment
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        seed (int): random seed for simulators

    Returns:
        Qobj: the Qobj to be run on the backends
    """
    # TODO: the following will be removed from qobj and thus removed here:
    # `basis_gates`, `coupling_map`

    # Step 1: create the Qobj, with empty experiments.
    # Copy the configuration: the values in `config` have preference
    qobj_config = deepcopy(config or {})
    # TODO: "memory_slots" is required by the qobj schema in the top-level
    # qobj.config, and is user-defined. At the moment is set to the maximum
    # number of *register* slots for the circuits, in order to have `measure`
    # behave properly until the transition is over; and each circuit stores
    # its memory_slots in its configuration.
    qobj_config.update({
        'shots': shots,
        'max_credits': max_credits,
        'memory_slots': 0
    })

    qobj = Qobj(qobj_id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(**qobj_config),
                experiments=[],
                header=QobjHeader(backend_name=backend_name))
    if seed:
        qobj.config.seed = seed

    for dag in dags:
        json_circuit = DagUnroller(dag, JsonBackend(dag.basis)).execute()
        # Step 3a: create the Experiment based on json_circuit
        experiment = QobjExperiment.from_dict(json_circuit)
        # Step 3b: populate the Experiment configuration and header
        experiment.header.name = dag.name
        # TODO: place in header or config?
        experiment_config = deepcopy(config or {})
        experiment_config.update({
            'coupling_map': coupling_map,
            'basis_gates': basis_gates,
            'layout': dag.layout,
            'memory_slots': sum(dag.cregs.values()),
            # TODO: `n_qubits` is not part of the qobj spec, but needed for the simulator.
            'n_qubits': sum(dag.qregs.values())
        })
        experiment.config = QobjItem(**experiment_config)

        # set eval_symbols=True to evaluate each symbolic expression
        # TODO: after transition to qobj, we can drop this
        experiment.header.compiled_circuit_qasm = dag.qasm(qeflag=True,
                                                           eval_symbols=True)
        # Step 3c: add the Experiment to the Qobj
        qobj.experiments.append(experiment)

    # Update the `memory_slots` value.
    # TODO: remove when `memory_slots` can be provided by the user.
    qobj.config.memory_slots = max(experiment.config.memory_slots
                                   for experiment in qobj.experiments)

    # Update the `n_qubits` global value.
    # TODO: num_qubits is not part of the qobj specification, but needed
    # for the simulator.
    qobj.config.n_qubits = max(experiment.config.n_qubits
                               for experiment in qobj.experiments)

    return qobj
Пример #20
0
def compile(quantum_circuit, basis_gates='u1,u2,u3,cx,id', coupling_map=None,
            initial_layout=None, get_layout=False, format='dag'):
    """Compile the circuit.

    This builds the internal "to execute" list which is list of quantum
    circuits to run on different backends.

    Args:
        quantum_circuit (QuantumCircuit): circuit to compile
        basis_gates (str): a comma seperated string and are the base gates,
                           which by default are: u1,u2,u3,cx,id
        coupling_map (list): A graph of coupling::

            [
             [control0(int), target0(int)],
             [control1(int), target1(int)],
            ]

            eg. [[0, 2], [1, 2], [1, 3], [3, 4]}

        initial_layout (dict): A mapping of qubit to qubit::

                              {
                                ("q", start(int)): ("q", final(int)),
                                ...
                              }
                              eg.
                              {
                                ("q", 0): ("q", 0),
                                ("q", 1): ("q", 1),
                                ("q", 2): ("q", 2),
                                ("q", 3): ("q", 3)
                              }
        get_layout (bool): flag for returning the layout.
        format (str): The target format of the compilation:
            {'dag', 'json', 'qasm'}

    Returns:
        object: If get_layout == False, the compiled circuit in the specified
            format. If get_layout == True, a tuple is returned, with the
            second element being the layout.

