def rank_fund_manager(end_date, fund_code, rank_pool, fund_name, mage_date): """ 某个基金经理管理以来排名 """ today = datetime.strptime(end_date, "%Y%m%d") before_1y = datetime(year=today.year - 1, month=today.month, day=today.day).strftime("%Y%m%d") before_2y = datetime(year=today.year - 2, month=today.month, day=today.day).strftime("%Y%m%d") before_3y = datetime(year=today.year - 3, month=today.month, day=today.day).strftime("%Y%m%d") before_5y = datetime(year=today.year - 5, month=today.month, day=today.day).strftime("%Y%m%d") date_array = np.array([ ["2019年", "20190101", end_date, '20180930'], ["2018年", '20180101', "20181231", '20170930'], ["2017年", "20170101", '20171231', "20160930"], ["2016年", "20160101", '20161231', "20150930"], ["2015年", "20150101", '20151231', "20140930"], ["管理以来", mage_date, end_date, mage_date], ["过去1年", before_1y, end_date, before_1y], ["过去2年", before_2y, end_date, before_2y], ["过去3年", before_3y, end_date, before_3y], ["过去5年", before_5y, end_date, before_3y]]) rank_percent = pd.DataFrame([], index=[fund_name]) rank_str = pd.DataFrame([], index=[fund_name]) for i_date in range(len(date_array)): label = date_array[i_date, 0] beg_date = date_array[i_date, 1] end_date = date_array[i_date, 2] new_fund_date = date_array[i_date, 3] if beg_date >= str(int(mage_date)): # if fund_code in ["162201.OF"]: # str_rank, pct = MfcManagerMoney().cal_fund_index( # rank_pool, "FTSE成长", fund_code, beg_date, end_date, "超额收益") # elif fund_code in ["162202.OF"]: # str_rank, pct = MfcManagerMoney().cal_fund_index( # rank_pool, "FTSE周期", fund_code, beg_date, end_date, "超额收益") # elif fund_code in ["162203.OF"]: # str_rank, pct = MfcManagerMoney().cal_fund_index( # rank_pool, "FTSE稳定", fund_code, beg_date, end_date, "超额收益") # else: # str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, new_fund_date, # excess=False) str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, new_fund_date, excess=False) rank_percent.loc[fund_name, label] = pct rank_str.loc[fund_name, label] = str_rank else: rank_percent.loc[fund_name, label] = "NAN" rank_str.loc[fund_name, label] = "NAN" print(rank_percent) print(rank_str) return rank_percent, rank_str
def rank_fund_self(end_date, fund_code, rank_pool, fund_name, mage_date): """ 某个基金排名 """ today = datetime.strptime(end_date, "%Y%m%d") before_1y = datetime(year=today.year - 1, month=today.month, day=today.day).strftime("%Y%m%d") before_2y = datetime(year=today.year - 2, month=today.month, day=today.day).strftime("%Y%m%d") before_3y = datetime(year=today.year - 3, month=today.month, day=today.day).strftime("%Y%m%d") before_5y = datetime(year=today.year - 5, month=today.month, day=today.day).strftime("%Y%m%d") before_10y = datetime(year=today.year - 10, month=today.month, day=today.day).strftime("%Y%m%d") date_array = np.array([ ["2019年", "20190101", end_date, '20180930'], ["2018年", '20180101', "20181231", '20170930'], ["2017年", "20170101", '20171231', "20160930"], ["2016年", "20160101", '20161231', "20150930"], ["2015年", "20150101", '20151231', "20140930"], ["2014年", "20140101", '20141231', "20130930"], ["2013年", "20130101", '20131231', "20120930"], ["2012年", "20120101", '20121231', "20110930"], ["2011年", "20110101", '20111231', "20100930"], ["2010年", "20100101", '20101231', "20090930"], ["2009年", "20090101", '20091231', "20080930"], ["2008年", "20080101", '20081231', "20070930"], ["2007年", "20070101", '20071231', "20060930"], ["成立以来", mage_date, end_date, mage_date], ["过去1年", before_1y, end_date, before_1y], ["过去2年", before_2y, end_date, before_2y], ["过去3年", before_3y, end_date, before_3y], ["过去5年", before_5y, end_date, before_5y], ["过去10年", before_10y, end_date, before_10y], ]) rank_percent = pd.DataFrame([], index=[fund_name]) rank_str = pd.DataFrame([], index=[fund_name]) for i_date in range(len(date_array)): label = date_array[i_date, 0] beg_date = date_array[i_date, 1] end_date = date_array[i_date, 2] new_fund_date = date_array[i_date, 3] if beg_date >= str(int(mage_date)): str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, new_fund_date, excess=False) rank_percent.loc[fund_name, label] = pct rank_str.loc[fund_name, label] = str_rank else: rank_percent.loc[fund_name, label] = "NAN" rank_str.loc[fund_name, label] = "NAN" print(rank_percent) print(rank_str) return rank_percent, rank_str
