Пример #1
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(100000.00)

    # Use Yahoo Daily Price Handler
    start_date = datetime.datetime(2009, 8, 3)
    end_date = datetime.datetime(2019, 8, 1)
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir,
                                                 events_queue,
                                                 tickers,
                                                 start_date=start_date,
                                                 end_date=end_date)
    # Use the KalmanPairsTrading Strategy
    strategy = KalmanPairsTradingStrategy(tickers, events_queue)
    strategy = Strategies(strategy)

    # Use the Naive Position Sizer (suggested quantities are followed)
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the Tearsheet Statistics
    title = ["Kalman Filter Pairs Trade on TLT/IEI"]
    statistics = TearsheetStatistics(config, portfolio_handler, title)

    # Set up the backtest
    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              price_handler=price_handler,
                              portfolio_handler=portfolio_handler,
                              execution_handler=execution_handler,
                              position_sizer=position_sizer,
                              risk_manager=risk_manager,
                              statistics=statistics)

    results = backtest.start_trading(testing=testing)
    statistics.save(filename)
    return results
def run(config, testing, tickers, filename):

    # Benchmark ticker
    benchmark = 'SP500TR'

    # Set up variables needed for backtest
    title = [
        'Moving Average Crossover Example',
        __file__,
        ','.join(tickers) + ': 100x400'
    ]
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(
        csv_dir, events_queue, tickers
    )

    # Use the MAC Strategy
    strategy = MovingAverageCrossStrategy(tickers, events_queue)

    # Use an example Position Sizer,
    position_sizer = FixedPositionSizer()

    # Use an example Risk Manager,
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(
        initial_equity, events_queue, price_handler,
        position_sizer, risk_manager
    )

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(
        events_queue, price_handler, compliance
    )

    # Use the default Statistics
    statistics = TearsheetStatistics(
        config, portfolio_handler, title, benchmark
    )

    # Set up the backtest
    backtest = Backtest(
        price_handler, strategy,
        portfolio_handler, execution_handler,
        position_sizer, risk_manager,
        statistics, initial_equity
    )
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
def run(config, testing, tickers, filename):

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)
    start_date = datetime.datetime(2006, 11, 1)
    end_date = datetime.datetime(2016, 10, 12)

    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir,
                                                 events_queue,
                                                 tickers,
                                                 start_date=start_date,
                                                 end_date=end_date)

    # Use the monthly liquidate and rebalance strategy
    strategy = MonthlyLiquidateRebalanceStrategy(tickers, events_queue)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the liquidate and rebalance position sizer
    # with prespecified ticker weights
    ticker_weights = {
        "SPY": 0.6,
        "AGG": 0.4,
    }
    position_sizer = LiquidateRebalancePositionSizer(ticker_weights)

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the default Statistics
    title = ["US Equities/Bonds 60/40 ETF Strategy"]
    benchmark = "SPY"
    statistics = TearsheetStatistics(config, portfolio_handler, title,
                                     benchmark)

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
def run(config, testing, tickers, filename):

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = "/path/to/your/csv/data/"
    initial_equity = PriceParser.parse(500000.00)

    # Use DTN IQFeed Intraday Bar Price Handler
    start_date = datetime.datetime(2013, 1, 1)
    price_handler = IQFeedIntradayCsvBarPriceHandler(csv_dir,
                                                     events_queue,
                                                     tickers,
                                                     start_date=start_date)

    # Use the ML Intraday Prediction Strategy
    model_pickle_file = '/path/to/your/ml_model_lda.pkl'
    strategy = IntradayMachineLearningPredictionStrategy(tickers,
                                                         events_queue,
                                                         model_pickle_file,
                                                         lags=5)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer (suggested quantities are followed)
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the Tearsheet Statistics
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        title=["Intraday AREX Machine Learning Prediction Strategy"],
        periods=int(252 * 6.5 * 60)  # Minutely periods
    )

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
def run(config, testing, tickers, filename):

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    start_date = datetime.datetime(2013, 7, 1)
    end_date = datetime.datetime(2019, 6, 1)
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers, start_date=start_date, end_date=end_date)

