Пример #1
0
hyperparams = {
    'circuit': circuit,
    'task': 'supervised',
    'loss': myloss,
    'optimizer': 'SGD',
    'init_learning_rate': 0.5,
    'decay': 0.01,
    'print_log': True,
    'log_every': 10,
    'warm_start': False
}

learner = CircuitLearner(hyperparams=hyperparams)

learner.train_circuit(X=X_train, Y=Y_train, steps=steps, batch_size=batch_size)

test_score = learner.score_circuit(
    X=X_test, Y=Y_test, outputs_to_predictions=outputs_to_predictions)
# The score_circuit() function returns a dictionary of different metrics.
print("\nPossible scores to print: {}".format(list(test_score.keys())))
# We select the accuracy and loss.
print("Accuracy on test set: ", test_score['accuracy'])
print("Loss on test set: ", test_score['loss'])

outcomes = learner.run_circuit(X=X_pred,
                               outputs_to_predictions=outputs_to_predictions)
# The run_circuit() function returns a dictionary of different outcomes.
print("\nPossible outcomes to print: {}".format(list(outcomes.keys())))
# We select the predictions
print("Predictions for new inputs: {}".format(outcomes['predictions']))
Пример #2
0
 def get_cost(self, steps):
     learner = CircuitLearnerTF(hyperparams=self.hyperp)
     learner.train_circuit(X=self.X, Y=self.Y, steps=steps)
     evalu = learner.score_circuit(X=self.X, Y=self.Y)
     cost = evalu['loss']
     return cost
Пример #3
0
hyperparams = {'circuit': circuit,
               'task': 'supervised',
               'loss': myloss,
               'optimizer': 'SGD',
               'init_learning_rate': 0.01,
               'print_log': False}

# Create a learner
learner = CircuitLearner(hyperparams=hyperparams)

# Train the learner
print("Training on: X{0} Y{1}".format(X_train, Y_train))
learner.train_circuit(X=X_train, Y=Y_train, steps=steps)

# Get the accuracy and loss for the test data
test_score = learner.score_circuit(X=X_test, Y=Y_test,
                                   outputs_to_predictions=outputs_to_predictions)
# The score_circuit() function returns a dictionary of different metrics.
print("\nPossible scores to print: {}".format(list(test_score.keys())))
# We select the accuracy and loss.
print("Accuracy on test set: ", test_score['accuracy'])
print("Loss on test set: ", test_score['loss'])

outcomes = learner.run_circuit(X=X_pred, outputs_to_predictions=outputs_to_predictions)

print("Predicting based on X_Predict{0}".format(X_pred))
# The run_circuit() function returns a dictionary of different outcomes.
print("\nPossible outcomes to print: {}".format(list(outcomes.keys())))
# We select the predictions
print("Predictions for new inputs: {}".format(outcomes['predictions']))