def write_public_fxwy(end_date, save_path): # 参数 ########################################################################################### fund_name = '泰达宏利复兴伟业' fund_code = '001170.OF' fund_type = "公募" benchmark_code = '885001.WI' benchmark_name = '偏股混合基金总指数' benchmark_code_2 = "000300.SH" benchmark_name_2 = "沪深300" benchmark_ratio = 0.95 setup_date = '20150421' # 吴华开始管理 也是成立日 today = datetime.strptime(end_date, "%Y%m%d") before_1y = datetime(year=today.year-1, month=today.month, day=today.day).strftime("%Y%m%d") before_2y = datetime(year=today.year-2, month=today.month, day=today.day).strftime("%Y%m%d") before_3y = datetime(year=today.year-3, month=today.month, day=today.day).strftime("%Y%m%d") before_5y = datetime(year=today.year-5, month=today.month, day=today.day).strftime("%Y%m%d") date_array = np.array([["2019年", '20190101', end_date, '20180930'], ["2018年", "20180101", '20181231', "20170930"], ["2017年", "20170101", '20171231', "20160930"], ["2016年", '20160101', '20161231', "20150930"], ["成立以来(吴华管理)", setup_date, end_date, setup_date], ["过去1年", before_1y, end_date, before_1y], ["过去2年", before_2y, end_date, before_2y], ["过去3年", before_3y, end_date, before_3y], ]) benchmark_array = np.array([["沪深300", "000300.SH"], ["中证500", "000905.SH"], ["股票型基金总指数", '885012.WI'], ["WIND全A", '881001.WI']]) from quant.fund.fund import Fund fund_pct = Fund().get_fund_factor("Repair_Nav_Pct") bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100 # 准备文件 ########################################################################################### file_name = os.path.join(save_path, "OutFile", fund_name + '.xlsx') sheet_name = fund_name excel = WriteExcel(file_name) worksheet = excel.add_worksheet(sheet_name) # 写入基金表现 和基金排名 ########################################################################################### performance_table = MfcTable().cal_summary_table_sample(fund_name, fund_code, fund_type, date_array, benchmark_array) rank1 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "偏股混合型基金", excess=False) rank2 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "灵活配置型基金_60", excess=False) rank3 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "股票+灵活配置60型基金", excess=False) performance_table = pd.concat([performance_table, rank1, rank2, rank3], axis=0) col_number = 1 num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="red", fillna=True) col_number = col_number + performance_table.shape[1] + 2 # 读取基金和基准时间序列 ########################################################################################### fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type) benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"]) fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data)) cum_return = fs.get_fund_and_bencnmark_cum_return_series(setup_date, end_date) benchmark_data = Index().get_index_factor(benchmark_code_2, attr=["CLOSE"]) fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data)) cum_return2 = fs.get_bencnmark_cum_return_series(setup_date, end_date) # 写入基金和基准时间序列 ########################################################################################### cum_return = pd.concat([cum_return, cum_return2], axis=1) cum_return.columns = [fund_name, benchmark_name, benchmark_name_2] cum_return = cum_return.dropna() num_format_pd = pd.DataFrame([], columns=cum_return.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(cum_return, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="blue", fillna=True) # 基金和基准时间序列图 ########################################################################################### chart_name = fund_name + "累计收益(管理以来)" series_name = [fund_name, benchmark_name, benchmark_name_2] insert_pos = 'B12' excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return, series_name, chart_name, insert_pos, sheet_name) excel.close() ########################################################################################### return True
