Пример #1
0
def quantstats_analysis(env, df, rl_name, start_index, end_index):
    qs.extend_pandas()
    net_worth = pd.Series(env.history['total_profit'],
                          index=df.index[start_index + 1:end_index])
    returns = net_worth.pct_change().iloc[1:]
    qs.reports.full(returns)
    qs.reports.html(returns,
                    output=f'./data/result_analysis/{rl_name}_quantstats.html')
Пример #2
0
def extend_pandas():
    """Enhances pandas objects."""
    import quantstats as qs
    from pandas.core.base import PandasObject as _po

    qs.extend_pandas()

    _po.gmean = stats.gmean
Пример #3
0
def stock_report(symbol):
    import quantstats as qs

    # extend pandas functionality with metrics, etc.
    qs.extend_pandas()

    # fetch the daily returns for a stock
    stock = qs.utils.download_returns(symbol)
    #qs.core.plot_returns_bars(stock, "SPY")
    qs.reports.html(stock, "SPY", output="report.html")
Пример #4
0
import quantstats as qs

# extend pandas functionality with metrics, etc.
qs.extend_pandas()

# fetch the daily returns for a stock
stock = qs.utils.download_returns('FB')
stock.to_csv("FB.csv")
print(stock)

qs.reports.full(stock)

# show sharpe ratio
#qs.stats.sharpe(stock)

# or using extend_pandas() :)
#stock.sharpe(