    Raises:
        QISKitCompilerError: if the format is not valid.
    """
    compiled_dag_circuit = DAGCircuit.fromQuantumCircuit(quantum_circuit)
    basis = basis_gates.split(',') if basis_gates else []

    dag_unroller = DagUnroller(compiled_dag_circuit, DAGBackend(basis))
    compiled_dag_circuit = dag_unroller.expand_gates()
    final_layout = None
    # if a coupling map is given compile to the map
    if coupling_map:
        logger.info("pre-mapping properties: %s",
                    compiled_dag_circuit.property_summary())
        # Insert swap gates
        coupling = mapper.Coupling(mapper.coupling_list2dict(coupling_map))
        logger.info("initial layout: %s", initial_layout)
        compiled_dag_circuit, final_layout = mapper.swap_mapper(
            compiled_dag_circuit, coupling, initial_layout, trials=20, seed=13)
        logger.info("final layout: %s", final_layout)
        # Expand swaps
        dag_unroller = DagUnroller(compiled_dag_circuit, DAGBackend(basis))
        compiled_dag_circuit = dag_unroller.expand_gates()
        # Change cx directions
        compiled_dag_circuit = mapper.direction_mapper(compiled_dag_circuit, coupling)
        # Simplify cx gates
        mapper.cx_cancellation(compiled_dag_circuit)
        # Simplify single qubit gates
        compiled_dag_circuit = mapper.optimize_1q_gates(compiled_dag_circuit)
        logger.info("post-mapping properties: %s",
                    compiled_dag_circuit.property_summary())
    # choose output format
    if format == 'dag':
        compiled_circuit = compiled_dag_circuit
    elif format == 'json':
        dag_unroller = DagUnroller(compiled_dag_circuit,
                                   JsonBackend(list(compiled_dag_circuit.basis.keys())))
        compiled_circuit = dag_unroller.execute()
    elif format == 'qasm':
        compiled_circuit = compiled_dag_circuit.qasm()
    else:
        raise QISKitCompilerError('unrecognized circuit format')

    if get_layout:
        return compiled_circuit, final_layout
    return compiled_circuit
Пример #21
0
def compile(circuits,
            backend,
            config=None,
            basis_gates=None,
            coupling_map=None,
            initial_layout=None,
            shots=1024,
            max_credits=10,
            seed=None,
            qobj_id=None,
            hpc=None,
            pass_manager=None):
    """Compile a list of circuits into a qobj.

    Args:
        circuits (QuantumCircuit or list[QuantumCircuit]): circuits to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        shots (int): number of repetitions of each circuit, for sampling
        max_credits (int): maximum credits to use
        seed (int): random seed for simulators
        qobj_id (int): identifier for the generated qobj
        hpc (dict): HPC simulator parameters
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        Qobj: the Qobj to be run on the backends

    Raises:
        TranspilerError: in case of bad compile options, e.g. the hpc options.
    """
    if isinstance(circuits, QuantumCircuit):
        circuits = [circuits]

    backend_conf = backend.configuration
    backend_name = backend_conf['name']

    # Step 1: create the Qobj, with empty circuits
    qobj = Qobj(id=qobj_id or str(uuid.uuid4()),
                config=QobjConfig(max_credits=max_credits,
                                  shots=shots,
                                  backend_name=backend_name),
                circuits=[])

    # Check for valid parameters for the experiments.
    if hpc is not None and \
            not all(key in hpc for key in ('multi_shot_optimization', 'omp_num_threads')):
        raise TranspilerError('Unknown HPC parameter format!')
    basis_gates = basis_gates or backend_conf['basis_gates']
    coupling_map = coupling_map or backend_conf['coupling_map']

    for circuit in circuits:
        # Step 1: create the experiment configuration.
        config = config or {}
        circuit_config = copy.deepcopy(config)

        # TODO: A better solution is to have options to enable/disable optimizations
        num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values()))
        if num_qubits == 1 or coupling_map == "all-to-all":
            coupling_map = None
        circuit_config["coupling_map"] = coupling_map
        circuit_config["basis_gates"] = basis_gates
        circuit_config["seed"] = seed
        circuit_config["layout"] = None  # set during step 3.

        # Step 2: create the QobjExperiment, with empty compiled circuits.
        experiment = QobjExperiment(
            name=circuit.name,
            config=QobjExperimentConfig(**circuit_config),
            compiled_circuit=None,
            compiled_circuit_qasm=None)

        # Step 3: populate the circuit `instructions` after compilation
        # Step 3a: circuit -> dag
        dag_circuit = DAGCircuit.fromQuantumCircuit(circuit)

        # TODO: move this inside the mapper pass
        # pick a good initial layout if coupling_map is not already satisfied
        # otherwise keep it as q[i]->q[i]
        if (initial_layout is None and not backend_conf['simulator']
                and not _matches_coupling_map(circuit.data, coupling_map)):
            initial_layout = _pick_best_layout(backend, num_qubits,
                                               circuit.get_qregs())