def write_public_qf(end_date, save_path): # 参数 ########################################################################################### fund_name = '泰达宏利启富' fund_code = '003912.OF' fund_type = "公募" benchmark_code = '885003.WI' benchmark_name = '偏债混合型基金总指数' benchmark_code_2 = "881001.WI" benchmark_name_2 = "WIND全A" benchmark_ratio = 0.95 setup_date = '20170315' date_array = np.array([["2019年", '20190101', end_date, '20180930'], ["2018年", "20180101", '20181231', "20170930"], ["2017年", setup_date, '20171231', setup_date], ["成立以来", setup_date, end_date, setup_date]]) benchmark_array = np.array([["沪深300", "000300.SH"], ["WIND全A", "881001.WI"], ["中证全债", "H11001.CSI"], ["偏债混合基金指数", '885003.WI']]) from quant.fund.fund import Fund fund_pct = Fund().get_fund_factor("Repair_Nav_Pct") bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100 # 准备文件 ########################################################################################### file_name = os.path.join(save_path, "OutFile", fund_name + '.xlsx') sheet_name = fund_name excel = WriteExcel(file_name) worksheet = excel.add_worksheet(sheet_name) # 写入基金表现 和基金排名 ########################################################################################### performance_table = MfcTable().cal_summary_table(fund_name, fund_code, fund_type, date_array, benchmark_array) rank0 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "灵活配置型基金_30", excess=False) rank1 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "wind", excess=False) performance_table = pd.concat([performance_table, rank0, rank1], axis=0) col_number = 1 num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="red", fillna=True) col_number = col_number + performance_table.shape[1] + 2 # 读取基金和基准时间序列 ########################################################################################### fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type) benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"]) fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data)) cum_return = fs.get_fund_and_bencnmark_cum_return_series( setup_date, end_date) benchmark_data = Index().get_index_factor(benchmark_code_2, attr=["CLOSE"]) fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data)) cum_return2 = fs.get_bencnmark_cum_return_series(setup_date, end_date) # 写入基金和基准时间序列 ########################################################################################### cum_return = pd.concat([cum_return, cum_return2], axis=1) cum_return.columns = [fund_name, benchmark_name, benchmark_name_2] cum_return = cum_return.dropna() num_format_pd = pd.DataFrame([], columns=cum_return.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(cum_return, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="blue", fillna=True) # 基金和基准时间序列图 ########################################################################################### chart_name = fund_name + "累计收益(成立以来)" series_name = [fund_name, benchmark_name, benchmark_name_2] insert_pos = 'B12' excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return, series_name, chart_name, insert_pos, sheet_name) excel.close() ########################################################################################### return True
def write_public_zz500_adjust(end_date, save_path): # 参数 ########################################################################################### fund_name_adjust = '泰达宏利中证500_adjust' fund_code_adjust = '162216.OF_adjust' fund_name = '泰达宏利中证500' fund_code = '162216.OF' fund_type = "公募" benchmark_code = '000905.SH' benchmark_name = '中证500' benchmark_ratio = 0.95 setup_date = '20141003' today = datetime.strptime(end_date, "%Y%m%d") before_1y = datetime(year=today.year - 1, month=today.month, day=today.day).strftime("%Y%m%d") before_2y = datetime(year=today.year - 2, month=today.month, day=today.day).strftime("%Y%m%d") before_3y = datetime(year=today.year - 3, month=today.month, day=today.day).strftime("%Y%m%d") date_array = np.array([ ["2019年", '20190101', end_date, '20180930'], ["2018年", "20180101", '20181231', "20170930"], ["2017年", "20170101", '20171231', "20160930"], ["2016年", "20160101", "20161231", "20150930"], ["2015年", "20150101", "20151231", "20150101"], ["管理(20141003)以来", setup_date, end_date, setup_date], ["2015年以来", "20150101", end_date, setup_date], ["过去1年", before_1y, end_date, before_1y], ["过去2年", before_2y, end_date, before_2y], ["过去3年", before_3y, end_date, before_3y], ]) benchmark_array = np.array([["沪深300", "000300.SH"], ["中证500", "000905.SH"], ["WIND全A", '881001.WI']]) from quant.fund.fund import Fund fund_pct = Fund().get_fund_factor("Repair_Nav_Pct") bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100 # 准备文件 ########################################################################################### file_name = os.path.join(save_path, "OutFile", fund_name_adjust + '.xlsx') sheet_name = fund_name_adjust excel = WriteExcel(file_name) worksheet = excel.add_worksheet(sheet_name) # 写入基金表现 和基金排名 ########################################################################################### performance_table = MfcTable().cal_summary_table_sample( fund_name, fund_code, fund_type, date_array, benchmark_array) # rank0 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "wind", excess=False) # rank1 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "被动指数型基金", excess=True) rank2 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "中证500基金", excess=False) performance_table = pd.concat([performance_table, rank2], axis=0) col_number = 1 num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="red", fillna=True) col_number = col_number + performance_table.shape[1] + 2 # 写入增强基金表现 ########################################################################################### performance_table = MfcTable().cal_summary_table_enhanced_fund( fund_name, fund_code, fund_type, date_array, benchmark_code, benchmark_name, benchmark_ratio) num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="red", fillna=True) col_number = col_number + performance_table.shape[1] + 2 # 读取基金和基准时间序列 ########################################################################################### fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type) benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"]) fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data), benchmark_ratio) # 写入超额收益时间序列 ########################################################################################### excess_cum_return = fs.get_cum_excess_return_series("20150101", end_date) num_format_pd = pd.DataFrame([], columns=excess_cum_return.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(excess_cum_return, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="blue", fillna=True) # 超额收益图 ########################################################################################### chart_name = fund_name + "累计超额收益(2015年以来)" insert_pos = 'B12' excel.line_chart_one_series_with_linear_plot(worksheet, 0, col_number, excess_cum_return, chart_name, insert_pos, sheet_name) col_number = col_number + excess_cum_return.shape[1] + 2 # 写入基金收益时间序列 ########################################################################################### benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"]) fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data)) cum_return = fs.get_fund_and_bencnmark_cum_return_series( "20150101", end_date) num_format_pd = pd.DataFrame([], columns=cum_return.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(cum_return, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="blue", fillna=True) # 写入基金收益时间序列图 ############################################################################################ series_name = [fund_name, benchmark_name] chart_name = fund_name + "累计收益(2015年以来)" insert_pos = 'B26' excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return, series_name, chart_name, insert_pos, sheet_name) excel.close() ########################################################################################### return True
def fund_score(self, fund_code, fund_name, end_date, rank_pool, mg_date, fund_type, my_index_code): """ 计算基金得分 """ # index_code = "881001.WI" # fund_code = "162208.OF" # end_date = "20181231" # rank_pool = "普通股票型基金" # mg_date = "20141121" # fund_type = "行业基金" # my_index_code = "FTSE成长" end_date = Date().change_to_datetime(end_date) before_1y = datetime(year=end_date.year, month=1, day=1).strftime("%Y%m%d") before_3y = datetime(year=end_date.year-2, month=1, day=1).strftime("%Y%m%d") before_3y = max(before_3y, "20160101") before_5y = datetime(year=end_date.year-4, month=1, day=1).strftime("%Y%m%d") before_5y = max(before_5y, "20160101") mg_date = max(mg_date, "20160101") end_date = Date().change_to_str(end_date) result = pd.DataFrame([], columns=["名称", "1年收益", "1年排名", "1年排名百分比", "1年得分", "3年收益", "3年排名", "3年排名百分比", "3年得分", "5年收益", "5年排名", "5年排名百分比", "5年得分" ]) result.loc[fund_code, "名称"] = fund_name