    # Use the Cointegration Bollinger Bands trading strategy
    weights = np.array([1.0, -1.213])
    lookback = 15
    entry_z = 1.5
    exit_z = 0.5
    base_quantity = 10000
    strategy = CointegrationBollingerBandsStrategy(tickers[1:], events_queue, lookback, weights, entry_z, exit_z, base_quantity)
    strategy = Strategies(strategy)

    # Use the Naive Position Sizer
    # where suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue, price_handler, position_sizer, risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue, price_handler, compliance)

    # Use the Tearsheet Statistics
    title = ["Aluminum Smelting Strategy - ARNC/UNG"]
    statistics = TearsheetStatistics(config, portfolio_handler, title, benchmark=tickers[0])
    
    # Set up the backtest
    backtest = TradingSession(config, strategy, 
        tickers[1:], initial_equity, start_date, end_date,
        events_queue, price_handler=price_handler,
        portfolio_handler=portfolio_handler, 
        execution_handler=execution_handler, 
        position_sizer=position_sizer, 
        risk_manager=risk_manager, 
        statistics=statistics, benchmark=tickers[0])

    results = backtest.start_trading(testing=testing)
    statistics.save(filename)
    return results
def run_monthly_rebalance(config, testing, filename, benchmark, ticker_weights,
                          title_str, start_date, end_date, equity):
    config = settings.from_file(config, testing)
    tickers = [t for t in ticker_weights.keys()]

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(equity)

    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir,
                                                 events_queue,
                                                 tickers,
                                                 start_date=start_date,
                                                 end_date=end_date)

    # Use the monthly liquidate and rebalance strategy
    strategy = MonthlyLiquidateRebalanceStrategy(tickers, events_queue)
    #strategy = Strategies(strategy, DisplayStrategy())

    # Use the liquidate and rebalance position sizer
    # with prespecified ticker weights
    position_sizer = LiquidateRebalancePositionSizer(ticker_weights)

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the default Statistics
    title = [title_str]
    statistics = TearsheetStatistics(config, portfolio_handler, title,
                                     benchmark)

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
def run(config, testing, tickers, filename, start_date, end_date):

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    price_handler = SqliteDBBarPriceHandler(
        csv_dir, events_queue, tickers, start_date, end_date
    )

    # Use the Buy and Hold Strategy
    strategy = CustomStrategy(tickers, events_queue)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use an example Position Sizer
    position_sizer = CustomPositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(
        initial_equity, events_queue, price_handler,
        position_sizer, risk_manager
    )

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(
        events_queue, price_handler, compliance
    )

    # Use the default Statistics
    statistics = TearsheetStatistics(
        config, portfolio_handler, title=""
    )

    # Set up the backtest
    backtest = Backtest(
        price_handler, strategy,
        portfolio_handler, execution_handler,
        position_sizer, risk_manager,
        statistics, initial_equity
    )
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
Пример #8
0
def run(config, testing, tickers, filename):

    # Benchmark ticker
    benchmark = 'SP500TR'

    # Set up variables needed for backtest
    title = [
        'Moving Average Crossover Example', __file__,
        ','.join(tickers) + ': 100x400'
    ]
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue,
                                                 tickers)

    # Use the MAC Strategy
    strategy = MovingAverageCrossStrategy(tickers, events_queue)

    # Use an example Position Sizer,
    position_sizer = FixedPositionSizer()

    # Use an example Risk Manager,
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the default Statistics
    statistics = TearsheetStatistics(config, portfolio_handler, title,
                                     benchmark)

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
Пример #9
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_invst = 1000000.00
    initial_equity = PriceParser.parse(initial_invst)

    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(
        csv_dir,
        events_queue,
        tickers,
    )

    # Use the KalmanPairsTrading Strategy
    strategy = KalmanPairsTradingStrategy(tickers, events_queue, initial_invst)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer (suggested quantities are followed)
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the default Statistics
    statistics = TearsheetStatistics(config, portfolio_handler, title="")

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    hist = results['cum_returns']
    print('==:++==')
    print(hist.to_csv('6pair.csv', header=['date,total asset']))
    statistics.save('output')
    return results
def run(config, testing, tickers, filename):

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(100000.00)

    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir, events_queue, tickers)