        # Step 3b: transpile (dag -> dag)
        dag_circuit, final_layout = transpile(dag_circuit,
                                              basis_gates=basis_gates,
                                              coupling_map=coupling_map,
                                              initial_layout=initial_layout,
                                              get_layout=True,
                                              seed=seed,
                                              pass_manager=pass_manager)

        # Step 3c: dag -> json
        # the compiled circuit to be run saved as a dag
        # we assume that transpile() has already expanded gates
        # to the target basis, so we just need to generate json
        list_layout = [[k, v] for k, v in final_layout.items()
                       ] if final_layout else None
        experiment.config.layout = list_layout
        json_circuit = DagUnroller(dag_circuit,
                                   JsonBackend(dag_circuit.basis)).execute()
        experiment.compiled_circuit = QobjCompiledCircuit.from_dict(
            json_circuit)

        # set eval_symbols=True to evaluate each symbolic expression
        # TODO after transition to qobj, we can drop this
        experiment.compiled_circuit_qasm = dag_circuit.qasm(qeflag=True,
                                                            eval_symbols=True)

        # add job to the qobj
        qobj.circuits.append(experiment)

    return qobj
Пример #22
0
def _compile_single_circuit(circuit,
                            backend,
                            config=None,
                            basis_gates=None,
                            coupling_map=None,
                            initial_layout=None,
                            seed=None,
                            pass_manager=None):
    """Compile a single circuit into a QobjExperiment.

    Args:
        circuit (QuantumCircuit): circuit to compile
        backend (BaseBackend): a backend to compile for
        config (dict): dictionary of parameters (e.g. noise) used by runner
        basis_gates (str): comma-separated basis gate set to compile to
        coupling_map (list): coupling map (perhaps custom) to target in mapping
        initial_layout (list): initial layout of qubits in mapping
        seed (int): random seed for simulators
        pass_manager (PassManager): a pass_manager for the transpiler stage

    Returns:
        QobjExperiment: the QobjExperiment to be run on the backends
    """
    # TODO: A better solution is to have options to enable/disable optimizations
    num_qubits = sum((len(qreg) for qreg in circuit.get_qregs().values()))
    if num_qubits == 1 or coupling_map == "all-to-all":
        coupling_map = None
    # Step 2a: circuit -> dag
    dag_circuit = DAGCircuit.fromQuantumCircuit(circuit)

    # TODO: move this inside the mapper pass
    # pick a good initial layout if coupling_map is not already satisfied
    # otherwise keep it as q[i]->q[i]
    if (initial_layout is None and not backend.configuration['simulator']
            and not _matches_coupling_map(circuit.data, coupling_map)):
        initial_layout = _pick_best_layout(backend, num_qubits,
                                           circuit.get_qregs())

    # Step 2b: transpile (dag -> dag)
    dag_circuit, final_layout = transpile(dag_circuit,
                                          basis_gates=basis_gates,
                                          coupling_map=coupling_map,
                                          initial_layout=initial_layout,
                                          get_layout=True,
                                          seed=seed,
                                          pass_manager=pass_manager)

    # Step 2c: dag -> json
    # the compiled circuit to be run saved as a dag
    # we assume that transpile() has already expanded gates
    # to the target basis, so we just need to generate json
    list_layout = [[k, v]
                   for k, v in final_layout.items()] if final_layout else None

    json_circuit = DagUnroller(dag_circuit,
                               JsonBackend(dag_circuit.basis)).execute()

    # Step 3a: create the Experiment based on json_circuit
    experiment = QobjExperiment.from_dict(json_circuit)
    # Step 3b: populate the Experiment configuration and header
    experiment.header.name = circuit.name
    # TODO: place in header or config?
    experiment_config = deepcopy(config or {})
    experiment_config.update({
        'coupling_map':
        coupling_map,
        'basis_gates':
        basis_gates,
        'layout':
        list_layout,
        'memory_slots':
        sum(register.size for register in circuit.get_cregs().values())
    })
    experiment.config = QobjItem(**experiment_config)

    # set eval_symbols=True to evaluate each symbolic expression
    # TODO after transition to qobj, we can drop this
    experiment.header.compiled_circuit_qasm = dag_circuit.qasm(
        qeflag=True, eval_symbols=True)

    return experiment