beg_date = before_1y fund_nav = MfcData().get_mfc_public_fund_nav(fund_code) fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ'])) result.loc[fund_code, "1年收益"] = fs.get_interval_return(beg_date, end_date) str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, beg_date, excess=False) result.loc[fund_code, "1年排名百分比"] = pct result.loc[fund_code, "1年排名"] = str_rank result.loc[fund_code, "1年得分"] = self.score(pct) beg_date = before_3y fund_nav = MfcData().get_mfc_public_fund_nav(fund_code) fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ'])) result.loc[fund_code, "3年收益"] = fs.get_interval_return(beg_date, end_date) str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, beg_date, excess=False) result.loc[fund_code, "3年排名百分比"] = pct result.loc[fund_code, "3年排名"] = str_rank result.loc[fund_code, "3年得分"] = self.score(pct) beg_date = before_5y fund_nav = MfcData().get_mfc_public_fund_nav(fund_code) fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ'])) result.loc[fund_code, "5年收益"] = fs.get_interval_return(beg_date, end_date) str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, beg_date, excess=False) result.loc[fund_code, "5年排名百分比"] = pct result.loc[fund_code, "5年排名"] = str_rank result.loc[fund_code, "5年得分"] = self.score(pct) beg_date = mg_date fund_nav = MfcData().get_mfc_public_fund_nav(fund_code) fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ'])) result.loc[fund_code, "管理以来收益"] = fs.get_interval_return(beg_date, end_date) str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, beg_date, excess=False) result.loc[fund_code, "管理以来排名"] = str_rank result.loc[fund_code, "管理以来排名百分比"] = pct result.loc[fund_code, "管理以来得分"] = self.score(pct) print(result) return result
def fund_excess_score(self, fund_code, fund_name, end_date, rank_pool, mg_date, fund_type, my_index_code): """ 行业基金超额收益得分 """ end_date = Date().change_to_datetime(end_date) before_1y = datetime(year=end_date.year, month=1, day=1).strftime("%Y%m%d") before_3y = datetime(year=end_date.year-2, month=1, day=1).strftime("%Y%m%d") before_3y = max(before_3y, "20160101") before_5y = datetime(year=end_date.year-4, month=1, day=1).strftime("%Y%m%d") before_5y = max(before_5y, "20160101") mg_date = max(mg_date, "20160101") end_date = Date().change_to_str(end_date) result = pd.DataFrame([], columns=["名称", "1年超额收益", "1年超额排名", "1年超额排名百分比", "1年超额得分", "3年超额收益", "3年超额排名", "3年超额排名百分比", "3年超额得分", "5年超额收益", "5年超额排名", "5年超额排名百分比", "5年超额得分", "管理以来超额收益", "管理以来超额排名", "管理以来超额排名百分比", "管理以来超额得分" ]) result.loc[fund_code, "名称"] = fund_name if fund_type == "行业基金": beg_date = before_1y excess_return, pct, rank_str = FundRank().rank_excess_fund(fund_pool_name=rank_pool, ge_index_code="881001.WI", my_index_code=my_index_code, my_fund_code=fund_code, beg_date=beg_date, end_date=end_date) result.loc[fund_code, "1年超额收益"] = excess_return result.loc[fund_code, "1年超额排名"] = rank_str result.loc[fund_code, "1年超额排名百分比"] = pct result.loc[fund_code, "1年超额得分"] = self.score(pct) beg_date = before_3y excess_return, pct, rank_str = FundRank().rank_excess_fund(fund_pool_name=rank_pool, ge_index_code="881001.WI", my_index_code=my_index_code, my_fund_code=fund_code, beg_date=beg_date, end_date=end_date) result.loc[fund_code, "3年超额收益"] = excess_return result.loc[fund_code, "3年超额排名"] = rank_str result.loc[fund_code, "3年超额排名百分比"] = pct result.loc[fund_code, "3年超额得分"] = self.score(pct) beg_date = before_5y excess_return, pct, rank_str = FundRank().rank_excess_fund(fund_pool_name=rank_pool, ge_index_code="881001.WI", my_index_code=my_index_code, my_fund_code=fund_code, beg_date=beg_date, end_date=end_date) result.loc[fund_code, "5年超额收益"] = excess_return result.loc[fund_code, "5年超额排名百分比"] = pct result.loc[fund_code, "5年超额排名"] = rank_str result.loc[fund_code, "5年超额得分"] = self.score(pct) beg_date = mg_date excess_return, pct, rank_str = FundRank().rank_excess_fund(fund_pool_name=rank_pool, ge_index_code="881001.WI", my_index_code=my_index_code, my_fund_code=fund_code, beg_date=beg_date, end_date=end_date) result.loc[fund_code, "管理以来超额收益"] = excess_return result.loc[fund_code, "管理以来超额排名百分比"] = pct result.loc[fund_code, "管理以来超额排名"] = rank_str result.loc[fund_code, "管理以来超额得分"] = self.score(pct) return result
