Пример #1
0
def get_node_by_treewidth_reduction(graph):
    """
    Returns a list of pairs (node : reduction_in_treewidth) for the
    provided graph. The graph is **ASSUMED** to be in the optimal
    elimination order, e.g. the nodes have to be relabelled by
    peo

    Parameters
    ----------
    graph : networkx.Graph without self-loops and parallel edges

    Returns
    -------
    nodes_by_treewidth_reduction : dict
    """
    # Get flop cost of the bucket elimination
    initial_treewidth = get_treewidth_from_peo(
        graph, sorted(graph.nodes))

    nodes_by_treewidth_reduction = []
    for node in graph.nodes(data=False):
        reduced_graph = copy.deepcopy(graph)
        # Take out one node
        remove_node(reduced_graph, node)

        treewidth = get_treewidth_from_peo(
            reduced_graph, sorted(reduced_graph.nodes))
        delta = initial_treewidth - treewidth

        nodes_by_treewidth_reduction.append((node, delta))

    return nodes_by_treewidth_reduction
Пример #2
0
def test_maximum_cardinality_search():
    """Test maximum cardinality search algorithm"""

    # Read graph
    import qtree.operators as ops
    import os
    this_dir = os.path.dirname((os.path.abspath(__file__)))
    nq, c = ops.read_circuit_file(this_dir + '/../../inst_2x2_7_0.txt')
    old_g, *_ = circ2graph(nq, c)

    # Make random clique
    vertices = list(np.random.choice(old_g.nodes, 4, replace=False))
    while is_clique(old_g, vertices):
        vertices = list(np.random.choice(old_g.nodes, 4, replace=False))

    g = make_clique_on(old_g, vertices)

    # Make graph completion
    peo, tw = get_peo(g)
    g_chordal = get_fillin_graph2(g, peo)

    # MCS will produce alternative PEO with this clique at the end
    new_peo = maximum_cardinality_search(g_chordal, list(vertices))

    # Test if new peo is correct
    assert is_peo_zero_fillin(g_chordal, peo)
    assert is_peo_zero_fillin(g_chordal, new_peo)
    new_tw = get_treewidth_from_peo(g, new_peo)
    assert tw == new_tw

    print('peo:', peo)
    print('new_peo:', new_peo)
Пример #3
0
def test_tree_to_peo():
    """
    Test tree reduction algorithm and also
    the conversion of tree to peo
    """
    g, peo = make_test_graph()
    f = get_tree_from_peo(g, peo)

    fd, el = get_reduced_tree(f, 1)
    peo = get_peo_from_tree(fd, [5, 6])
    g.remove_nodes_from(el)
    tw1 = get_treewidth_from_peo(g, peo)
    tw2 = len(find_max_cliques(fd)[0]) - 1
    assert tw1 == tw2
Пример #4
0
def test_tree_reduction():
    """
    Tests the deletion of variables from tree
    """
    g, peo = make_test_graph()
    f = get_tree_from_peo(g, peo)

    ff = rm_element_in_tree(f, 2)
    peo.remove(2)
    g.remove_node(2)

    tw1 = get_treewidth_from_peo(g, peo)
    tw2 = len(find_max_cliques(ff)[0]) - 1
    assert tw1 == tw2