Пример #1
0
    def __init__(self):
        super(Controller, self).__init__()
        self.tanh = nn.Tanh
        self.sigmoid = nn.Sigmoid

        # I dont need to exactly clone this, I just want the general idea
        # If I can use stuff like QRNN's it might be more efficient anyways

        self.qrnn = QRNN(2*FLAGS.LSTM_SIZE, 4*FLAGS.LSTM_SIZE, dropout=.2)
        self.g_emb = QRNN(1, FLAGS.LSTM_SIZE, dropout=.2)

        # going to go kind of half way and make a bigger LSTM that is reused

        for _ in range(FLAGS.NUM_BRANCHES):
            self.add_module("start", QRNN(
                FLAGS.OUT_FILTERS, FLAGS.LSTM_SIZE, dropout=.2))
            self.add_module("count", QRNN(
                FLAGS.OUT_FILTERS, FLAGS.LSTM_SIZE, dropout=.2))

        self.start = Lookup(self, "start")
        self.count = Lookup(self, "count")

        self.start_critic = QRNN(FLAGS.LSTM_SIZE, 1, dropout=.2)
        self.count_critic = QRNN(FLAGS.LSTM_SIZE, 1, dropout=.2)

        self.w_attn_1 = QRNN(FLAGS.LSTM_SIZE, FLAGS.LSTM_SIZE, dropout=.2)
        self.w_attn_2 = QRNN(FLAGS.LSTM_SIZE, FLAGS.LSTM_SIZE, dropout=.2)
        self.v_attn = QRNN(FLAGS.LSTM_SIZE, 1, dropout=.2)
    def qrnn_forward(self, X, size, n_class, batch_size, conv_size):
        in_size = int(X.get_shape()[2])

        qrnn = QRNN(in_size=in_size, size=size, conv_size=conv_size)
        hidden = qrnn.forward(X)

        with tf.name_scope("QRNN-Classifier"):
            W = tf.Variable(tf.random_normal([size, n_class]), name="W")
            b = tf.Variable(tf.random_normal([n_class]), name="b")
            output = tf.add(tf.matmul(hidden, W), b)

        return output
Пример #3
0
    def qrnn_forward(self, X, size, n_class, batch_size, conv_size):
        in_size = int(X.get_shape()[2])

        qrnn = QRNN(in_size=in_size, size=size, conv_size=conv_size)
        hidden = qrnn.forward(X)

        with tf.name_scope("QRNN-Classifier"):
            W = tf.Variable(tf.random_normal([size, n_class]), name="W")
            b = tf.Variable(tf.random_normal([n_class]), name="b")
            output = tf.add(tf.matmul(hidden, W), b)

        return output
Пример #4
0
    def _build(self,
               layers=[4, 4],
               hidden=128,
               activation='sigmoid',
               optimizer='adam',
               dropout_rate=0.2):
        days = self._config['term']
        dimension = len(self._data.columns)
        window = 2

        input_raw = Input(shape=(days, dimension))
        x = input_raw
        for k in range(layers[0]):
            if k != layers[0] - 1:
                s = True
            else:
                s = False
            x = SpatialDropout1D(dropout_rate)(x)
            x = QRNN(
                units=hidden,
                window_size=window,
                return_sequences=s,
                stride=1,
            )(x)

        input_wav = Input(shape=(dimension, days))
        y = input_wav
        for k in range(layers[1]):
            if k != layers[1] - 1:
                s = True
            else:
                s = False
            y = SpatialDropout1D(dropout_rate)(y)
            y = QRNN(
                units=hidden,
                window_size=window,
                return_sequences=s,
                stride=1,
            )(y)

        merged = Concatenate()([x, y])
        label = Dense(units=dimension)(merged)
        output = Activation(activation)(label)

        model = Model(inputs=[input_raw, input_wav], outputs=output)
        base = model
        if self._gpus > 1:
            model = multi_gpu_model(model, gpus=self._gpus)
        model.compile(loss='mse', optimizer=optimizer, metrics=['accuracy'])
        return model, base
Пример #5
0
def create_qrnn_model(l_seq):
    input_layer = Input(shape=(l_seq, 1))
    qrnn_output_layer = QRNN(64, window_size=60, dropout=0)(input_layer)
    prediction_result = Dense(1)(qrnn_output_layer)
    model = Model(input=input_layer, output=prediction_result)
    model.compile(loss="mean_squared_error", optimizer="adam")
    return model
    def test_qrnn_convolution(self):
        batch_size = 100
        sentence_length = 5
        word_size = 10
        size = 5
        data = self.create_test_data(batch_size, sentence_length, word_size)

        with tf.Graph().as_default() as q_conv:
            qrnn = QRNN(in_size=word_size, size=size, conv_size=3)
            X = tf.placeholder(tf.float32, [batch_size, sentence_length, word_size])
            forward_graph = qrnn.forward(X)