    # Use the KalmanPairsTrading Strategy
    strategy = KalmanPairsTradingStrategy(tickers, events_queue)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer (suggested quantities are followed)
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue, price_handler, position_sizer, risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue, price_handler, compliance)

    # Use the default Statistics
    statistics = TearsheetStatistics(config, portfolio_handler, title="")

    # Set up the backtest
    backtest = Backtest(
        price_handler, 
        strategy,
        portfolio_handler, 
        execution_handler,
        position_sizer, 
        risk_manager,
        statistics, 
        initial_equity
    )
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
Пример #11
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    title = ["Intraday AREX Machine Learning Prediction Strategy"]
    events_queue = queue.Queue()
    csv_dir = "/path/to/your/csv/data/"
    initial_equity = 500000.0

    # Use DTN IQFeed Intraday Bar Price Handler
    start_date = datetime.datetime(2013, 1, 1)
    end_date = datetime.datetime(2014, 3, 11)
    price_handler = IQFeedIntradayCsvBarPriceHandler(csv_dir,
                                                     events_queue,
                                                     tickers,
                                                     start_date=start_date)

    # Use the ML Intraday Prediction Strategy
    model_pickle_file = '/path/to/your/ml_model_lda.pkl'
    strategy = IntradayMachineLearningPredictionStrategy(tickers,
                                                         events_queue,
                                                         model_pickle_file,
                                                         lags=5)

    # Use the Naive Position Sizer where
    # suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity),
                                         events_queue, price_handler,
                                         position_sizer, risk_manager)

    # Use the Tearsheet Statistics
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        title=title,
        periods=int(252 * 6.5 * 60)  # Minutely periods
    )

    # Set up the backtest
    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              title=title,
                              portfolio_handler=portfolio_handler,
                              position_sizer=position_sizer,
                              price_handler=price_handler,
                              statistics=statistics)
    results = backtest.start_trading(testing=testing)
    return results
Пример #12
0
    # Construct benchmark assets (buy & hold SPY)
    benchmark_symbols = ['SPY']
    benchmark_assets = ['EQ:SPY']
    benchmark_universe = StaticUniverse(benchmark_assets)
    benchmark_data_source = CSVDailyBarDataSource(
        csv_dir, Equity, csv_symbols=benchmark_symbols)
    benchmark_data_handler = BacktestDataHandler(
        benchmark_universe, data_sources=[benchmark_data_source])

    # Construct a benchmark Alpha Model that provides
    # 100% static allocation to the SPY ETF, with no rebalance
    benchmark_alpha_model = FixedSignalsAlphaModel({'EQ:SPY': 1.0})
    benchmark_backtest = BacktestTradingSession(
        burn_in_dt,
        end_dt,
        benchmark_universe,
        benchmark_alpha_model,
        rebalance='buy_and_hold',
        long_only=True,
        cash_buffer_percentage=0.01,
        data_handler=benchmark_data_handler)
    benchmark_backtest.run()

    # Performance Output
    tearsheet = TearsheetStatistics(
        strategy_equity=strategy_backtest.get_equity_curve(),
        benchmark_equity=benchmark_backtest.get_equity_curve(),
        title='US Sector Momentum - Top 3 Sectors')
    tearsheet.plot_results()
Пример #13
0
def run(config, testing, tickers, filename):
    #build_HMM_model()
    build_HMM_model2()
    title = ["Trend Following Regime Detection without HMM"]
    #pickle_path = "hmm_model_spy.pkl"
    pickle_path = "hmm_model_spy2.pkl"
    #pickle_path = "hmm_model_fx.pkl"
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = 100000.00
    start_date = datetime.datetime(2011, 1, 1)
    end_date = datetime.datetime(2018, 3, 31)
    # Use the Moving Average Crossover trading strategy
    base_quantity = 10000
    strategy = MovingAverageCrossStrategy(tickers,
                                          events_queue,
                                          base_quantity,
                                          short_window=10,
                                          long_window=30)
    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir,
                                                 events_queue,
                                                 tickers,
                                                 start_date=start_date,
                                                 end_date=end_date,
                                                 calc_adj_returns=True)
    # Use the Naive Position Sizer
    # where suggested quantities are followed
    position_sizer = NaivePositionSizer()
    # Use an example Risk Manager
    #risk_manager = ExampleRiskManager()
    # Use regime detection HMM risk manager
    hmm_model = pickle.load(open(pickle_path, "rb"))
    risk_manager = RegimeHMMRiskManager(hmm_model)
    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity),
                                         events_queue, price_handler,
                                         position_sizer, risk_manager)
    # Use the Tearsheet Statistics class
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        #title,benchmark = "EEM"
        title,
        benchmark="VWO")

