Пример #1
0
    def build_network_tree(self, w, p_a, module_list, ql_init=9999):
        """ build up a network tree
        """
        # initialize quality functions
        QL = ql.Quality()

        # register the initial clustering result to the Tree object
        initial_parent_id = 0
        self.__Tree.add_one_level(module_list, initial_parent_id)

        # indicate the initial tree state
        print("initial state of tree")
        self.__Tree.tree_draw_with_ete3(0)
        # calculate initial ql value
        self.ql_global_best = QL.get_hierarchical_quality_value(
            self.__Tree.get_tree_list(), self.glob_w, self.glob_pa)
        self.final_store = copy.deepcopy(self.__Tree.get_tree_list())
        print("initial global quality value: ", self.ql_global_best)

        # start of recursive extention of branches
        self.one_level_finer(w, p_a, initial_parent_id, ql_init)

        print("final state of tree")
        #self.__Tree.print_tree()
        self.__Tree.tree_draw_with_ete3(initial_parent_id, self.ql_global_best)
Пример #2
0
    def restart_clustering(self, w, p_a, parent_id):
        """ restart network division after the state of submodule movement
            and then restart the recursive clustering after
        """
        QL = ql.Quality()
        #print("##### start re-clustering for node id", parent_id)
        node_list, module_list = self.__Tree.subtree2modulelist(parent_id)

        #print("##### module list before\n",module_list)
        w_part, pa_part, id_glo_loc = self.extract_partial_w_pa(
            w.tocsr(), p_a, module_list)
        #print("##### w_part pa_part check", w_part, pa_part, id_glo_loc)

        # restart clustering from this state
        restarted_cluster = cc.Cluster_Core(w_part, pa_part, node_list,
                                            module_list)
        # take new state of module list
        module_list = restarted_cluster.get_modules()
        restarted_cluster.set_nodes_global_id(id_glo_loc)
        #print("##### module list after\n",module_list)

        #modify the tree composition
        self.__Tree.replace_subtree(parent_id, module_list)

        ql_now = restarted_cluster.get_ql_final()
        #ql_now = QL.get_hierarchical_quality_value(self.__Tree.get_tree_list(), self.glob_w, self.glob_pa)

        return ql_now
Пример #3
0
    def one_level_finer(self, w, p_a, grand_parent_id, ql_init):
        """ this function tries to expand each branch of the tree
            by being called recursively


        tree_elements,  level
        :
        .   ------------ grand parent
        | \  
        .   .   -------- parent
        |\  |\
        . . . .    ----- child
        : : : :

        """
        # initiation
        QL = ql.Quality()
        loop_count = 0
        ql_best = ql_init
        ql_now = None
        store_tree = copy.deepcopy(self.__Tree.get_tree_list())

        while loop_count < cf.num_trial:
            # for fast conversion
            if grand_parent_id != 0:
                loop_count = cf.num_trial

            queue_ids = copy.deepcopy(
                self.__Tree.get_element_object(grand_parent_id).id_child)

            while queue_ids:
                # get the parent id of this branch
                parent_id = queue_ids[0]
                mod = self.__Tree.tree_ele2one_module(parent_id)

                num_nodes = mod.get_num_nodes()
                if num_nodes == 1:  # module with only one member may not be divided anymore
                    pass
                else:
                    # extract the partial w matrix and pa array
                    w_part, pa_part, id_glo_loc = self.extract_partial_w_pa(
                        w.tocsr(), p_a, mod)
                    sub_level = cc.Cluster_Core(w_part, pa_part)

                    # set global node ids
                    sub_level.set_nodes_global_id(id_glo_loc)
                    sub_modules = sub_level.get_modules()

                    if len(sub_modules) == 1 or len(sub_modules) == num_nodes:
                        pass
                    else:
                        # get quality value
                        ql_temp = sub_level.get_ql_final()

                        # append a branch to the tree
                        # register a new branch
                        self.__Tree.add_one_level(sub_modules, parent_id)

                        erased_id = self.one_level_finer(
                            w, p_a, parent_id, ql_temp)

                        # get quality value
                        #ql_temp = sub_level.get_ql_final()
                        #ql_temp =  QL.get_hierarchical_quality_value(self.__Tree.get_tree_list(), self.glob_w, self.glob_pa)

                        # modify the queue list
                        if erased_id != None:
                            for i in range(len(queue_ids)):
                                ele_id = queue_ids[i]
                                if ele_id >= erased_id:
                                    queue_ids[i] -= 1

                # erase a queue already done
                queue_ids.pop(0)

            # reconstruct module_list from subtree
            node_list, module_list = self.__Tree.subtree2modulelist(
                grand_parent_id)

