def train_with_sigana(uri_path: str = None): """train model followed by SigAnaRecord Returns ------- pred_score: pandas.DataFrame predict scores performance: dict model performance """ model = init_instance_by_config(CSI300_GBDT_TASK["model"]) dataset = init_instance_by_config(CSI300_GBDT_TASK["dataset"]) # start exp with R.start(experiment_name="workflow_with_sigana", uri=uri_path): R.log_params(**flatten_dict(CSI300_GBDT_TASK)) model.fit(dataset) recorder = R.get_recorder() sr = SignalRecord(model, dataset, recorder) sr.generate() pred_score = sr.load("pred.pkl") # predict and calculate ic and ric sar = SigAnaRecord(recorder) sar.generate() ic = sar.load("ic.pkl") ric = sar.load("ric.pkl") uri_path = R.get_uri() return pred_score, {"ic": ic, "ric": ric}, uri_path
def train(uri_path: str = None): """train model Returns ------- pred_score: pandas.DataFrame predict scores performance: dict model performance """ # model initiaiton model = init_instance_by_config(CSI300_GBDT_TASK["model"]) dataset = init_instance_by_config(CSI300_GBDT_TASK["dataset"]) # To test __repr__ print(dataset) print(R) # start exp with R.start(experiment_name="workflow", uri=uri_path): R.log_params(**flatten_dict(CSI300_GBDT_TASK)) model.fit(dataset) R.save_objects(trained_model=model) # prediction recorder = R.get_recorder() # To test __repr__ print(recorder) # To test get_local_dir print(recorder.get_local_dir()) rid = recorder.id sr = SignalRecord(model, dataset, recorder) sr.generate() pred_score = sr.load("pred.pkl") # calculate ic and ric sar = SigAnaRecord(recorder) sar.generate() ic = sar.load("ic.pkl") ric = sar.load("ric.pkl") return pred_score, {"ic": ic, "ric": ric}, rid
def train(): """train model Returns ------- pred_score: pandas.DataFrame predict scores performance: dict model performance """ # model initiaiton model = init_instance_by_config(task["model"]) dataset = init_instance_by_config(task["dataset"]) # To test __repr__ print(dataset) print(R) # start exp with R.start(experiment_name="workflow"): R.log_params(**flatten_dict(task)) model.fit(dataset) # prediction recorder = R.get_recorder() # To test __repr__ print(recorder) rid = recorder.id sr = SignalRecord(model, dataset, recorder) sr.generate() pred_score = sr.load() # calculate ic and ric sar = SigAnaRecord(recorder) sar.generate() ic = sar.load(sar.get_path("ic.pkl")) ric = sar.load(sar.get_path("ric.pkl")) return pred_score, {"ic": ic, "ric": ric}, rid