    # Set up the backtest
    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              title=title,
                              price_handler=price_handler,
                              position_sizer=position_sizer,
                              risk_manager=risk_manager,
                              statistics=statistics,
                              portfolio_handler=portfolio_handler)
    results = backtest.start_trading(testing=testing)
    return results
Пример #14
0
    strategy_assets = ['EQ:GLD']
    strategy_universe = StaticUniverse(strategy_assets)

    # To avoid loading all CSV files in the directory, set the
    # data source to load only those provided symbols
    csv_dir = os.environ.get('QSTRADER_CSV_DATA_DIR')
    data_source = CSVDailyBarDataSource(csv_dir,
                                        Equity,
                                        csv_symbols=strategy_symbols)
    data_handler = BacktestDataHandler(strategy_universe,
                                       data_sources=[data_source])

    # Construct an Alpha Model that simply provides a fixed
    # signal for the single GLD ETF at 100% allocation
    # with a backtest that does not rebalance
    strategy_alpha_model = FixedSignalsAlphaModel({'EQ:GLD': 1.0})
    strategy_backtest = BacktestTradingSession(start_dt,
                                               end_dt,
                                               strategy_universe,
                                               strategy_alpha_model,
                                               rebalance='buy_and_hold',
                                               cash_buffer_percentage=0.01,
                                               data_handler=data_handler)
    strategy_backtest.run()

    # Performance Output
    tearsheet = TearsheetStatistics(
        strategy_equity=strategy_backtest.get_equity_curve(),
        title='Buy & Hold GLD ETF')
    tearsheet.plot_results()
Пример #15
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    pickle_path = "/path/to/your/model/hmm_model_spy.pkl"
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    start_date = datetime.datetime(2005, 1, 1)
    end_date = datetime.datetime(2014, 12, 31)
    price_handler = YahooDailyCsvBarPriceHandler(csv_dir,
                                                 events_queue,
                                                 tickers,
                                                 start_date=start_date,
                                                 end_date=end_date,
                                                 calc_adj_returns=True)

    # Use the Moving Average Crossover trading strategy
    base_quantity = 10000
    strategy = MovingAverageCrossStrategy(tickers,
                                          events_queue,
                                          base_quantity,
                                          short_window=10,
                                          long_window=30)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer
    # where suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use regime detection HMM risk manager
    hmm_model = pickle.load(open(pickle_path, "rb"))
    risk_manager = RegimeHMMRiskManager(hmm_model)
    # Use an example Risk Manager
    #risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(initial_equity, events_queue,
                                         price_handler, position_sizer,
                                         risk_manager)

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(events_queue,
                                                    price_handler, compliance)

    # Use the Tearsheet Statistics
    title = ["Trend Following Regime Detection with HMM"]
    statistics = TearsheetStatistics(config,
                                     portfolio_handler,
                                     title,
                                     benchmark="SPY")

    # Set up the backtest
    backtest = Backtest(price_handler, strategy, portfolio_handler,
                        execution_handler, position_sizer, risk_manager,
                        statistics, initial_equity)
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
Пример #16
0
def run(config, testing, tickers, filename):
    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)

    # Use Yahoo Daily Price Handler
    start_date = datetime.datetime(2012, 10, 15)
    end_date = datetime.datetime(2016, 2, 2)
    price_handler = YahooDailyCsvBarPriceHandler(
        csv_dir, events_queue, tickers,
        start_date=start_date, end_date=end_date
    )

    # Use the Sentdex Sentiment trading strategy
    sentiment_handler = SentdexSentimentHandler(
        config.CSV_DATA_DIR, "sentdex_sample.csv",
        events_queue, tickers=tickers,
        start_date=start_date, end_date=end_date
    )

    base_quantity = 2000
    sent_buy = 6
    sent_sell = -1
    strategy = SentdexSentimentStrategy(
        tickers, events_queue,
        sent_buy, sent_sell, base_quantity
    )
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the Naive Position Sizer
    # where suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(
        initial_equity, events_queue, price_handler,
        position_sizer, risk_manager
    )