            # restart clustering
            ql_now = self.restart_clustering(w, p_a, grand_parent_id)

            # if the quality of this subtree is imploved
            if QL.check_network_got_better(ql_best, ql_now) == True:
                ql_best = ql_now
                ## store and replace the state of the entire tree
                store_tree = copy.deepcopy(self.__Tree.get_tree_list())
                #self.final_store = copy.deepcopy(self.__Tree.get_tree_list())

            else:
                # go to the next loop
                pass

            loop_count += 1

            #if grand_parent_id == 1: ######## for test
            ql_global_temp = QL.get_hierarchical_quality_value(
                self.__Tree.get_tree_list(), self.glob_w, self.glob_pa)
            if QL.check_network_got_better(self.ql_global_best,
                                           ql_global_temp) == True:
                self.ql_global_best = ql_global_temp
                self.final_store = copy.deepcopy(self.__Tree.get_tree_list())

            if grand_parent_id == 0:
                #print("ql_best", ql_best)
                #print(store_tree)
                self.__Tree.tree_draw_with_ete3(0, ql_now)

            # erase "#" for indicate tree states at each step
            #print( self.__Tree.print_tree())
            #self.__Tree.tree_draw_with_ete3(0, ql_global_temp)

        ### end while loop

        self.__Tree.set_tree_list(store_tree)
        # reload the best state of tree
        # sub module movement will be invoked

        # when extention for one subtree stoped (need to )
        if grand_parent_id != 0:
            #print("finish all branches of this subtree finished")
            #print("id", grand_parent_id, "will be erased")
            self.submodule_movement_onesubtree(grand_parent_id)
            erased_id = grand_parent_id
        else:
            #print("recursive tree branch extention finished")
            self.__Tree.set_tree_list(self.final_store)

            erased_id = None
            #print("ql initial ---> best", ql_init, " ---> ",ql_best)
        return erased_id
Пример #4
0
import boundary
import solver
import mesh
import quality

if __name__ == '__main__':
    MESH_DIR = 'usMeshSmall/'
    BOUNDARY_DICT = boundary.BoundaryDict(MESH_DIR + 'boundary.JSON')

    mesh = mesh.Mesh(MESH_DIR, BOUNDARY_DICT)
    q = quality.Quality(mesh)
    q.print_stats()

    s = solver.UnstructuredSolver(mesh)
    s.solve(it=2500, e=0.00001)

    s.results_to_foam()
Пример #5
0
    def __init__(self, w, p_a, *init_nods_mods):
        self.__nodes = []
        self.__modules = []
        self.minimum_codelength = 0.  # theoretical limiti of code length by Shannon's source coding theorem

        keys_for_node_extract = [[-1]]

        if len(init_nods_mods) == 0:
            # initialize node/module object list from w and p_a
            self.init_nods_mods(p_a)
        else:
            # start clustering from already separated modules
            self.__nodes = init_nods_mods[0]
            self.__modules = init_nods_mods[1]

        # quarity object
        QL = ql.Quality()
        ql_initial = QL.get_quality_value(self.__modules, w, p_a)

        # variable for following the change of community quality
        ql_now = ql_initial

        # conut the number of 1st step attempted times
        attempt_count = 0
        # initial number of modules
        num_modules = len(self.__modules)
        # total number of nodes
        total_num_nodes = 0
        for i, mod in enumerate(self.__modules):
            total_num_nodes += mod.get_num_nodes()

        # prepare for marged w matrix and p_a array for generated network
        w_merged = w
        pa_merged = p_a

        ###-###-# first loop: continue node movement till the code length stops to be improved
        while True:
            #print("\n\n\n")
            #print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
            #print("% ")
            #print("\nSearch algorithm: ", attempt_count, " attempt start\n")
            #print("% ")
            #print("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%")
            #print("\n\n\n")

            #print("### 1st step --- node movement ###")

            # (re-)generate the random order for picking a node to be moved
            random_sequence = np.arange(num_modules)
            np.random.shuffle(random_sequence)

            # array to store module ids without member
            module_id_to_be_erased = []

            # store ql value for checking its change between each pass
            ql_before = ql_now

            ###-###-###-# second loop: for each node movement
            for i in range(len(random_sequence)):
                # find a module where the quality value become the best score

                # set a place of module to be moved in array self.__modules[ ]
                # mp_i starts from 0
                mp_i = random_sequence[i]
                num_nodes = self.__modules[mp_i].get_num_nodes()
                # skip the attempt for modules without member node
                if num_nodes == 0:
                    break