            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                hidden = sess.run(forward_graph, feed_dict={X: data})
                self.assertEqual((batch_size, size), hidden.shape)
    def test_qrnn_convolution(self):
        batch_size = 100
        sentence_length = 5
        word_size = 10
        size = 5
        data = self.create_test_data(batch_size, sentence_length, word_size)

        with tf.Graph().as_default() as q_conv:
            qrnn = QRNN(in_size=word_size, size=size, conv_size=3)
            X = tf.placeholder(tf.float32,
                               [batch_size, sentence_length, word_size])
            forward_graph = qrnn.forward(X)

            with tf.Session() as sess:
                sess.run(tf.global_variables_initializer())
                hidden = sess.run(forward_graph, feed_dict={X: data})
                self.assertEqual((batch_size, size), hidden.shape)
Пример #8
0
	def __init__(self, vocab_size, ndim_embedding, num_layers, ndim_h, kernel_size=4, pooling="fo", zoneout=0, dropout=0, wgain=1, densely_connected=True):
		super(Model, self).__init__(
			embed=EmbedID(vocab_size, ndim_embedding, ignore_label=BLANK),
			dense=ConvolutionND(1, ndim_h, vocab_size, ksize=1, stride=1, pad=0)
		)
		assert num_layers > 0
		self.vocab_size = vocab_size
		self.ndim_embedding = ndim_embedding
		self.num_layers = num_layers
		self.ndim_h = ndim_h
		self.kernel_size = kernel_size
		self.using_dropout = True if dropout > 0 else False
		self.dropout = dropout
		self.densely_connected = densely_connected

		self.add_link("qrnn0", QRNN(ndim_embedding, ndim_h, kernel_size=kernel_size, pooling=pooling, zoneout=zoneout, wgain=wgain))
		for i in xrange(1, num_layers):
			self.add_link("qrnn{}".format(i), QRNN(ndim_h, ndim_h, kernel_size=kernel_size, pooling=pooling, zoneout=zoneout, wgain=wgain))
Пример #9
0
parser.add_argument("--sequence-length", type=int, default=512)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument("--loops", type=int, default=100)

args = parser.parse_args()
hidden_size = args.hidden_size
sequence_length = args.sequence_length
batch_size = args.batch_size
loops = args.loops

print("Benchmark inference speed")
print(f" Hidden Size: {hidden_size}")
print(f" Sequence Length: {sequence_length}")
print(f" Batch Size: {batch_size}")

qrnn = QRNN(hidden_size, kernel_size=2)
lstm = tf.keras.layers.LSTM(hidden_size)


@tf.function
def qrnn_call(input_tensor):
    return qrnn(input_tensor)


@tf.function
def lstm_call(input_tensor):
    return lstm(input_tensor)


# draw graph
input = tf.keras.Input((sequence_length, hidden_size))
Пример #10
0
maxlen = (
    80
)  # cut texts after this number of words (among top max_features most common words)
batch_size = 32
np.random.seed(1337)  # for reproducibility

print("Build model...")
model = Sequential()
model.add(Embedding(max_features, 128))
model.add(SpatialDropout1D(0.2))
model.add(
    QRNN(
        128,
        window_size=3,
        dropout=0.2,
        kernel_regularizer=l2(1e-4),
        bias_regularizer=l2(1e-4),
        kernel_constraint=maxnorm(10),
        bias_constraint=maxnorm(10),
    ))
model.add(Dense(1))
model.add(Activation("sigmoid"))

# try using different optimizers and different optimizer configs
model.compile(loss="binary_crossentropy",
              optimizer="adam",
              metrics=["accuracy"])

print("Loading data...")
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=max_features)
print(len(X_train), "train sequences")
Пример #11
0
X_ = X[:len(t_lin) - 500 - 150]  #学習用
Y_ = Y[:len(t_lin) - 500 - 150]  #学習用

N_train = int(len(data) * 0.7)
N_validation = len(data) - N_train
X_train, X_validation, Y_train, Y_validation = \
    train_test_split(X_, Y_, test_size=N_validation, shuffle=False)

#予測対象の表示
plt.plot(x_lin[len(x_lin) - 500:len(x_lin)])
plt.show()

#学習モデルの作成
ws = 128  #window_size
input_layer = Input(shape=(maxlen, 1))
qrnn_output_layer = QRNN(64, window_size=ws, dropout=0)(input_layer)
prediction_result = Dense(1)(qrnn_output_layer)
model = Model(inputs=input_layer, outputs=prediction_result)
model.compile(loss="mean_squared_error", optimizer="adam")

pat = 1
early_stopping = EarlyStopping(monitor='val_loss', patience=pat, verbose=1)
csv = CSVLogger('./TrainingWS_' + str(ws) + 'patience_' + str(pat) + '.csv')
fit = model.fit(X_train,
                Y_train,
                batch_size=512,
                epochs=10000,
                validation_data=(X_validation, Y_validation),
                callbacks=[early_stopping, csv])