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(
        events_queue, price_handler, compliance
    )

    # Use the Tearsheet Statistics
    title = ["Sentiment Sentdex Strategy"]
    statistics = TearsheetStatistics(
        config, portfolio_handler, title,
        benchmark="SPY"
    )

    # Set up the backtest
    backtest = Backtest(
        price_handler, strategy,
        portfolio_handler, execution_handler,
        position_sizer, risk_manager,
        statistics, initial_equity,
        sentiment_handler=sentiment_handler
    )
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
Пример #17
0
        initial_cash=5e7,
        initial_position=0.4,
        cac_stat=True,
        daily_start_time='09:30:00',
        deal_volume_time=None,  # None 表示不平仓
        keep_order_time=10,
        bid_price_type='spread',
        ask_price_type='spread',
        bid_volume_type='multiple',
        ask_volume_type='multiple',
        spread_level=0.01,
        min_bid_unit=0.001,
        min_ask_unit=0.001,
        volume_bid=[50000, 60000, 1500000],
        volume_ask=[50000, 60000, 80000])

    test.run()
    stat = test.broker.get_market_making_statistic()

    # Performance Output
    tearsheet = TearsheetStatistics(
        strategy_equity=test.get_equity_curve(),
        # benchmark_equity = benchmark_equity_df,
        title='',
        periods=test.get_period()
        # market_making_stat = stat['result']
    )
    tearsheet.plot_results()
    print('做市义务:')
    print(stat['result'])
Пример #18
0
def run(config, testing, tickers, csv_filepath, pklfile, start_date, end_date,
        lags, title, folder_name, model, return_win, percent_factor, salida):
    # Set up variables needed for backtest
    #    title = [
    #        "Intraday AREX Machine Learning Prediction Strategy"
    #    ]
    events_queue = queue.Queue()
    csv_dir = csv_filepath
    initial_equity = 30000.0

    # Use DTN IQFeed Intraday Bar Price Handler
    #    start_date = datetime.datetime(2016, 1, 1)
    #    end_date = datetime.datetime(2014, 3, 11)

    #    start_date = datetime.datetime(2013, 1, 1)
    #    end_date = datetime.datetime(2014, 3, 11)
    price_handler = IQFeedIntradayCsvBarPriceHandler(csv_dir, events_queue,
                                                     tickers, start_date,
                                                     end_date)

    # Use the ML Intraday Prediction Strategy
    model_pickle_file = pklfile
    strategy = IntradayMachineLearningPredictionStrategy(
        tickers, events_queue, model_pickle_file, lags, model, return_win,
        percent_factor, salida)

    # Use the Naive Position Sizer where
    # suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity),
                                         events_queue, price_handler,
                                         position_sizer, risk_manager)

    # Use the Tearsheet Statistics
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        title=title,
        periods=int(252 * 6.5 * 60)  # Minutely periods
    )

    # Set up the backtest

    compliance = LiveCompliance(config, tickers)

    execution_handler = IBSimulatedExecutionHandler(
        events_queue=events_queue,
        price_handler=price_handler,
        compliance=compliance)

    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              title=title,
                              portfolio_handler=portfolio_handler,
                              compliance=compliance,
                              position_sizer=position_sizer,
                              execution_handler=execution_handler,
                              price_handler=price_handler,
                              statistics=statistics)
    results = backtest.start_trading(testing=testing, folder_name=folder_name)
    return results
def run(config, testing, tickers, filename):

    # Set up variables needed for backtest
    events_queue = queue.Queue()
    csv_dir = config.CSV_DATA_DIR
    initial_equity = PriceParser.parse(500000.00)
    start_date = datetime.datetime(2006, 11, 1)
    end_date = datetime.datetime(2016, 10, 12)

    # Use Yahoo Daily Price Handler
    price_handler = YahooDailyCsvBarPriceHandler(
        csv_dir, events_queue, tickers,
        start_date=start_date, end_date=end_date
    )