def write_public_lh(end_date, save_path): # 参数 ########################################################################################### fund_name = '泰达宏利量化增强' fund_code = '001733.OF' fund_type = "公募" benchmark_code = '000905.SH' benchmark_name = '中证500' benchmark_ratio = 0.95 setup_date = '20160830' date_array = np.array( [["2019年", '20190101', end_date, '20180930'], ["2018年", "20180101", '20181231', "20170930"], ["2017年", "20170101", '20171231', "20160930"], ["2016年", setup_date, "20161231", setup_date], ["成立(20160830)以来", setup_date, end_date, setup_date]]) benchmark_array = np.array([["沪深300", "000300.SH"], ["中证500", "000905.SH"], ["股票型基金", '885012.WI'], ["创业板指", '399006.SZ'], ["WIND全A", '881001.WI']]) from quant.fund.fund import Fund fund_pct = Fund().get_fund_factor("Repair_Nav_Pct") bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100 # 准备文件 ########################################################################################### file_name = os.path.join(save_path, "OutFile", fund_name + '.xlsx') sheet_name = fund_name excel = WriteExcel(file_name) worksheet = excel.add_worksheet(sheet_name) # 写入基金表现 和基金排名 ########################################################################################### performance_table = MfcTable().cal_summary_table_sample( fund_name, fund_code, fund_type, date_array, benchmark_array) rank0 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "中证500基金", excess=False) rank1 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "普通股票型基金", excess=False) # rank2 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "中证500基金", excess=True) # rank3 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "指数增强型基金", excess=True) performance_table = pd.concat([performance_table, rank0, rank1], axis=0) col_number = 1 num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="red", fillna=True) col_number = col_number + performance_table.shape[1] + 2 # 写入增强基金表现 ########################################################################################### performance_table = MfcTable().cal_summary_table_enhanced_fund( fund_name, fund_code, fund_type, date_array, benchmark_code, benchmark_name, benchmark_ratio) num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="red", fillna=True) col_number = col_number + performance_table.shape[1] + 2 # 读取基金和基准时间序列 ########################################################################################### fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type) benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"]) fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data), benchmark_ratio) # 写入超额收益时间序列 ########################################################################################### excess_cum_return = fs.get_cum_excess_return_series(setup_date, end_date) num_format_pd = pd.DataFrame([], columns=excess_cum_return.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(excess_cum_return, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="blue", fillna=True) # 超额收益图 ########################################################################################### chart_name = fund_name + "累计超额收益(成立以来)" insert_pos = 'B16' excel.line_chart_one_series_with_linear_plot(worksheet, 0, col_number, excess_cum_return, chart_name, insert_pos, sheet_name) col_number = col_number + excess_cum_return.shape[1] + 2 # 写入基金收益时间序列 ########################################################################################### benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"]) fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data)) cum_return = fs.get_fund_and_bencnmark_cum_return_series( setup_date, end_date) num_format_pd = pd.DataFrame([], columns=cum_return.columns, index=['format']) num_format_pd.ix['format', :] = '0.00%' excel.write_pandas(cum_return, worksheet, begin_row_number=0, begin_col_number=col_number, num_format_pd=num_format_pd, color="blue", fillna=True) # 写入基金收益时间序列图 ############################################################################################ series_name = [fund_name, benchmark_name] chart_name = fund_name + "累计收益(成立以来)" insert_pos = 'B32' excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return, series_name, chart_name, insert_pos, sheet_name) excel.close() ########################################################################################### return True