#予測
Пример #12
0
    def compile(self,
                input_dim=161,
                recur_layers=5,
                nodes=1000,
                conv_context=5,
                conv_border_mode='valid',
                conv_stride=2,
                activation='relu',
                lirelu_alpha=.3,
                dropout=False,
                initialization='glorot_uniform',
                batch_norm=True,
                stateful=False,
                mb_size=None):
        logger.info("Building gru model")
        assert self.model is None

        leaky_relu = False
        if activation == 'lirelu':
            activation = 'linear'
            leaky_relu = True

        if stateful:
            if mb_size is None:
                raise ValueError(
                    "Stateful QRNN layer needs to know batch size")
            acoustic_input = Input(batch_shape=(mb_size, None, input_dim),
                                   name='acoustic_input')
        else:
            acoustic_input = Input(shape=(None, input_dim),
                                   name='acoustic_input')

        # Setup the network
        conv_1d = Conv1D(nodes,
                         conv_context,
                         name='conv_1d',
                         padding=conv_border_mode,
                         strides=conv_stride,
                         kernel_initializer=initialization,
                         activation=activation)(acoustic_input)

        if batch_norm:
            output = BatchNormalization(name='bn_conv_1d', mode=2)(conv_1d)
        else:
            output = conv_1d

        if leaky_relu:
            output = LeakyReLU(alpha=lirelu_alpha)(output)

        if dropout:
            output = Dropout(dropout)(output)

        for r in range(recur_layers):
            output = QRNN(nodes,
                          name='rnn_{}'.format(r + 1),
                          kernel_initializer=initialization,
                          return_sequences=True,
                          activation=activation)(output)

            if batch_norm:
                bn_layer = BatchNormalization(name='bn_rnn_{}'.format(r + 1),
                                              mode=2)
                output = bn_layer(output)

            if leaky_relu:
                output = LeakyReLU(alpha=lirelu_alpha)(output)

        output_branch = TimeDistributed(Dense(self.output_dim,
                                              name='text_dense',
                                              init=initialization,
                                              activation=for_tf_or_th(
                                                  'softmax', 'linear')),
                                        name=self.outputs)
        network_output = output_branch(output)

        self.model = Model(input=acoustic_input, output=[network_output])
        self.branch_outputs = [output_branch]
        self.branch_vars[output_branch.name] = self.model.trainable_weights
        self.acoustic_input = self.model.inputs[0]
        return self.model
Пример #13
0
print(len(X_test), 'test sequences')

print('Pad sequences (samples x time)')
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)

print('Build model...')
model = Sequential()
model.add(Embedding(max_features, 128, dropout=0.2))
model.add(
    QRNN(128,
         window_size=3,
         dropout=0.2,
         W_regularizer=l2(1e-4),
         b_regularizer=l2(1e-4),
         W_constraint=maxnorm(10),
         b_constraint=maxnorm(10)))
model.add(Dense(1))
model.add(Activation('sigmoid'))

# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

print('Train...')
model.fit(X_train,
          y_train,
          batch_size=batch_size,
Пример #14
0
dr = 0.1

digits = datasets.load_digits()
x = digits.data
y = digits.target

y = np_utils.to_categorical(y)

xr, xt, onehot_yr, onehot_yt = train_test_split(x, y, random_state=0)
xr = xr.reshape(-1, 8, 8)
xt = xt.reshape(-1, 8, 8)

model = Sequential()
model.add(
    QRNN(hidden_neurons,
         batch_input_shape=(None, length_of_sequences, in_neurons),
         return_sequences=True))
model.add(Dense(hidden_neurons))
model.add(Dropout(dr))
model.add(QRNN(hidden_neurons, return_sequences=True))
model.add(Dense(hidden_neurons))
model.add(Dropout(dr))
model.add(QRNN(hidden_neurons, return_sequences=False))
model.add(Dense(10, activation='softmax'))  #
model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

print(model.summary())
model.fit(xr,
          onehot_yr,
Пример #15
0
y_train = np.array([x[1] for x in d[:split]])
y_test = np.array([x[1] for x in d[split:limit]])

X_train = sequence.pad_sequences(X_train, maxlen=MAX_SEQ_LEN)
X_test = sequence.pad_sequences(X_test, maxlen=MAX_SEQ_LEN)

model = Sequential()
model.add(
    Embedding(VOCAB_SIZE,
              WORD_DIM,
              input_length=MAX_SEQ_LEN,
              batch_input_shape=(BATCH_SIZE, MAX_SEQ_LEN)))
model.add(
    QRNN(128,
         window=3,
         input_dim=WORD_DIM,
         input_length=MAX_SEQ_LEN,
         batch_input_shape=(BATCH_SIZE, MAX_SEQ_LEN, WORD_DIM),
         ret_sequence=True))
model.add(
    QRNN(128,
         window=3,
         input_dim=WORD_DIM,
         input_length=MAX_SEQ_LEN,
         batch_input_shape=(BATCH_SIZE, MAX_SEQ_LEN, WORD_DIM),
         ret_sequence=True))
model.add(
    QRNN(128,
         window=2,
         input_dim=WORD_DIM,
         input_length=MAX_SEQ_LEN,
         batch_input_shape=(BATCH_SIZE, MAX_SEQ_LEN, WORD_DIM)))