                # get a list of node id to be moved
                # all nodes in one module will be moved to neighbor module
                # this movement is equivalent the movement of re-built nodes after re-construction of network in Louvain method
                node_ids_to_be_moved = self.__modules[mp_i].get_node_list()

                for i_l, id_node_moved in enumerate(node_ids_to_be_moved):
                    # get a list of neighboring module id
                    neighbor_list = self.__modules[mp_i].get_neighbor_list(
                        w_merged, self.__modules, id_node_moved)

                    if len(neighbor_list) != 0:
                        # remove nodes from its module
                        self.__modules[mp_i].remove_node(id_node_moved)

                        ql_min = ql_now  # dump ql value

                        # dump module id for destination
                        dump_mod_id = -1

                        ###-###-###-###-###-###-# third loop: for moving a node to neighboring modules
                        for index, mod_id_neigh in enumerate(neighbor_list):

                            # dump the neighbor module object
                            #print ("attempt: ", attempt_count, "n-th node: ", i," move trial: ", index,"mod_id_neigh: ", mod_id_neigh)
                            if mod_id_neigh != self.__modules[
                                    mod_id_neigh - 1].get_module_id():
                                print(
                                    "neibor module id and list id not matched")
                                sys.exit(1)
                            dump_module = copy.deepcopy(
                                self.__modules[mod_id_neigh - 1])
                            # add nodes to one of neighboring module
                            self.__modules[mod_id_neigh -
                                           1].add_node_temp(id_node_moved)

                            # calculate code length
                            # check if all nodes are in the same module -> in this case map equation is not defined.
                            ql_trial = QL.get_quality_value(
                                self.__modules, w_merged, pa_merged)
                            #print ("ql change, minimum_ql ---> this trial node move: ", ql_min, " ---> ",ql_trial)

                            if QL.check_network_got_better(
                                    ql_min, ql_trial
                            ) == True:  # if the clusting become better
                                ql_min = ql_trial
                                dump_mod_id = mod_id_neigh
                                success_dump = copy.deepcopy(
                                    self.__modules[mod_id_neigh - 1])
                                # return the temporal node movement
                                self.__modules[mod_id_neigh -
                                               1] = copy.deepcopy(dump_module)
                            else:
                                # return the temporal node movement
                                self.__modules[mod_id_neigh -
                                               1] = copy.deepcopy(dump_module)

                        # when any ql improvement happened
                        if QL.check_network_got_better(ql_now, ql_min) == True:
                            # decide one of a neighbor module as a destination of the movement
                            # add nodes to one of neighboring module
                            self.__modules[dump_mod_id -
                                           1] = copy.deepcopy(success_dump)

                            # update ql value
                            ql_now = ql_min

                        # if no improvement found
                        else:
                            #print ("\n###destination not found\n\n")
                            # return nodes to its former module
                            self.__modules[mp_i].add_node_temp(id_node_moved)

                        # print for indicate node movement of each step
                        #print(self.__modules)

                #print("### attempt count:", attempt_count, ", 1st step end")

            module_id_to_be_erased = self.get_module_ids_without_node(
                self.__modules)

            #print("we are just removing modules: ", module_id_to_be_erased)
            # module id rename
            module_id_to_be_erased.sort()
            erase_count = 0
            for ind, mod_id in enumerate(module_id_to_be_erased):
                # erase __module objects which has no node member
                self.__modules.pop(mod_id - 1 - erase_count)
                erase_count += 1

            # rename and sort module id
            self.rename_sort_module_id(self.__modules, self.__nodes)

            # build summed module list
            keys_for_node_extract = self.compress_modules(
                self.__modules, keys_for_node_extract, total_num_nodes)

            # get summed pa, w matrix
            pa_merged, w_merged = self.get_merged_pa_w_array(
                w, p_a, self.__modules, keys_for_node_extract)

            # reset number of modules
            num_modules = len(self.__modules)
            # reset total number of nodes
            total_num_nodes = 0
            for i, mod in enumerate(self.__modules):
                total_num_nodes += mod.get_num_nodes()

            # exit the search algorithm when the change of quality value became lower than the threshold
            if QL.check_network_converged(ql_before, ql_now) == True:
                #print("#########################################")
                #print("#")
                #print("# clustring core algorithm Converged")
                #print("# improved quality value: ", ql_now)
                #print("# difference %: ", ql_now/ql_initial*100)
                #print("#########################################")
                self.ql_final = ql_now

                break

            attempt_count += 1

            # output for division result of this step with local node ids
            #print("modules divided:\n", self.__modules)

        # rebuild module list
        del self.__modules[:]
        self.rebuild_module_list(keys_for_node_extract)

        # calculate enter/exit/internal link weights
        self.sum_link_weight_and_set(w, p_a, self.__modules)