    # Use the monthly liquidate and rebalance strategy
    strategy = MonthlyLiquidateRebalanceStrategy(tickers, events_queue)
    strategy = Strategies(strategy, DisplayStrategy())

    # Use the liquidate and rebalance position sizer
    # with prespecified ticker weights
    ticker_weights = {
        "SPY": 0.6,
        "AGG": 0.4,
    }
    position_sizer = LiquidateRebalancePositionSizer(ticker_weights)

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(
        initial_equity, events_queue, price_handler,
        position_sizer, risk_manager
    )

    # Use the ExampleCompliance component
    compliance = ExampleCompliance(config)

    # Use a simulated IB Execution Handler
    execution_handler = IBSimulatedExecutionHandler(
        events_queue, price_handler, compliance
    )

    # Use the default Statistics
    title = ["US Equities/Bonds 60/40 ETF Strategy"]
    benchmark = "SPY"
    statistics = TearsheetStatistics(
        config, portfolio_handler, title, benchmark
    )

    # Set up the backtest
    backtest = Backtest(
        price_handler, strategy,
        portfolio_handler, execution_handler,
        position_sizer, risk_manager,
        statistics, initial_equity
    )
    results = backtest.simulate_trading(testing=testing)
    statistics.save(filename)
    return results
Пример #20
0
def cli(start_date, end_date, allocations, strat_title, strat_id, tearsheet):
    csv_dir = os.environ.get('QSTRADER_CSV_DATA_DIR', '.')

    start_dt = pd.Timestamp('%s 00:00:00' % start_date, tz=pytz.UTC)

    if end_date is None:
        # Use yesterday's date
        yesterday = (datetime.now() - timedelta(1)).strftime('%Y-%m-%d')
        end_dt = pd.Timestamp('%s 23:59:00' % yesterday, tz=pytz.UTC)
    else:
        end_dt = pd.Timestamp('%s 23:59:00' % end_date, tz=pytz.UTC)

    alloc_dict = obtain_allocations(allocations)

    # Assets and Data Handling
    strategy_assets = list(alloc_dict.keys())
    strategy_symbols = [
        symbol.replace('EQ:', '') for symbol in strategy_assets
    ]
    strategy_universe = StaticUniverse(strategy_assets)
    strategy_data_source = CSVDailyBarDataSource(csv_dir,
                                                 Equity,
                                                 csv_symbols=strategy_symbols)

    strategy_data_handler = BacktestDataHandler(
        strategy_universe, data_sources=[strategy_data_source])

    strategy_assets = alloc_dict.keys()
    strategy_alpha_model = FixedSignalsAlphaModel(alloc_dict)
    strategy_backtest = BacktestTradingSession(
        start_dt,
        end_dt,
        strategy_universe,
        strategy_alpha_model,
        rebalance='end_of_month',
        account_name=strat_title,
        portfolio_id='STATIC001',
        portfolio_name=strat_title,
        long_only=True,
        cash_buffer_percentage=0.01,
        data_handler=strategy_data_handler)
    strategy_backtest.run()

    # Benchmark: 60/40 US Equities/Bonds
    benchmark_symbols = ['SPY', 'AGG']
    benchmark_assets = ['EQ:SPY', 'EQ:AGG']
    benchmark_universe = StaticUniverse(benchmark_assets)

    benchmark_data_source = CSVDailyBarDataSource(
        csv_dir, Equity, csv_symbols=benchmark_symbols)
    benchmark_data_handler = BacktestDataHandler(
        benchmark_universe, data_sources=[benchmark_data_source])

    benchmark_signal_weights = {'EQ:SPY': 0.6, 'EQ:AGG': 0.4}
    benchmark_title = '60/40 US Equities/Bonds'
    benchmark_alpha_model = FixedSignalsAlphaModel(benchmark_signal_weights)
    benchmark_backtest = BacktestTradingSession(
        start_dt,
        end_dt,
        benchmark_universe,
        benchmark_alpha_model,
        rebalance='end_of_month',
        account_name='60/40 US Equities/Bonds',
        portfolio_id='6040EQBD',
        portfolio_name=benchmark_title,
        long_only=True,
        cash_buffer_percentage=0.01,
        data_handler=benchmark_data_handler)
    benchmark_backtest.run()

