Пример #1
0
def calc_all_ic(pred_dict_all, label, date_col="datetime", dropna=False, n_jobs=-1):
    """calc_all_ic.

    Parameters
    ----------
    pred_dict_all :
        A dict like {<method_name>:  <prediction>}
    label:
        A pd.Series of label values

    Returns
    -------
    {'Q2+IND_z': {'ic': <ic series like>
                          2016-01-04   -0.057407
                          ...
                          2020-05-28    0.183470
                          2020-05-29    0.171393
                  'ric': <rank ic series like>
                          2016-01-04   -0.040888
                          ...
                          2020-05-28    0.236665
                          2020-05-29    0.183886
                  }
    ...}
    """
    pred_all_ics = {}
    for k, pred in pred_dict_all.items():
        pred_all_ics[k] = DelayedDict(["ic", "ric"], delayed(calc_ic)(pred, label, date_col=date_col, dropna=dropna))
    pred_all_ics = complex_parallel(Parallel(n_jobs=n_jobs, verbose=10), pred_all_ics)
    return pred_all_ics
Пример #2
0
def pred_autocorr_all(pred_dict, n_jobs=-1, **kwargs):
    """
    calculate auto correlation for pred_dict

    Parameters
    ----------
    pred_dict : dict
        A dict like {<method_name>:  <prediction>}
    kwargs :
        all these arguments will be passed into pred_autocorr
    """
    ac_dict = {}
    for k, pred in pred_dict.items():
        ac_dict[k] = delayed(pred_autocorr)(pred, **kwargs)
    return complex_parallel(Parallel(n_jobs=n_jobs, verbose=10), ac_dict)