    output_filename = ('%s_monthly.json' % strat_id).replace('-', '_')
    stats = JSONStatistics(
        equity_curve=strategy_backtest.get_equity_curve(),
        target_allocations=strategy_backtest.get_target_allocations(),
        strategy_id=strat_id,
        strategy_name=strat_title,
        benchmark_curve=benchmark_backtest.get_equity_curve(),
        benchmark_id='6040-us-equitiesbonds',
        benchmark_name=benchmark_title,
        output_filename=output_filename)
    stats.to_file()

    if tearsheet:
        tearsheet = TearsheetStatistics(
            strategy_equity=strategy_backtest.get_equity_curve(),
            benchmark_equity=benchmark_backtest.get_equity_curve(),
            title=strat_title)
        tearsheet.plot_results()
Пример #21
0
    # Construct benchmark assets (buy & hold SPY)
    benchmark_symbols = ['SPY']
    benchmark_assets = ['EQ:SPY']
    benchmark_universe = StaticUniverse(benchmark_assets)
    benchmark_data_source = CSVDailyBarDataSource(
        csv_dir, Equity, csv_symbols=benchmark_symbols)
    benchmark_data_handler = BacktestDataHandler(
        benchmark_universe, data_sources=[benchmark_data_source])

    # Construct a benchmark Alpha Model that provides
    # 100% static allocation to the SPY ETF, with no rebalance
    benchmark_alpha_model = FixedSignalsAlphaModel({'EQ:SPY': 1.0})
    benchmark_backtest = BacktestTradingSession(
        start_dt,
        end_dt,
        benchmark_universe,
        benchmark_alpha_model,
        rebalance='buy_and_hold',
        long_only=True,
        cash_buffer_percentage=0.01,
        data_handler=benchmark_data_handler)
    benchmark_backtest.run()

    # Performance Output
    tearsheet = TearsheetStatistics(
        strategy_equity=strategy_backtest.get_equity_curve(),
        benchmark_equity=benchmark_backtest.get_equity_curve(),
        title='Long/Short Leveraged Treasury Bond ETFs')
    tearsheet.plot_results()
Пример #22
0
        cash_buffer_percentage=0.01,
        data_handler=data_handler
    )
    strategy_backtest.run()

    # Construct benchmark assets (buy & hold SPY)
    benchmark_assets = ['EQ:SPY']
    benchmark_universe = StaticUniverse(benchmark_assets)

    # Construct a benchmark Alpha Model that provides
    # 100% static allocation to the SPY ETF, with no rebalance
    benchmark_alpha_model = FixedSignalsAlphaModel({'EQ:SPY': 1.0})
    benchmark_backtest = BacktestTradingSession(
        start_dt,
        end_dt,
        benchmark_universe,
        benchmark_alpha_model,
        rebalance='buy_and_hold',
        cash_buffer_percentage=0.01,
        data_handler=data_handler
    )
    benchmark_backtest.run()

    # Performance Output
    tearsheet = TearsheetStatistics(
        strategy_equity=strategy_backtest.get_equity_curve(),
        benchmark_equity=benchmark_backtest.get_equity_curve(),
        title='60/40 US Equities/Bonds'
    )
    tearsheet.plot_results()
def run(config, testing, tickers, cliente, strat_set):

    events_queue = queue.Queue()
    initial_equity = 30000.0

    end_session_time = datetime(2018, 2, 23, 16, 1, 00)
    if end_session_time < datetime.now():
        print("########################################")
        print("  Yoe, Increase \"end_section time\" please")
        print("########################################")
        exit()

    start_date = None
    end_date = None

    #
    # Defining up to 3 contracts in case Mean Reversing Strategies were used in the future
    #

    contract_1 = Contract()
    contract_1.symbol = tickers[0]
    contract_1.secType = "STK"
    contract_1.currency = "USD"
    contract_1.exchange = "SMART"
    contract_1.primaryExchange = "ISLAND"

    contract_2 = Contract()
    if len(tickers) > 1:
        contract_2.symbol = tickers[1]
    contract_2.secType = "STK"
    contract_2.currency = "USD"
    contract_2.exchange = "SMART"
    contract_2.primaryExchange = "ISLAND"

    contract_3 = Contract()
    if len(tickers) > 2:
        contract_3.symbol = tickers[2]
    contract_3.secType = "STK"
    contract_3.currency = "USD"
    contract_3.exchange = "SMART"
    contract_3.primaryExchange = "ISLAND"

    contract = [contract_1, contract_2, contract_3]

    #
    # Defining the Conection to TWS ######################################################
    #
    current_directory = os.getcwd()
    app = conexion(tickers=tickers,
                   port=7497,
                   cliente=cliente,
                   currentDir=current_directory)  # devuelto en: currentTime
    #
    #   Checking open positions on the market ############################################
    #
    app.reqAccountUpdates(True, "DU931045")

    tiempo = datetime.now()
    continua = False
    while not continua:
        open_position = app.open_position
        if open_position[0] != None or datetime.now() > tiempo + timedelta(
                seconds=3):
            continua = True
        time.sleep(0.5)
    if open_position[0] == tickers[0]:
        print(" *******************************************************")
        print("")
        print(" There is an open possition for %s, please check in the " %
              tickers[0])
        print(" market whether it is convenient to proced automatically")
        print("")
        print(" *******************************************************")

    app.reqAccountUpdates(False, "DU931045")

    #
    # Requesting real time data from the Market ##########################################
    #
    reqId = [None for i in range(len(tickers))]
    for i in range(len(tickers)):
        reqId[i] = app.nuevoId()
        app.reqMarketDataType(1)
        app.reqMktData(reqId[i],
                       contract[i],
                       genericTickList='',
                       snapshot=False,
                       regulatorySnapshot=False,
                       mktDataOptions=[])
        print("request Id: ", reqId[i])

#
# Defining modules ###################################################################
#

    price_handler = IBAPI_yoe(events_queue,
                              init_tickers=tickers,
                              app=app,
                              reqId=reqId)

    #    start_date = datetime.datetime(2015, 1, 1)
    #    end_date = datetime.datetime(2016, 9, 30)
    #    price_handler = IQFeedIntradayCsvBarPriceHandler(
    #        csv_dir, events_queue, tickers, start_date=start_date
    #    )
    contract_dict = {
        contract_1.symbol: contract_1,
        contract_2.symbol: contract_2,
        contract_3.symbol: contract_3
    }

    LiveCompl = LiveCompliance(config, tickers)

    # Use the ML Intraday Prediction Strategy

    model_pickle_file = current_directory + "/" + tickers[0] + "_Full_time.pkl"
    strategy = IntradayMachineLearningPredictionStrategy(
        tickers, events_queue, model_pickle_file, strat_set, open_position)

    execution_handler = IB_execution_yoe(events_queue,
                                         price_handler,
                                         compliance=LiveCompl,
                                         app=app,
                                         contract_dict=contract_dict,
                                         currentDir=current_directory,
                                         Id=reqId,
                                         strategy=strategy)

    # Use the Naive Position Sizer where
    # suggested quantities are followed
    position_sizer = NaivePositionSizer()

    # Use an example Risk Manager
    risk_manager = ExampleRiskManager()

    # Use the default Portfolio Handler
    portfolio_handler = PortfolioHandler(PriceParser.parse(initial_equity),
                                         events_queue, price_handler,
                                         position_sizer, risk_manager)

    title = [tickers[0] + "Machine Learning_Long_lags3"]
    # Use the Tearsheet Statistics
    statistics = TearsheetStatistics(
        config,
        portfolio_handler,
        title=title,
        periods=int(252 * 6.5 * 60)  # Minutely periods
    )

    # Set up the backtest

    backtest = TradingSession(config,
                              strategy,
                              tickers,
                              initial_equity,
                              start_date,
                              end_date,
                              events_queue,
                              session_type="live",
                              end_session_time=end_session_time,
                              price_handler=price_handler,
                              portfolio_handler=portfolio_handler,
                              compliance=None,
                              position_sizer=position_sizer,
                              execution_handler=execution_handler,
                              risk_manager=None,
                              statistics=statistics,
                              sentiment_handler=None,
                              title=None,
                              benchmark=None)
    results = backtest.start_trading(testing=testing)

    return results
    for i in range(len(tickers)):
        app.cancelMktData(i)
        app.disconnect()
    app.f.close()